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Abstract

Out-of-distribution (OOD) detection plays a vital role in enhancing the reliability of machine learning models. As large
language models (LLMs) become more prevalent, the applicability of prior research on OOD detection that utilized
smaller-scale Transformers such as BERT, RoBERTa, and GPT-2 may be challenged, due to the significant differences
in the scale of these models, their pre-training objectives, and the paradigms used for inference. This paper initiates a
pioneering empirical investigation into the OOD detection capabilities of LLMs, focusing on the LLaMA series ranging
from 7B to 65B in size. We thoroughly evaluate commonly used OOD detectors, examining their performance in
both zero-grad and fine-tuning scenarios. Notably, we alter previous discriminative in-distribution fine-tuning into
generative fine-tuning, aligning the pre-training objective of LLMs with downstream tasks. Our findings unveil that
a simple cosine distance OOD detector demonstrates superior efficacy, outperforming other OOD detectors. We
provide an intriguing explanation for this phenomenon by highlighting the isotropic nature of the embedding spaces of
LLMs, which distinctly contrasts with the anisotropic property observed in smaller BERT family models. The new
insight enhances our understanding of how LLMs detect OOD data, thereby enhancing their adaptability and reliability
in dynamic environments. We have released the source code at https://github.com/Awenbocc/LLM-00D for
other researchers to reproduce our results.
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In-Distribution (ID)
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Out-of-Distribution (OOD)
(I) Far-OOD: Question Classification

1. Introduction

Out-of-distribution (OOD) detection has attracted
significant attention due to its crucial role in ensur-
ing Al safety (Salehi et al., 2022). The objective is to SST-2
identify and raise an alarm for inputs that exhibit dis-
tributional shifts compared to the in-distribution (ID)
training data. Given that the test distribution can
dynamically change over time, OOD detection has
become indispensable in high-stakes applications,
such as healthcare and self-driving cars. lts ability
to detect anomalous inputs and adapt to evolving
scenarios makes it a vital component in ensuring
the reliability and robustness of Al systems in real-
world, dynamic environments.

Utilizing sentence representations yielded by pre-
trained language models (PLMs) to derive OOD
confidence scores has been the de facto method
for textual OOD detection. Specifically, PLMs are
first fine-tuned on the ID data and then OOD detec-

Nelson s intentions are good. Who was the first American in space ?
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Figure 1: lllustration of two types of OOD instances
compared to ID samples: far-OOD where ID and
OOD data come from different domains and near-
OOD where ID and OOD data come from the same
domain but with different classes.

2020; Podolskiy et al., 2021; Uppaal et al., 2023)

tors are applied on the sentence representations
generated by PLMs. Compared to ID data, there
are two types of OOD instances: far-OOD where
ID and OOD data come from different domains and
near-OOD where ID and OOD data come from the
same domain but with different classes, as shown in
Figure 1. Typically, near-OOD samples are harder
to recognize. A body of works (Hendrycks et al.,

* Equal contribution.
T Corresponding author.

have shown that Transformer-based models can
produce better sentence representations for OOD
detection. However, these studies have mainly
focused on evaluating the OOD detection perfor-
mance of small-scale encoder-based Transformers,
such as RoBERTa and BERT.

Recently, large language models (LLMs) have
made significant strides in various cognitive tasks,
yet their capabilities on OOD detection remain
largely unexplored. Unlike relatively small-scale
PLMs used by prior studies, LLMs often display
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https://github.com/Awenbocc/LLM-OOD

notable differences. In particular, the majority of
previously prominent PLMs utilized for OOD detec-
tion adopt the encoder-based architecture, such as
BERT and RoBERTa. These models are predomi-
nantly designed with a pre-training objective that fo-
cuses on sentence classification. However, recent
LLMs (Touvron et al., 2023a; Zeng et al., 2022; Du
et al., 2022; Chowdhery et al., 2022; Chung et al.,
2022) exclusively adopt an autoregressive training
objective during pre-training. Consequently, the hid-
den states of LLMs are specialized for next token
prediction, which could influence their performance
in OOD detection. Moreover, previous works test
changes in OOD detection when adapting PLMs
to downstream tasks through discriminative fine-
tuning, even for decoder-based models (Cho et al.,
2023). However, a more intuitive approach is to
probe the pre-training knowledge of LLMs through
generative fine-tuning, which better aligns LLMs’
pre-training objective with downstream tasks. Thus,
it is imperative to extensively investigate the OOD
detection capabilities of LLMs to gain deeper in-
sights into their potential and limitations.

