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Abstract
Contextualised Language Models (LM) improve on traditional word embeddings by encoding the meaning of
words in context. However, such models have also made it possible to learn high-quality decontextualised concept
embeddings. Three main strategies for learning such embeddings have thus far been considered: (i) fine-tuning
the LM to directly predict concept embeddings from the name of the concept itself, (ii) averaging contextualised
representations of mentions of the concept in a corpus, and (iii) encoding definitions of the concept. As these
strategies have complementary strengths and weaknesses, we propose to learn a unified embedding space in which
all three types of representations can be integrated. We show that this allows us to outperform existing approaches
in tasks such as ontology completion, which heavily depends on access to high-quality concept embeddings. We
furthermore find that mentions and definitions are well-aligned in the resulting space, enabling tasks such as target

sense verification, even without the need for any fine-tuning.
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1. Introduction

The field of Natural Language Processing (NLP)
has largely moved from static word embeddings to
contextualised Language Models (LMs). However,
static embeddings continue to play an important
role in many applications. For instance, in few-shot
and zero-shot learning, concept embeddings can
provide prior knowledge about the considered la-
bels (Xing et al., 2019; Yan et al., 2021; Luo et al.,
2021; Huang et al., 2022; Ma et al., 2022; Li et al.,
2023a). Concepts embeddings are similarly used
in knowledge engineering, e.g. to help inform strate-
gies for knowledge base completion (Vedula et al.,
2018; Li et al., 2019; Malandri et al., 2021; Shi et al.,
2023) or for aligning different resources (Trisedya
et al., 2019; Kolyvakis et al., 2018). This has in-
spired a line of research dedicated to distilling high-
quality concept embeddings from language models.
We can distinguish three main strategies, which dif-
fer based on what is used as input: (i) only the
name of the concept (Vuli¢ et al., 2021; Liu et al.,
2021a; Gajbhiye et al., 2022), (ii) mentions of the
conceptin acorpus (Liu et al., 2021b; Li et al., 2021,
2023b), or (iii) a definition (Mickus et al., 2022a;
Ruzzetti et al., 2022). We refer to these strategies
as concept name embeddings, concept mention
embeddings and definition embeddings, respec-
tively'.

The three aforementioned strategies have com-
plementary strengths and weaknesses. Con-

'"We publicly release the source code and data at
https://github.com/amitgajbhiye/encoder_
mentions.git
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cept name embeddings are efficient and relatively
straightforward to train. However, since they rely
on the knowledge that is captured by the LM itself,
they are not suitable for modelling rare concepts.
Moreover, they cannot distinguish between differ-
ent senses of the same word. Concept mention
embeddings are well-suited for modelling rare con-
cepts but are harder to train. Moreover, not all
mentions are equally informative. Accordingly, the
performance of such concept mention embeddings
depends on how the mentions are selected (Li et al.,
2021; Wang et al., 2022). Finally, definition embed-
ding models can distinguish different word senses
and they are often available even for rare concepts
(Ruzzetti et al., 2022). However, definitions typi-
cally only capture some of the knowledge that we
may need, which means that the best results are
often obtained by combining definition embeddings
with other representations (Wang et al., 2022).

In this paper, we explore a simple technique for
combining the three strategies. We start by train-
ing a standard concept name embedding model.
We then train a concept mention embedding model
based on the idea that a mention embedding should
be similar to the embedding of the corresponding
concept name. To prevent the model from sim-
ply re-learning the concept name embeddings, we
mask the concept name when learning these men-
tion embeddings. We train a definition embedding
model in the same way. The concept name embed-
ding model thus acts as an anchor which is used
to align the three different representations.

This strategy has several important advantages.
First, by using the concept name embeddings, we
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avoid the need for external resources when training
the mention embedding model. Similarly, the con-
cept name embedding model provides a natural
supervision signal for training the definition embed-
ding model. Second, by mapping mentions and
concept names onto the same embedding space,
we can naturally select the most informative men-
tions, by choosing those mentions whose embed-
ding is most similar to that of the concept name. For
ambiguous concepts, we can similarly select the
mentions whose embedding is most similar to the
embedding of the definition of the intended sense.