This paper aims to fill this gap by offering a com-
prehensive and structured assessment of OOD de-
tection with LLMs across varying scales (ranging
from 7B to 65B). Notably, our evaluation process is
specifically designed to consider the scaling laws
of LLMs with commonly utilized OOD detection de-
tectors, ensuring broader and more generalized
findings. In summary, our analysis has revealed
the following new insights:

1. Discriminative vs. generative fine-tuning.
We have observed that generative fine-tuning
demonstrates greater resilience to the issue of ID
overfitting when compared to discriminative fine-
tuning. As highlighted by Uppaal et al. (2023), there
exists a trade-off between achieving higher accu-
racy on ID tasks and ensuring effective OOD de-
tection. It has been shown that OOD detectors
progressively lose efficacy as the training of 1D
tasks continues. However, our findings indicate
that adopting a generative approach to fine-tuning
LLMs can effectively mitigate this issue, potentially
resulting in stable OOD performance even as train-
ing progresses and ID accuracy improves.

2. LLM-based far- vs. near-OOD detection.
Our results consistently demonstrate that LLMs are
natural far-OOD detectors. Remarkably, LLMs of all
scales achieve near-perfect OOD performance in
far-OOD scenarios without requiring any fine-tuning.
However, when it comes to near-OOD detection,
only the 65B model is able to achieve satisfactory
performance without any fine-tuning. Despite that,
we discover that fine-tuning significantly improves
the near-OOD detection capability of LLMs.

3. Anisotropy vs. isotropy. Our experimen-
tal results suggest that the cosine distance func-
tion, when used as a straightforward OOD detec-
tor, performs exceptionally well. This observation
leads to an intriguing discovery: the embedding
spaces of LLMs exhibit a desirable isotropic prop-
erty, which is not possessed by the BERT family
models. The sentence embeddings produced by
the BERT family models have been noted to pos-
sess an undesirable characteristic of being con-
centrated within a narrow cone, a phenomenon
referred to as anisotropic representations (Etha-
yarajh, 2019), which negatively affects tasks in-
volving semantic relationships and is commonly
known as representation degeneration (Gao et al.,
2019). The issue is resolved through the isotropic
representations generated by LLMs, which allow
the cosine distance to excel in OOD detection and
may potentially benefit a broad spectrum of tasks.

2. Related Work

2.1.

Out-of-Distribution (OOD) detection has a long his-
tory in machine learning and is highly related to re-
search topics like outlier detection, anomaly detec-
tion and novelty detection (Hendrycks and Mazeika,
2022). In the task setting of OOD detection, the in-
distribution is characterized by the labeled training
dataset and the out-of-distribution refers to anything
else that possesses distributional shifts. OOD de-
tection distinguishes from other related topics in
the case that it requires both of the ID and OOD
classification accuracy (Yang et al., 2021).

Out-of-Distribution Detection

2.2. Textual OOD Detection with PLMs

The significance of textual OOD detection in ensur-
ing the robustness of NLP applications, such as dia-
logue systems, has led to a surge in research inter-
est. Pre-trained Transformers have shown intrinsic
superiority in handing OOD detection (Hendrycks
et al., 2020; Zhan et al., 2021).

Several works have further evaluated the OOD
performance of PLMs with respect to commonly
used OOD detectors including MSP (Hendrycks
and Gimpel, 2017), Mahalanobis distance
(MD) (Lee et al., 2018), and Energy score (Liu
et al., 2020). For example, Podolskiy et al. (2021)
show that the Gaussian distribution assumption
of MD better matches the representation space of
BERT and can yield the best OOD performance
in intent OOD detection benchmarks. Zhou et al.
(2021) show that a contrastive regularizer can
further improve the sentence representation of
Transformers for OOD detection.

More recently, Uppaal et al. (2023) present a
thorough analysis on the fine-tuning strategies
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Figure 2: Our proposed evaluation framework for LLMs at OOD detection, taking three aspects into
consideration: @ distribution of OOD samples (near or far), @ impact of model tuning on OOD detection,

and @ diverse OOD score functions.

for OOD detection with RoBERTa and show that
RoBERTa (Liu et al., 2019) without fine-tuning
can achieve near-perfect far-OOD detection per-
formance. Similarly, we find that LLMs can also
achieve perfect far-OOD detection performance
without fine-tuning. Cho et al. (2023) explore the
OOD detection capability of medium-sized PLMs
(such as GPT-2 (Radford et al., 2019)), as well
as the impact of various ID fine-tuning techniques.
While they also assess decoder-based models, the
models they evaluated are not extensive as this
work and they neglect to undertake generative ID
tuning, a crucial step to fine-tune decoder-based
models for downstream ID tasks. Furthermore, the
models they examine remain at relatively moderate
scales, and an exploration of the possible data-
efficient characteristics of the model is lacking.

Recently, large language models (LLMs) have
been leading a paradigm shift in the field of nat-
ural language processing (NLP) (Touvron et al.,
2023a; Wei et al., 2022; Zeng et al., 2022; Du et al.,
2022; Chowdhery et al., 2022; Chung et al., 2022;
Feng et al., 2023). The use of LLMs to solve NLP
tasks in a generative way has become widespread.
These LLMs commonly adopt the decoder-based
architecture and are trained with the autoregressive
objective. In this paper, we focus on the OOD per-
formance of open-source LLMs and anticipate our
work can provide useful insights for OOD detection
under this paradigm.

3. Method

Problem statement. The objective of OOD detec-
tion is to effectively differentiate between instances

that belong to a specific distribution (in-distribution
Dip) and those falling outside of that distribution
(out-of-distribution Dopp). To better and fairly evalu-
ate the capabilities of LLMs for OOD detection com-
pared to prior smaller models (e.g., RoBERTa (Liu
et al.,, 2019)) (Uppaal et al., 2023), we utilize the
same sentence classification task as the ID training
task. In practical application scenarios, undesired
inputs (e.g., a severe distribution shift towards ID
data) may occur, and an OOD confidence scoring
function foop can be used to reject whether out-
putting results for such inputs or not.

3.1.

For the ID sentence classification task, we align
with the nature of LLMs and adopt a generative
approach (referred to as open-ended classifica-
tion) (Radford et al., 2018). Concretely, given an
input sentence X, we first expand it with a simple
template: “### Input:\nX, ### Output:\n”, to facili-
tate the extraction of outputs by identifying the sec-
tion following the “Output” symbol. Subsequently,
we maximize the probability of generating the target
label X, with L tokens by:

ID Generative Fine-tuning with LLMs

L
maxp(Xa\Xs) = H p@(xi|XSa Xa,<i)7 (1)
=1

where 6 represents the model parameters and
Xa,<i are partial label tokens that come before the
current prediction token x;.

Parameter-efficient fine-tuning. To improve the
performance of LLMs in the in-distribution sentence

8213



classification task, we employ a parameter-efficient
fine-tuning (PEFT) approach, to minimize the us-
age of additional parameters. Specifically, we uti-
lize the low-rank adaptation (LoRA) (Hu et al., 2021)
technique which freezes the pre-trained LLMs’
weights and inserts trainable rank decomposition
matrices into each Transformer layer. We perform
PEFT with answer predictions, i.e., only class label
tokens are utilized to compute the auto-regressive
loss. During the test stage, we use strict match-
ing to determine whether the generated labels are
identical to the ground truth.

3.2. OOD Detection with LLMs

The overview of our OOD detection framework is
illustrated in Figure 2. Our primary focus is on
decoder-like LLMs, such as LLaMA (Touvron et al.,
2023a), as they have demonstrated excellent perfor-
mance when their model size scales up (OpenAl,
2023; Brown et al., 2020). To obtain a compre-
hensive observation, we conduct OOD detection
experiments on two different semantic distribution
settings (Ming et al., 2022; Lin et al., 2021): far-
OOD and near-OOD (cf. Figure 1). Regarding
OOD detection methods, we focus on the prevail-
ing post-hoc paradigm (Yang et al., 2021). In the
following, we elaborate on how to integrate the post-
hoc OOD detectors into decoder-like LLMs, which
has never been addressed in existing literature.

Customized post-hoc methods. According to
prior studies (Hendrycks et al., 2020; Zhou et al.,
2021), there mainly exist two categories of post-hoc
methods: logits-based OOD score functions and
distance-based ones. Since previous works used
these methods for language models accompanied
by a classifier, we here customize them for decoder-
type LLMs with only a language model head (as
shown in Figure 2) in the following:

Logits-based OOD score functions operate on
the final class-related logits. In generative classifi-
cation, the generated class name is usually com-
posed of several tokens, e.g., “positive” consists of
“posi” and “tive”. Instead of calculating the proba-
bility (logits) for the complete ID class name, we
simplify the process by considering the probability
assigned to the first token of its class name. For
instance, in a sentiment analysis task with classes
like "positive” and "negative" as depicted in Figure 2,
we only need to identify the probability correspond-
ing to the tokens “posi” and “negative” respectively.
Considering that different class names may have
common prefixes, such as “positive” and “position”,
we will rephrase the conflicting class names at the
beginning of ID training, such as replacing “posi-
tion” with “location”. In practice, we observe this
re-translation has no impact on the ID task. Overall,

there are mainly two logits-based functions:

* Maximum softmax probability (MSP) (Lee
et al., 2018) utilizes the maximum softmax
probability corresponding to each class, i.e,
score S(x) = max{p(y;|z)} X, where K is the
number of classes, and ID samples always ex-
hibit higher probability scores while OOD ones
correspond to lower scores.

» Energy score (Energy) (Liu et al., 2020; Le-
Cun et al., 2006) computes confidence score
S(z) =log 32K " 2)i where w7 is the weight
of the language model head and z is all word
embeddings. Note that for both MSP and En-
ergy, we only select the probability and logits
corresponding to the first token of each class
name, as mentioned before.

Distance-based OOD score functions apply
to sentence representations. Prior studies using
encoder-based PLMs treated the embeddings of
special token <cls> as sentence representations.
For LLMs, we employ the embeddings of the last
token as the representation. There are mainly two
functions considered for evaluation: Mahalanobis
distance (Maha) (Lee et al., 2018) and Cosine dis-
tance (Cosine) (Zhou et al., 2021)".