The paper is structured as follows. We first dis-
cuss related work in the next section. In Section 3
we then describe our strategy for learning concept
representations. Finally, we present our experimen-
tal analysis in Section 4. The aims of this analysis
are two-fold. First, we investigate to what extent
mention and definition embeddings are aligned. In
particular, we explore whether our approach is suffi-
cient for learning mention embeddings that capture
specific word senses, despite the fact that we have
no sense-level supervision. Second, we explore
the quality of the concept embeddings that can be
obtained using our strategy. We use the task of
ontology completion for this purpose. This is an
important downstream application, which is highly
reliant on having access to high-quality concept
embeddings, and is thus a natural evaluation task.

2. Related Work

Learning Decontextualised Embeddings In re-
cent years, two main strategies have emerged for
learning decontextualised embeddings (i.e. static
word vectors) using language models. First, and
most straightforwardly, we can feed the word it-
self directly as the input to the language model.
A word embedding can then be obtained, for in-
stance, by averaging the embeddings of all tokens
in the final layer of the pre-trained language model
(Bommasani et al., 2020; Vuli¢ et al., 2021; Gajb-
hiye et al., 2022). We will refer to such models as
concept name encoders. Second, we can compute
the contextualised representation of mentions of
the word in some corpus, and aggregate the result-
ing mention embeddings, for instance by averaging
them (Ethayarajh, 2019; Bommasani et al., 2020;
Vuli¢ et al., 2020). When relying on pre-trained
language models, this latter strategy was found to
clearly outperform the former (Bommasani et al.,
2020). However, for both strategies, substantially
better results can be obtained by fine-tuning the
language model. For instance, Vuli¢ et al. (2021)
obtained significantly improved concept name em-
beddings after fine-tuning the LM on synonym and
antonym pairs. Gajbhiye et al. (2022) instead con-
sidered the task of predicting commonsense prop-

erties, which involved jointly training the concept
name encoder with a property encoder. Mirror-
BERT (Liu et al., 2021a) fine-tunes the LM using
a self-supervision strategy, which also leads to im-
proved concept name embeddings. Approaches
based on aggregating mention embeddings simi-
larly benefit from using fine-tuned LMs. MirrorWiC
(Liu et al., 2021b) follows a self-supervision strategy
for learning better contextualised representations,
inspired by the MirrorBERT model. As another
example, Li et al. (2023b) fine-tuned a mention en-
coder using distant supervision from ConceptNet?.

Selecting Mentions One important question for
methods that aggregate mention embeddings is
how these mentions are selected. While most ap-
proaches simply use a random selection of men-
tions, Li et al. (2021) found that significantly better
results can be obtained by filtering out mentions
that reflect idiosyncratic usages of the correspond-
ing word. Wang et al. (2022) analysed a number
of strategies to select mentions in a more system-
atic way, for instance based on the structure of
Wikipedia. Among others, they found it beneficial to
include the definition of the word as one of the con-
sidered mentions. For concepts with a Wikipedia
page, they also found that selecting mentions from
that page outperformed randomly selecting men-
tions from across Wikipedia.

Exploiting Definitions Definitions are a natural
resource to exploit for modelling word meaning.
Accordingly, there is a long tradition of using defini-
tions for improving word vectors, e.g. to learn repre-
sentations of out-of-vocabulary terms (Bahdanau
et al., 2017). Most closely related to this paper,
there is work that links definitions to representative
examples of word usage. For instance, Bevilacqua
et al. (2020) have proposed the problem of gen-
erating definitions, given a word in context, which
can then be used for tasks such as word sense
disambiguation. Looking at the reverse problem,
Barba et al. (2021) have studied the problem of
generating representative examples of how a word
is used in context, given its definition. The afore-
mentioned works rely on sequence-to-sequence
models and are not concerned with learning vector
representations. The problem of aligning definition
embeddings with word embeddings has been stud-
ied in the context of the reverse dictionary task. For
instance Hill et al. (2016) train a definition encoder
such that the embedding of a definition is similar to
the embedding of the word being defined. Another
relevant task is definition modelling (Noraset et al.,
2017), which is concerned with generating a defini-
tion based on a given word embedding. Finally, Jo
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(2023) investigated how well the pretrained contex-
tualised BERT representation of a word maps to its
human-written definition and proposed a method
to integrate definitions with such pretrained repre-
sentations.

3. Learning Concept Embeddings

Our overall aim is to learn concept embeddings,
which we view as compact representations of knowl-
edge. We thus intuitively see this task as a form
of knowledge distillation from LMs. In particular,
we are interested in strategies for fine-tuning pre-
trained LMs to extract informative concept repre-
sentations. We consider a number of LM encoders,
which differ in the kind of input they receive. We
first describe these encoders in Section 3.1 and
then discuss the considered training strategies in
Section 3.2. Finally, in Section 3.3 we describe
strategies for obtaining concept embeddings from
the trained encoders.