4. Experimental Setup

4.1.

To draw universal conclusions, we conduct a com-
prehensive evaluation of two kinds of dataset distri-
bution settings (Arora et al., 2021) as illustrated in
Figure 1 and Figure 2.

Datasets

Far-OOD. In this paradigm, ID and OOD sam-
ples come from different distributions (datasets),
exhibiting significant semantic differences. Follow-
ing Hendrycks et al. (2020) and Zhou et al. (2021),
we evaluate 8 datasets, including 20 News-
groups (20NG) (Lang, 1995) for topic classifica-
tion, RTE (Wang et al., 2018) and MNLT (Williams
et al., 2017) for nature language inference, TREC-
10 (Li and Roth, 2002) for question classification,
SST-2 (Socher et al., 2013) and IMDB (Maas et al.,
2011) for sentiment analysis, and the English side
of Multi30K (Elliott et al., 2016) and wMT16 (Bo-
jar et al., 2016) for machine translation. Among
them, we choose 20NG and SST-2 as two sepa-
rate in-distribution tasks and the remaining ones
are recognized as out-distribution. Note that when
SST-2 is used as the ID, we do not consider IMDB
as an OOD dataset since both of them are senti-
ment analysis tasks.

'We refer authors to original papers for more details.
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Maha Cosine MSP

Energy

ID Dataset LLM AUROC+ FAR@95| AUPR{ AUROC{ FAR@95| AUPRt AUROCt FAR@95| AUPR{ AUROCt FAR@95| AUPR 1t
LLaMA-7B 0.991 0 0.993 0.990 0.006 0.990 0.905 0.318 0.811 0.368 0.930 0.380
SST-2 LLaMA-13B 0.992 0 0.993 0.990 0.005 0.989 0.939 0.213 0.818 0.571 0.778 0.478
a LLaMA-30B 0.994 0.003 0.993 0.991 0.009 0.990 0.881 0.361 0.742 0.651 0.738 0.540
8 LLaMA-65B 0.991 0.007 0.991 0.990 0.007 0.992 0.776 0.621 0.646 0.544 0.821 0.485
‘_‘tﬁ LLaMA-7B 0.997 0 0.995 0.998 0.996 0.441 0.929 0.391 0.571 0.784 0.417
20NG LLaMA-13B 0.996 0.006 0.989 0.993 0.004 0.990 0.622 0.754 0.482 0.491 0.932 0.362
LLaMA-30B 0.995 0.005 0.987 0.995 0.002 0.993 0.533 0.847 0.424 0.491 0.906 0.362
LLaMA-65B 1 0 0.998 0.999 0.997 0.616 0.764 0.421 0.508 0.925 0.369
LLaMA-7B 0.896 0.568 0.921 0.891 0.587 0.916 0.720 0.814 0.763 0.722 0.818 0.758
CLING-Bankin LLaMA-13B 0.905 0.408 0.922 0.903 0.514 0.922 0.739 0.769 0.760 0.713 0.831 0.743
8 9 LLaMA-30B 0.895 0.472 0.913 0.910 0.424 0.923 0.733 0.813 0.746 0.724 0.795 0.735
o LLaMA-65B 0.951 0.255 0.964 0.956 0.200 0.964 0.823 0.604 0.834 0.826 0.614 0.834
3 LLaMA-7B 0.895 0.680 0.932 0.887 0.738 0.927 0.584 0.921 0.640 0.637 0.912 0.674
z GLING-Travel LLaMA-13B 0.942 0.485 0.964 0.922 0.730 0.955 0.639 0.834 0.696 0.633 0.909 0.695
LLaMA-30B 0.926 0.458 0.950 0.928 0.523 0.950 0.650 0.911 0.697 0.653 0.888 0.698
LLaMA-65B 0.959 0.182 0.971 0.976 0.076 0.986 0.739 0.745 0.753 0.755 0.681 0.768

Table 1: OOD detection performance of zero-grad LLaMA models. We use the full validation set to

calculate each OOD score. The results are averaged over five seeds.

&
(a) Far-OOD

1D: CUNC150 1D: CUNC150
000: CUNC150 00D: CLNC150

(b) Near-OOD

Figure 3: UMAP (Mclnnes et al., 2018) visualization of representations generated from the penultimate
layer of the zero-grad () and fine-tuned (#) LLaMA-7B models. (a) Far-OOD: 20NG is treated as ID
while SST-2, RTE, and TREC are treated as OOD. (b) Near-OOD: the banking domain of CLINC150 is
selected, of which 50% of the classes are treated as ID, and the rest are treated as OOD.