3.1.

We now describe the different encoders that we will
rely on: a concept name encoder, a mention en-
coder and a definition encoder. Following Gajbhiye
et al. (2022), we will also use a property encoder,
which can be used to predict the semantic proper-
ties that are satisfied by concepts and which plays
a central role in how they fine-tune their concept
name encoder. We will rely as much as possible
on existing encoding strategies: the novelty of our
approach lies in how these different encoders are
aligned and jointly used.

Encoders

Concept Name Encoder The most straightfor-
ward strategy is to use the name of the concept as
the input of a pre-trained language model. Previ-
ous work, however, has found that better results
can be obtained by adding a short prompt. We will
in particular rely on the strategy that was proposed
by Gajbhiye et al. (2022), which uses a prompt
of the following form: (cls) [CONCEPT] means
(mask)(sep). As the embedding of the concept,
we can then use the final-layer representation of the
(mask) token. Let us write ¢, (c) for the resulting
embedding of concept ¢. They also train a prop-
erty encoder, which uses the same prompt, but is
fine-tuned to represent properties (e.g. red) rather
than concepts (e.g. tomato). We write @prop(p) for
the embedding of property p.

Mention Encoder The aim of the mention en-
coder is to learn concept embeddings from sen-
tences that mention these concepts. Following Li
et al. (2021), to encode a given mention, we mask
the occurrence of the concept, feed the resulting
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sentence to an LM and use the representation of the
<mask> token as the corresponding embedding. Li
et al. (2021) found that masking the concept leads
to embeddings that are more predictive of the prop-
erties that are satisfied by concepts (although the
resulting embeddings were also found to be less
suitable for modelling word similarity). In our set-
ting, masking also has the benefit that the result-
ing embeddings should be more complementary
to those that are obtained from the concept name
encoder: by masking the concept name, the en-
coder is forced to focus on modelling the context in
which the concept occurs. We write ¢n,en(m) for the
embedding of a mention m, where a mention corre-
sponds to a sentence in which some target concept
is highlighted (i.e. the concept to be masked).

Definition Encoder We also consider an en-
coder which learns concept embeddings from defi-
nitions. In this case, we use a prompt of the form
<mask>: [DEFINITION] and use the contextu-
alised (i.e. final-layer) representation of the <mask>
token. Note that this encoder has the same form as
the mention encoder. For this encoder, we assume
that the definitions themselves do not mention the
name of the concept. This ensures that the en-
coder captures the actual definition, and is thus
complementary to the concept name encoder. We
write ¢q4ef(d) for the embedding of a definition d.

3.2. Training Strategies

Our starting point is the model from Gajbhiye et al.
(2022), where a concept name encoder and prop-
erty encoder are jointly trained as a bi-encoder,
using a large set of (concept, property) examples.
Specifically, they jointly train both encoders using
binary cross-entropy (BCE):

Esgfne = Z 10g0(¢con (C) * Pprop (p))

(c;p)EXT

— Z 10g(1 - O—(d)con (C) : ¢prop(p)))

(e,p)EX—

where X is a set of positive examples, i.e. (c,p) €
X T means that ¢ is assumed to have property p,
and X~ is a set of in-batch negative examples.

Concept Name Embeddings as Anchors We
start by fine-tuning the concept name and property
encoders. The resulting concept name encoder
can only encode knowledge that is captured by the
LM itself, hence it may not be suitable for rare con-
cepts. However, it can provide us with high-quality
representations for well-known concepts. Based
on this view, we propose to use the representa-
tions of the concept name encoder as anchors for
training the mention and definition encoders. For



instance, we can train the mention encoder by re-
quiring that mention embeddings are similar to the
corresponding concept name embeddings:

L == > 1ogo(¢eon(C) - Gmen(m))

(e;m)eM+

— Z log(l — U((bcon(c) : ¢men(m)))

(e;m)eM—

where the concept name encoder ¢, is frozen.
Here (c,m) € M means that m is a mention of the
concept ¢, whereas the set of negative examples
M~ consists of pairs (¢, m) where m is a mention
of a different concept. We will also experiment with
a variant that instead relies on the InfoNCE con-
trastive loss (van den Oord et al., 2018), given its
strong performance across a wide range of repre-
sentation learning tasks. We will refer to this variant
as Einfo-

men*

_ Z log exp(cos(@con(€); Pmen(m))/T)
(c,m)eM+ Zm’ eXp(COS(d)Con (C)v (bmen (m/))/T)
where 7 > 0 is the temperature hyperparameter, the
summation in the denominator ranges over all men-
tions in the given mini-batch (across all concepts),
and we again assume that the concept name en-
coder ¢ is frozen. Finally, the definition encoder
is trained in the same way. Let us refer to the
corresponding loss as L5 or £infe, depending on
whether BCE or InfoNCE is used.

Joint Learning The aforementioned training
strategy is based on the assumption that the avail-
able (concept, property) training examples are suf-
ficient for training a high-quality concept name en-
coder. As an alternative, we also experiment with
a strategy in which all encoders are jointly trained.
For instance, when using BCE, we can use the
following overall loss function:

b b b
L= ‘Cngfne + ‘Cmceen + ‘Cd;?
In this case, the concept name encoder is still used

for training the mention and definition encoder, but
it is no longer frozen during this process.

3.3. Concept Embedding Strategies

After the encoders from Section 3.2 have been
trained, we can consider several strategies for
learning a final concept vector. Let ¢ be the name
of the concept that we want to represent. Let us
furthermore assume that we have access to a set
of mentions M., of concept c. Let us write ¢ for the
concept embedding that we want to learn. We will
experiment with the following variants:

Name We use the concept name embedding, i.e.

c= ¢con (C)

804

Men We use the average of the mention embed-
dings, i.e. ¢ = (31 2, ar, Dmen(m)-

Men; We first determine the & mention vectors m
whose embedding ¢men(m) is most similar to
the concept name embedding ¢con(c), in terms
of cosine similarity. Let us write these men-
tions as my, ..., my. We represent the concept

asc=1 Ele Bmen (117).

In applications where we have access to definitions,
we can use definition embeddings as an alternative
to the concept name embeddings, which would
help to select mentions where the target word is
used with its intended sense.

4. Experiments

Our analysis focuses on the following research
questions:

* What is the best strategy for training the dif-
ferent encoders? s it beneficial to use the
concept name encoder as an anchor, or is it
better to jointly train the different encoders?

» How well are the mention encoder and concept
name encoder aligned? Can we select sense-
specific mentions of a word by comparing men-
tion embeddings with definition embeddings?

» How successful is the overall approach in learn-
ing informative concept embeddings.

We refer to our method as AMenDeD (Aligning
Mentions, Definitions and Decontextualised embed-
dings). In Section 4.1, we first focus on tasks which
involve aligning mentions and definitions. Section
4.2 then focuses on the quality of different strate-
gies for learning concept embeddings, which we
evaluate on the downstream task of ontology com-
pletion. Finally, Section 4.3 presents a qualitative
analysis. We first provide some details about our
experimental set-up.

Datasets To train the bi-encoder, i.e. the concept
name and property encoders, we need sets of (con-
cept, property) pairs. We consider three such sets:

» We consider the 100K (concept, property)
pairs from Microsoft Concept Graph (Ji et al.,
2019) that were used by Gajbhiye et al. (2022).
Note that in this case, the properties are in fact
hypernyms. However, Gajbhiye et al. (2022)
found training on this dataset to be useful be-
cause many of the hypernyms refer to seman-
tic properties (e.g. low-sugar berry).

» We consider a dataset of 109K (concept, prop-
erty) pairs that was collected by Chatterjee
et al. (2023) using ChatGPT.



» We consider (concept, property) pairs from
ConceptNet. Specifically, we converted in-
stances of the relations IsA, PartOf, LocatedAt,
UsedFor and HasProperty, leading to an addi-
tional set of 63K (concept, property) pairs.

As our default choice, we rely on the combination of
the ConceptNet and ChatGPT datasets (CN+Chat).
We found that combining these two datasets consis-
tently outperformed using either dataset alone. As
an alternative, we also experiment with training the
encoders on the combination of all three datasets
(MS+CN+Chat). To train the mention encoder, we
need to decide on a vocabulary of concepts, and
we need a strategy for collecting mentions of these
concepts. We consider two possibilities:

* We use the 5098 concepts that appear in
the CN+Chat training set. For each of these
concepts, we randomly selected 100 men-
tions from Wikipedia. Sentences with a length
greater than 32 were filtered out. On average,
we ended up with 65 mentions per concept.