Near-OOD. We also test on a more challenging
scenario, where ID and OOD samples come from
the same domain but with disjoint label sets. A well-
researched domain is OOD intent detection (Lar-
son et al., 2019). Specifically, we use CLINC150
dataset and choose Banking and Travel domains.
Within each domain, 50% of the classes are chosen
as ID, and the remaining classes as OOD.

4.2. Evaluation Metrics

We employ three commonly used metrics for OOD
detection: (1) AUROC (area under the receiver op-
erating characteristic curve). (2) FAR@95 (false
alarm rate at 95% recall). It represents the prob-
ability of incorrectly classifying a negative sample
as positive when the Recall or True Positive Rate
(TPR) is 95%. We treat the OOD class as negative.
(3) AUPR (area under the precision-recall curve).
Additionally, we use accuracy as a metric for ID
classification task.

4.3. Implementation Details

All experiments are conducted on a workstation
with 4 NVIDIA A100 80G GPUs. For zero-grad

Dataset Full-shot 10-shot 5-shot 1-shot
SST-2 16 8 4 2
20NG 8 8 8 8

CLINC150
(Banking or Travel) 16 16 16 8

Table 2: Batch size configuration for each dataset.

OOD detection, LLaMA-7B, -13B, -30B, and -65B
are deployed on 1, 1, 2, and 4 A100 GPUs, respec-
tively. When further fine-tuning LLMs on ID tasks,
the LoRA configurations (Section 3.1) are that rank
r is 16, scaling « is 16, and query/key/value/output
projection matrices {W,, Wy, W,,, W, } in each self-
attention module need to be updated. We train the
network for 50 epochs with early stop criteria that if
the model’s performance on the validation set con-
tinuously drops for 6 consecutive epochs and the
current epoch number exceeds 15, training will be
terminated. We use AdamW optimizer with learning
rate 1 x 104, further decayed by linear schedule.
Due to the varying lengths of sentences in differ-
ent ID datasets, we configure different batch sizes
shown in Table 2. All experiments are conducted
over five seeds (1, 2, 3, 4, 5).
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Maha

Cosine MSP

Energy

ID Dataset ~ Shot IDACCt AUROCT FAR@95| AUPR{ AUROCT FAR@95| AUPRT AUROCT FAR@95| AUPRT AUROCT FAR@95| AUPR T

1 0.535 0.5 1.0 0.422 0.954 0.250 0.934 0.664 0.581 0.587 0.716 0.589 0.637

SST-2 5 0.664 0.878 0.625 0.843 0.973 0.045 0.971 0.768 0.493 0.674 0.885 0.408 0.794

[a] 10 0.857 0.967 0.204 0.962 0.991 0.009 0.987 0.771 0.514 0.693 0.896 0.379 0.803
8 Full 0.976 0.993 0.004 0.992 0.993 0.005 0.991 0.947 0.298 0.888 0.961 0.189 0.907
u;i 1 0.463 0.5 1 0.380 0.991 0.047 0.985 0.756 0.779 0.670 0.850 0.681 0.824
20NG 5 0.713 0.983 0.074 0.975 0.991 0.023 0.989 0.868 0.503 0.799 0.947 0.283 0.918

10 0.796 0.992 0.042 0.987 0.996 0.013 0.991 0.893 0.438 0.840 0.951 0.215 0.924

Full 0.944 0.995 0.003 0.991 0.993 0.007 0.991 0.959 0.207 0.939 0.968 0.114 0.945

1 0.589 0.5 1 0.533 0.905 0.510 0.926 0.846 0.696 0.860 0.870 0.658 0.897

o CLINC-Banking 0.882 0.863 0.614 0.879 0.962 0.255 0.968 0.873 0.556 0.878 0.903 0.463 0.916
o 10 0.949 0.937 0.424 0.956 0.968 0.157 0.974 0.902 0.422 0.902 0.919 0.346 0.929
o Full 0.973 0.958 0.231 0.969 0.964 0.147 0.970 0.936 0.269 0.945 0.930 0.225 0.931
3 1 0.526 0.5 1 0.533 0.910 0.481 0.925 0.767 0.756 0.771 0.780 0.733 0.793
z CLINC-Travel 5 0.964 0.897 0.644 0.925 0.974 0.148 0.983 0.886 0.415 0.886 0.875 0.420 0.872
10 0.984 0.975 0.137 0.983 0.982 0.078 0.988 0.930 0.3 0.931 0.933 0.231 0.933

Full 0.991 0.980 0.045 0.988 0.978 0.049 0.987 0.942 0.121 0.933 0.948 0.112 0.953

Table 3: The performance of the fine-tuned LLaMA-7B model for OOD detection and ID classification.
“Shot” denotes the number of examples in the ID training or validation set. We report the average results

of five seeds.

5. Findings

5.1. Zero-grad OOD Detection with LLMs

In this section, we evaluate the zero-grad OOD
performance of LLMs. The objective is to examine
how well OOD detection performs when utilizing the
knowledge acquired by LLMs during pre-training.
The results are summarized in Table 1 and all LLMs
are frozen in this setting. Note that we use full-shot
validation set to calculate each OOD score.