» We train the model using dictionary examples.
This is motivated by the fact that such exam-
ples are often carefully chosen to be infor-
mative and representative of how the target
word is typically used. We rely in particular
on the 3D-EX resource from Almeman et al.
(20283), which aggregates a number of lexi-
cal resources. However, we omit examples
from the Urban Dictionary and Sci-Definition,
as they are less representative. The resulting
resource covers 224K unique concepts, with
an average of 1.3 mentions per concept.

We refer to these training sets as Wiki and 3D. We
will also consider a model that is trained on the com-
bination of both. Finally, to train the definition en-
coder, we have relied on WordNet definitions® and
the CODWOE dataset from Semeval-2022 Task 1
(Mickus et al., 2022b).

Training Details We train the mention and defini-
tion encoders with a batch size of 32. We use the
Adam optimiser with an initial learning rate of 2e — 6
and a cosine learning rate warm-up over 20% of
the training data. The encoders are trained with
a maximum of 100 epochs with an early stopping
patience of 3. For encoders trained with InfoNCE
we set the temperature 7 to 0.05.

41.

One advantage of our strategy is that mention and
definition embeddings are aligned. In this section,

Aligning Mentions and Definitions

Shttps://huggingface.co/datasets/
marksverdhei/wordnet—-definitions—-en—-2021

we consider two intrinsic benchmarks which directly
evaluate this aspect: CoDA21 (Senel et al., 2022)
and WIC-TSV (Breit et al., 2021).

CoDA21 Each CoDA21 problem instance fo-
cuses on k words. For each of these words, there
is one masked mention (i.e. a sentence from a cor-
pus that mentioned the word, but where the word
itself was masked) and one definition (which does
not mention the word itself either). The task is to
align the k& mentions with the &k definitions, i.e. to
predict for each of the mentions which is the cor-
responding definition. Senel et al. (2022) solve
this task by assigning a score to each of the £!
possible alignments, and then simply selecting the
alignment with the highest score. This score is de-
fined as the sum of the scores of the k correspond-
ing mention-definition pairings. To score a given
mention-definition pairing, their main baseline relies
on pre-trained language models. Specifically, given
the mention m, they replace the mask by a made-up
word z. Writing m, for the resulting sentence, they
use the following prompt “m, Definition of x
is” and then they evaluate the log of the probability
that the definition follows this prefix. To use our
models, we simply score a given mention-definition
pairing as the cosine similarity between the corre-
sponding mention and definition embeddings. Note
that this is an unsupervised task, i.e. there is no
training set associated with CoDA21. The test set is
organised in different partitions: clean-hard, clean-
easy, noisy-hard, noisy-easy. Here, clean refers to
the fact that the mentions are selected to be infor-
mative about the target word, while hard refers to
the fact that the &£ words are chosen to be closely
related co-hyponyms. Following Senel et al. (2022)
we separately report results for nouns (N) and verbs
(V) and use accuracy as the evaluation metric.
The results are reported in Table 1. We report
variants of our method which differ in which loss
function was used for training the mention and def-
inition encoders (InfoNCE or BCE). In most config-
urations, we use the bi-encoder as a static anchor,
but we also experiment with the joint learning strat-
egy, where the bi-encoder is trained jointly with the
mention and definition encoders. These configu-
rations are referred to as INfoNCEjqin: and BCEjgint,
depending on whether InfoNCE or BCE was used
for training the mention and definition encoders*.
The configurations in Table 1 also differ in the train-
ing data that was used for the bi-encoder and the
training data that was used for the mention encoder.
A number of clear observations can be made.
First, all of the considered variants of our approach
substantially outperform the baselines. While these

“Note that we always use BCE for training the bi-
encoder. We experimented with using InfoNCE for the
bi-encoder as well, but initial results were not promising.
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Model Loss Bi-encoder Mentions clean-hard clean-easy noisy-hard noisy-easy
N \' N \' N \' N \'
BERTge 22 22 19 21 19 20 20 20
RoBERTaj e 26 30 30 30 27 29 30 33
GPT2|*arge 38 34 47 42 39 37 46 41
GPT25, 42 36 49 42 40 36 46 43
AMenDeD InfoNCE CN+Chat Wiki 63 62 77 72 54 55 64 62
AMenDeD InfoNCE MS+CN+Chat Wiki 63 65 75 71 54 55 64 61
AMenDeD BCE CN+ChatGPT Wiki 68 65 76 73 56 57 65 62
AMenDeD InNfoNCEjoint  CN+Chat Wiki 65 66 74 71 53 58 63 63
AMenDeD BCEjoint CN+Chat Wiki 59 65 74 69 55 56 63 60
AMenDeD InfoNCE CN+Chat 3D 62 60 74 68 54 54 62 60
AMenDeD InfoNCE CN+Chat 3D+Wiki 62 62 73 71 53 55 62 61

Table 1: Results on CoDA21 in terms of accuracy (%). *Baseline results are taken from Senel et al.

(2022).

Model FT Loss Bi-encoder Mentions WNT/WKT CTL MESH CS All
U-dBERT* no 49.2 57.4 62.0 63.1 56.9
U-BERT™ no 51.5 56.9 65.9 69.0 54.4
BERTge yes 771 73.1 75.3 70.2 75.3
GlossBERT* yes 75.7 75.5 741 79.8 76.0
GlossBERTys yes 75.2 70.4 78.5 82.7 75.9
AMenDeD no InfoNCE CN+Chat Wiki 72.4 64.4 64.8 76.2 71.7
AMenDeD no InfoNCE MS+CN+Chat Wiki 67.6 62.4 52.8 57.7 64.6
AMenDeD no BCE CN+ChatGPT Wiki 67.8 63.9 59.7 73.8 65.5
AMenDeD no InfoNCEjini CN+Chat Wiki 68.5 61.5 51.4 72.0 66.2
AMenDeD no BCEjint CN+Chat Wiki 59.4 55.6 50.5 61.3 58.6
AMenDeD no InfoNCE  CN+Chat 3D 74.2f 70.2 57.4 69.6 71.5f
AMenDeD no InfoNCE  CN+Chat 3D+Wiki 73.57 64.9 73.2 77.4 73.3f

Table 2: Results on WiIC-TSV in terms of accuracy (%). *Baseline results are taken from Breit et al.
(2021). TThese results likely overestimate the performance of the corresponding models, since the 3D-EX
pretraining-data includes examples from Wordnet and Wiktionary.

baselines are pre-trained LMs and our models were
specifically trained on definitions and mentions,
it is nonetheless interesting to see that our fine-
tuned BERT-large model can significantly outper-
form even the 1.5B parameter GPT2y_ model. An-
other interesting observation is that our models
achieve a similar performance for nouns and verbs.
This is surprising, given that the training data al-
most exclusively consists of nouns. Finally, we can
see that each of the considered variants performs
rather similarly on this benchmark.

WIC-TSV In the case of WiC-TSV, the problem of
mention-definition alignment is treated as a binary
classification problem: given a mention of a word in
context and a definition of that word, the task is to
predict whether the definition captures the correct
sense of the word in context. This task is called Tar-
get Sense Verification. The dataset includes test in-
stances from four different domains: general terms
from WordNet and Wiktionary (WNT/WKT), cock-
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tails (CTL), medical terms obtained from MeSH,
and computer science terms (CS). Following Breit
et al. (2021), we also report the results across the
entire dataset, covering all domains. Note that 3D-
EX covers WordNet and Wiktionary, hence we can-
not fairly evaluate the variants of our models that
use 3D-EX on the WNT/WKT test instances. The
baselines reported by Breit et al. (2021) feed the
concatenation of the mention and the definition to
an LM. Then they concatenate the contextualised
embeddings of the [CLS] token and the word in
context, as well as the average embedding of the
tokens from the definition, and feed the resulting
vector to a linear classifier. As language models,
they considered the standard BERT models and
GlossBERT (Huang et al., 2019), a specialised
BERT model for word sense disambiguation. A
variant of GlossBERT with a form of weak supervi-
sion was also considered (GlossBERT,s). Beyond
these supervised models, they also evaluated two
unsupervised models. In this case, they obtained



Wine Econ Olym Tran SUMO

GloVe* 142 141 99 83 349
Skipgram* 13.8 135 83 72 334
Numberbatch* 25.6 26.2 26.8 16.0 47.3
MirrorBERT* 225 23.8 209 127 40.1
MirrorWiC* 247 249 221 139 46.9
ConCN* 291 313 276 19.7 504
ConCN +filt.* 31.3 324 29.7 209 52.6
Name 30.8 30.5 286 198 51.3
Men 29.2 283 271 185 453
¥ Men + filt. 309 29.1 275 19.8 507
= Men, 315 295 294 203 517
Men;, + filt. 319 332 304 217 529
Men 31.9 325 295 208 51.8
a Men +filt. 33.7 332 303 213 527
@ Men, 321 329 29.7 209 523
Meny, + filt. 36.8 342 319 221 53.1
¢ Men 321 327 299 21.1 524
= Men +filt. 346 333 305 219 532
& Men, 33.8 33.1 303 21.3 5238
© Men, + filt. 39.5 358 322 225 53.5