LLMs are natural far-OOD detectors. As shown
in Table 1, when applying distance-based OOD
detection methods, such as Maha and Cosine, all
LLMs can achieve near-perfect results (e.g., AU-
ROC and AUPR approach 1 while FAR@95 ap-
proaches 0). To better understand why distance-
based OOD detectors are so effective, we visu-
alize the corresponding sentence representations
yielded by the penultimate layer (before the top
head layer), as shown in Figure 3 (a ). It can be
found that representations from the same dataset
are tighter, while ID and OOD sentences have clear
boundaries, indicating the profound semantic dis-
crimination prowess exhibited by LLMs. However,
both MSP and Energy generate poor results. This
is foreseeable, as both of them condition on the first
token generated from the input sentence. When the
model has not been fine-tuned, it often struggles to
accurately output class names, leading to inferior
OOD performance. Moreover, from the probability
density of Figure 4 (), it can be found that there is
a significant overlap between ID and OOD, leading
to a decrease in OOD detection performance.

The capability of LLMs for near-OOD detection
improves with their scale. We present the zero-
grad near-OOD results in Table 1 (CLINC-Banking
and CLINC-Travel). For the near-OOD setting, as
the number of model parameters increases, the
OOD detection performance will also be improved.

MSP AUROC: 0.807 \/\, MSP AUROC: 0.961
o

0000 0002 0004 0006 0008 0010 0z 00 02 04 06 08 10 12

Energy AUROC: 0.099 ¥} Energy AUROC: 0.984

Figure 4: Impact of fine-tuning on logits-based
OOD scores (MSP at the top row and Energy at
the bottom row). We plot SST-2 (ID) vs. TREC-10
(OOD) for visualization.

Remarkably, when the model has an exceedingly
large number of parameters (i.e., LLaMA-65B), we
can observe a dramatic performance surge (Wei
et al., 2022) to detect OOD inputs, especially with
distance-based OOD methods. In particular, the
AUROC values for Maha and Cosine both surpass
95%, and FAR95 is enhanced by at least 30% in
comparison to the 7B model.

Furthermore, it is evident that the near-OOD per-
formance of LLMs is notably inferior compared to
their performance on far-OOD instances. To under-
stand this, we provide a visualization for this setting
as illustrated in Figure 3 (b ). The embeddings
of ID and OOD samples are mixed up since their
labels come from the same domain (i.e., travel or
banking). Consequently, detecting near-OOD in-
stances becomes notably more challenging than
far-OOD instances.
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Figure 5: Performance changes for ID classification and OOD detection as training progresses with the
different number of training shots. Top row: 20NG is ID training task; Bottom row: banking domain of
CLINC150 is selected where 50% classes are used as ID training task and the rest are OOD samples. The
star (x) on each line indicates the selected results whose epoch corresponds to the best ID performance

on the validation set.

5.2. OOD Detection with Generatively
Fine-tuned LLMs

In this subsection, we study the influence of fine-
tuning LLMs on OOD detection. Specifically, we
conduct an in-depth examination of how the OOD
detection performance evolves with the progression
of ID task training.

ID fine-tuning can boost OOD detection. We
fine-tune LLMs in a generative manner in both few-
shot and full-shot scenarios. The results are sum-
marized in Table 3. Likewise, we present both
far- and near-OOD results comparable to the zero-
grad configuration. Clearly, fine-tuning LLMs on
in-distribution tasks can notably augment the mod-
els’ capacity to detect OOD instances, surpassing
the performance of the zero-grad setting by a signifi-
cant margin in most cases like in near-OOD setting
and with logits-based functions (in both full-shot
scenarios with LLaMA-7B model).

In Figure 5, we present the fine-tuning curves. It
can be observed that as the ID accuracy increases,
almost all OOD detectors are improved accordingly.
To study how fine-tuning impacts the ID vs. OOD
separability, we plot their density distributions in
Figure 4. Clearly, fine-tuning can improve the sep-
arability between ID and OOD instances. A similar
effect can be cross-validated in Figure 3 (b @) in
which the embedding of different classes within the
ID becomes more compact, while the separation
between ID and OOD becomes clearer. However,
it is important to highlight that as the training contin-
ues, there is a possibility of encountering overfitting,
which could result in inferior OOD performance, es-

o Fine-tuning with discriminative objective . Fine-tuning with generative objective

~o- D (Test) Accuracy

o~ Maha AUROC
Cosine AUROC
MSP AUROC
Energy AUROC

MSP AUROC
Energy AUROC

70 070
o 2 4 & 8 10 12 14 16 18 20 2 a 6 8 00 12 14 16

Figure 6: Impact of different ID training objectives,
discriminative vs. generative. SST-2 dataset with
full data is used as the ID training task.

pecially for logits-based methods as illustrated in
Figure 5 for both full-shot and 1-shot far-OOD sce-
narios. This observation is similar to the findings
in (Uppaal et al., 2023).