Table 3: Results for ontology completion in terms of
F1 (%). *Baseline results were taken from Li et al.
(2023Db).

embeddings for the word in context and the defi-
nition using a pre-trained BERT model and then
classify a problem instance as positive if their co-
sine similarity is above some threshold. Two unsu-
pervised models were evaluated, which use BERT
and DistiIBERT respectively. Note that this thresh-
old is tuned on the validation data, which means
that the methods are, in fact, not fully unsupervised.
We will therefore refer to them as variants without
fine-tuning rather than unsupervised variants. We
evaluate our variants without fine-tuning, as our
focus is on assessing to what extent our mention
and definition encoders are aligned. In particular,
we simply obtain the mention and definition embed-
dings using our pre-trained encoders and classify
an example as positive if the cosine similarity is
sufficiently high, by again tuning the threshold on
the validation data.

The results are summarised in Table 2. They
show that our default configuration (InfoNCE loss,
ConceptNet + ChatGPT training, Wikipedia men-
tions) performs well overall, outperforming all vari-
ants which do not rely on 3D-EX. Variants that
were pre-trained on 3D-EX can only be fairly eval-
uated on CTL, MESH and CS. The results on
these domains suggest that including mentions
from 3D-EX is indeed useful. Overall, our mod-
els perform quite well, substantially outperforming
the baselines without fine-tuning. While our models
have been trained on definitions and mentions, it

should be noted that they have not been trained on
definition-mention pairings, and in particular that
they have not been trained on any sense-level su-
pervision. The results in Table 2 show that our
mention encoder has nonetheless learned to en-
code word senses.

4.2. Learning Concept Embeddings

As an example of a downstream task, we consider
the problem of ontology completion, which has al-
ready been used for evaluating mention embed-
dings in previous work (Li et al., 2021, 2023b).
This task consists in predicting missing concept
inclusions in description logic ontologies. Such on-
tologies contain basic concept inclusions such as
Banana C Fruit, which essentially encode hyper-
nyms, but also concept inclusions involving logical
connectives and quantifiers. For instance, an in-
clusion such as Author T 3hasPublished.Article
expresses that an author is someone who has pub-
lished an article, while Female m (3hasChild. T) C
Mother expresses that a female person who has a
child is a mother. Li et al. (2019) proposed a frame-
work for predicting plausible concept inclusions us-
ing a graph convolutional network. The nodes of
this network correspond to the concepts from a
given ontology, and the input representations cor-
respond to pre-trained concept embeddings. The
quality of the predicted concept inclusions strongly
depends on the quality of these pre-trained embed-
dings, which makes this a suitable task for eval-
uating concept representations. The problem is
formalised as a binary classification problem, with
the results reported in terms of F1 score.

We consider the following baselines. First, GloVe
(Pennington et al., 2014), Skipgram (Mikolov et al.,
2013) and Numberbatch (Speer et al., 2017) are
traditional static word embedding models. Mirror-
BERT (Liu et al., 2021a) is a contrastively fine-
tuned BERT model, aimed at learning high-quality
concept and sentence embeddings. Next, we also
consider two approaches that are based on ag-
gregating contextualised embeddings of concept
mentions: MirrorWiC (Liu et al., 2021b), which is a
variant of MirrorBERT aimed at modelling words in
context, and ConCN (Li et al., 2023b), which uses
a mention encoder that was trained on a distant
supervision signal based on ConceptNet. We also
report the results of a variant of ConCN which uses
a strategy for filtering mention vectors proposed by
Li et al. (2021) (ConCN + filt.). This latter variant
is the current state-of-the-art. Their filtering strat-
egy identifies mentions that are likely to capture
idiosyncratic properties, by looking at the nearest
neighbours of each mention embedding. Specif-
ically, if all the nearest neighbours correspond to
mentions of the same word, a mention is deemed
to be idiosyncratic and omitted.
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Concept

Nearest mentions

doorknob  Afterwards, the exterior double doors on that building were changed so they only had one doorknob,
and this remains today.