Generative fine-tuning generalizes better. In
addition to generative fine-tuning, we also explore
discriminative fine-tuning by appending a classifier
after LLMs (replacing the language model head?)
to conduct ID task. The comparison of the trend
charts presented in Figure 6 reveals that genera-
tive fine-tuning tends to be less overfit on the ID
task and all OOD detectors consistently perform
better than discriminative fine-tuning, especially for
distance-based OOD detectors. To better under-
stand this effect, based on the transformations of
embeddings illustrated in Figure 3 (a), it becomes
evident that throughout the generative training pro-

2We use LlamaForSequenceClassification
provided by Huggingface (Wolf et al., 2020)
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Maha

Cosine MSP Energy

ID Dataset PTM

AUROC t FAR@95| AUROC?t FAR@95| AUROCt FAR@95| AUROCT FAR@95 |

Zero-grad
RoBERTa-L (Uppaal et al., 2023) 0.971 0.152 0.919 0.414 - - -
SsT2 LLaMA-7B 0.991 0 0.990 0.006 0.905 0.318 0.368 0.930
Fine-tuned
RoBERTa-L} (Zhou et al., 2021) 0.969 0.183 0.962 0.236 0.889 0.613 0.877 0.632
LLaMA-7B 0.993 0.004 0.993 0.005 0.947 0.298 0.961 0.189
Zero-grad
RoBERTa-L{ (Uppaal et al., 2023) 0.998 0.002 0.998 0.002 - - - -
20NG LLaMA-7B 0.997 0 0.998 0 0.441 0.929 0.571 0.784
Fine-tuned
RoBERTa-L} (Zhou et al., 2021) 0.983 0.073 0.978 0.107 0.946 0.305 0.965 0.158
LLaMA-7B 0.995 0.003 0.993 0.007 0.959 0.207 0.968 0.114

Table 4: Comparison of large and small PTMs under zero-grad and fine-tuned settings for OOD detection.
1 denotes the results we reproduce due to different calculating methods, while { indicates results cited

from the original paper.

Data Corpus
PTMs CLINC150 CLINC150-Banking CLINC150-Travel
LLaMA-7B 0.4731 0.5529 0.5312
RoBERTa-L 0.9991 0.9992 0.9989

Table 5: Average sentence anisotropy of model’s
last layer.

cess, while the ID’s distribution shifts into class-
specific clusters, a distinct separation continues to
exist between these clusters and the OOD samples.
This preserves the effectiveness of distance-based
OOD detection methods. Prior study (Uppaal et al.,
2023) pointed out that discriminative tuning the
small models (e.g., RoBERTa (Liu et al., 2019))
negatively impacts the performance of distance-
based OOD detection methods. This issue also
exists in discriminative tuning LLMs but has been
solved in the generative tuning.

Besides, in Table 4, we compare encoder-based
and decoder-based Transformers and observe im-
pressive improvement on decoder-based LLMs.

Cosine distance is a data-efficient OOD detec-
tor. To further investigate whether LLMs possess
data-efficient OOD detection capabilities, we con-
figure the training samples of the ID as few-shot
instances (e.g., 1, 5, and 10). Please note that
we also set the number of validation sets to be
the same shot, since all OOD detection methods
rely on the validation set. Results presented in Ta-
ble 3 convey that as the number of shots increases,
the OOD detection capability of the LLMs also im-
proves. Moreover, distance-based OOD detection
methods are superior to logits-based ones, and
they can achieve good performance even with only
10-shot samples. Particularly, cosine distance is
a data-efficient OOD detector that can provide ef-
fective detection by requiring only 1-shot instance.
For example, it achieves AUROC of 99.1% (near-
perfect) on 20NG (ID) and over 90% on others.
Besides, in the 1-shot setting, the Mahalanobis
distance loses its efficacy since it’'s unfeasible to

model the necessary Gaussian distribution when
there’s only a single sample for each class.

Isotropy vs. anisotropy. By examining Table 1
and Table 3, it becomes evident that Cosine dis-
tance, as a simple OOD detector, consistently de-
livers superior performance and ranks among the
top performers in both the zero-grad and genera-
tive fine-tuning settings. We provide an explana-
tion of this phenomenon from the perspective of
representation learning. In the past few years, the
anisotropic issue, also known as the representation
degeneration problem, of BERT family models has
garnered considerable attention (Ethayarajh, 2019;
Gao et al., 2019). Researchers have highlighted
that BERT’s sentence representations are concen-
trated within a narrow cone, resulting in substantial
challenges for tasks involving semantic matching.
Nevertheless, we discover that this concern does
not apply to LLMs. The representations generated
by off-the-shelf LLMs inherently exhibit isotropy,
enabling Cosine distance to excel in OOD detec-
tion. To quantify anisotropy, we adopt the method-
ology introduced by Ethayarajh (2019) to measure
sentence-level anisotropy. Let X; be a sentence
that appears in the corpus. The anisotropy value
can be calculated by:

anisotropy =

L ZZCOS(Z(Xi),Z(Xj)) ,

n2—n

()

where cos is the cosine similarity and z(-) is the
sentence embedding from the last layer. A higher
anisotropy value suggests that the sentence em-
beddings are less distinguishable by Cosine dis-
tance. The quantitative results presented in Table 5
show that the anisotropy values of LLMs are consid-
erably lower in comparison to those of RoBERTa.
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6. Analysis