airplane He was the sixth person to make a successful flight over the Atlantic Ocean with a single engine,
single seat airplane.

axe One Christmas, the town gives Paul a double-bladed axe to help chop down timber.

colander A colander is a kitchen utensil for draining food.

ashtray An ashtray is a receptacle for ash from cigarettes and cigars

crayon Common tools are graphite pencils, pen and ink, inked brushes, wax color pencils, crayons, charcoals,
pastels, and markers.

donkey Traditional pack animals are diverse including camels, goats, yaks, reindeer, water buffaloes, and
llamas as well as the more familiar pack animals like dogs, horses, donkeys, and mules.

dagger The acinaces, also transliterated as akinakes or akinaka is a type of dagger or xiphos (short sword)

used mainly in the first millennium BCE in the eastern Mediterranean Basin, especially by the Medes,
Scythians, Persians and Caspians, then by the Greeks.

Table 4: Sentences corresponding to the most similar mention vector, for a number of common concepts.

We consider different variants of our approach.
We experiment with mentions encoders that were
trained on Wikipedia mentions, 3D-EX, and on the
combination of both. For these experiments, we
use the bi-encoder that was trained on ConceptNet
+ ChatGPT, and we use InfoNCE for training the
mention encoder, as this configuration was most
effective in the WiC-TSV experiment. To learn con-
cept embeddings, we compare the Name, Men and
Men,, strategies. For the Men;, representations, we
set k£ = 5. We also experiment with the filtering
strategy from Li et al. (2021), either as an alter-
native to the Meny, filtering strategy, or in addition
to it. In the latter case, we first apply the filtering
strategy from Li et al. (2021) and then select the 5
remaining mentions whose embedding is closest
to the concept name embedding. We refer to these
variants as Men + filt. and Men,, + filt.

The results are summarised in Table 3, where
we use the same five ontologies as Li et al. (2019).
We also rely on their framework for solving the task,
only changing the concept embeddings. First, we
can see that Name outperforms all methods that are
not based on aggregating mention embeddings. In
particular, Name clearly outperforms MirrorBERT,
which shows the limitations of self-supervised train-
ing for learning concept embeddings. The perfor-
mance of Men is highly dependent on the training
set. For Wiki, we find that Men underperforms both
Name and the ConCN baseline (except for Wine).
However, when the mention encoder is pre-trained
on 3D-EX, Men performs considerably better, while
the best results are obtained for the variant that
was trained on both 3D-EX and Wikipedia. We can
furthermore see that both the filtering strategy from
Li et al. (2021) and the Men;, filtering strategy are
highly effective, consistently improving the results

808

for all ontologies and all configurations. Moreover,
these two filtering strategies are complementary:
the combined strategy Men;, + filt. substantially
outperforms all other variants.

4.3. Qualitative Analysis

As we saw in Section 4.2, the ability to select infor-
mative mentions is an important advantage of our
approach. Table 4 shows, for a number of concepts,
the sentence whose corresponding mention vector
is most similar to the concept name embedding. As
can be seen, the selected sentences are informa-
tive in different ways. First, some sentences reveal
specific properties of the concepts. For instance,
the sentence for doorknob reveals that it is part of
a door, while the sentence for airplane reveals that
this is something which is used for flight and the
sentence for axe reveals that it is used for chop-
ping. Second, as the examples for colander and
ashtray show, sometimes a definition of the con-
cept is selected. Next, some sentences mention
the target concept among a list of co-hyponyms,
which is illustrated for the concepts crayon and don-
key. Finally, the sentence that was identified for
dagger suggests that this concept is similar to a
short sword.

5. Conclusions

In this paper, we have proposed a strategy for train-
ing mention and definition encoders, by using a
concept name embedding model as an anchor. We
found that the resulting mention encoder allows us
to learn concept representations that substantially
outperform the state-of-the-art in ontology comple-
tion. Our framework addresses a key problem when



distilling concept embeddings from language mod-
els: approaches based on mention encoders tend
to give the best results, but it is harder to fine-tune
mention encoders in a meaningful way. Our pro-
posed solution is conceptually straightforward and
easy to use. In our analysis, we furthermore found
that the mention embeddings are aligned with defi-
nitions of the corresponding word senses, despite
the fact that no sense-level supervision was pro-
vided to these models. This makes it possible to
learn sense-specific concept embeddings, some-
thing which is not possible with most existing strate-
gies for learning concept embeddings.
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