6.1. Performance of More LLMs

ID Dataset PTMs Maha Cosine MSP Energy
Zero-grad
OPT-6.7B 0.982 0.983 0.413 0.571
SST-2 LLaMA-7B  0.991 0.990 0.905 0.368
LLaMA2-7B 0.991 0.997 0.917 0.516
Fine-tuned
. OPT-6.7B  0.921 0.932 0915 0.922
CL'N(CFﬁf;”k'”g LLaMA-7B 0958 0.964 0.936 0.930
LLaMA2-7B 0.967 0.970 0.944 0.937

Table 6: OOD detection performance of various
LLMs. AUROC result is reported.

Additionally, we test OPT-6.7B (Zhang et al.,
2022) and LLaMA2-7B (Touvron et al., 2023b) here
with settings that zero-grad OOD performance for
SST-2 (ID) and fine-tuned OOD performance for
CLINC-Banking, as shown in Table 6. For simplic-
ity, we report the AUROC result of each OOD score
function. Overall, the OOD detection performance
of LLaMA2-7B surpasses that of LLaMA-7B, and
LLaMA-7B outperforms OPT-6.7B, which is consis-
tent with the general performance trends observed
in these models.

6.2. Impact of Quantization
SST-2
Quantized | Maha Cosine MSP Energy
float32 0.991 0.990 0.905 0.368
float16 0.990 0.987 0.893 0.331
Int8 0.955 0.960 0.874 0.228

Table 7: Impact of quantization for OOD detection.

We test the zero-grad OOD detection perfor-
mance of LLaMA-7B with different quantized levels
(float32, float16, and Int8) for SST-2 as the ID task,
shown in Table 7. It was observed that the float16
model can largely preserve the OOD detection ca-
pability of the model. However, 8-bit quantization
leads to a degradation in its capability.

6.3. Error Analysis

We mainly analyze the fine-tuning OOD detec-
tion performance in the near-OOD setting since
both RoBERTa (Liu et al., 2019) and LLaMA (Tou-
vron et al., 2023a) can achieve near-perfect perfor-
mance in the far-OOD setting. Here, we provide
the OOD detection performance with fine-tuned
RoBERTa in the following Table 8, as a comple-
ment to Table 3.

Overall, LLaMA’s detection capabilities are
much stronger than RoBERTa’s. Through the

CLINC-Banking (Full)
PTMs Maha Cosine MSP Energy
LLaMA-7B | 0.958 0.964 0.936 0.930
RoBERTa-L | 0.821 0.793 0.670 0.717

Table 8: Performance comparison between LLaMA
and RoBERTa-L in the near-OOD setting. AUROC
result is reported for each score function.

analysis of specific error cases, we found that
RoBERTa struggles to distinguish semantically sim-
ilar OOD samples. For instance, when choos-
ing the “bank_balance” class (e.g., the sentence
“what’s my account balance”) as the ID distribution,
RoBERTa tends to incorrectly classify the majority
of “bill_balance” class inputs (such as “what are
my bills this month”) as “bank_balance”. In con-
trast, LLaMA generally makes correct judgments
in most cases. We attribute this phenomenon to
the anisotropy characteristic which is explained in
Section 5.2), i.e., sentence embeddings produced
by the BERT family models have been noted to
possess an undesirable characteristic of being con-
centrated within a narrow cone, causing represen-
tation degeneration. Despite this, in the cases in-
volving extremely similar semantics, LLaMA also
makes errors in judgment, such as misclassifying
“bill_balance: what is the balance on my bills” as
“bank_balance”.

7. Conclusion

This paper has delved into the critical realm of OOD
detection within the context of LLMs. The growing
utilization of LLMs across various natural language
processing tasks has underscored the need to un-
derstand their capabilities and limitations, espe-
cially in scenarios involving distribution shifts. Our
work deepens the comprehension of OOD detec-
tion capabilities of LLMs. Through meticulous anal-
ysis, we have showcased the effectiveness of LLMs
for OOD detection under various settings, includ-
ing zero-grad and generative fine-tuning scenarios.
Our findings reveal that a simple OOD detector
utilizing the cosine similarity function outperforms
other sophisticated OOD detectors, especially in
the few-shot setting. Our work may serve as a foun-
dational stepping stone for future advancements in
effectively and responsibly harnessing the potential
of LLMs in diverse environments.
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