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Abstract
With advances in the field of Linked (Open) Data (LOD), language data on the LOD cloud has grown in number,
size, and variety. With an increased volume and variety of language data, optimizations of methods for distributing,
storing, and querying these data become more central. To this end, this position paper investigates use cases at
the intersection of LLOD and Big Data, existing approaches to utilizing Big Data techniques within the context of
linked data, and discusses the challenges and benefits of this union.
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1. Introduction

Linguistic Linked (Open) Data (LLOD)' applies
LOD principles and Semantic Web technologies to
language data, offering a standardized way of rep-
resenting and sharing linguistic datasets, such as
lexica, ontologies, corpora, treebanks or terminolo-
gies, in a machine-readable format. This allows
such datasets to be linked and integrated across
multiple resources, enabling new forms of linguis-
tic analysis and discovery emerging from their in-
teroperability. Many language data practitioners
are creating, publishing or interlinking more and
more data in the LLOD cloud® (Chiarcos et al.,
2012), which has been growing steadily since its
inception in January 2011. This increase in avail-
able data raises the potential of the LLOD cloud
to address new use cases requiring the interoper-
ability of resources which, since then, were only
available in their individual data silos.

In this position paper, we claim that if we want to
turn this potential ability of the LLOD cloud exem-

“Open’is in brackets since proprietary data can also
be published as linked data.

2The LLOD cloud (https://linguistic-lod.o
rg/llod-cloud) is the set of all (interlinked) language
resources made available on the web.

plified in the use cases into real use and applica-
tions, we will have to go beyond in-memory triple
stores, single-server graph databases or federated
queries to several public SPARQL endpoints and
deal with scalability issues raised by the handling
of the LLOD cloud as a whole. Big Data processing
and analysis techniques have been proposed to
address particularly large and heterogeneous data
sets. The LLOD cloud is particularly large and het-
erogeneous due to many globally distributed small
producers of language resources, each producing
one corpus in one language (e.g. Mukhamedshin
et al., 2020), one dictionary in several languages
(e.g. Gracia et al., 2018), etc. These resources are
of high quality, multilingual and multi-level in the
sense of consisting of primary data, e.g. a corpus,
and annotations, e.g. in form of meta-data describ-
ing specific aspects of the primary data. The more
structured data are, the higher is the potential for
interlinking and uncovering new information. How-
ever, current methods to query and reuse LLOD
resources suffer from problems of scalability and
processing speed. Thus, we argue that Big Data
techniques might be a good solution for processing
this particular type of linguistic data and to boost
LLOD-based linguistic data science.

Literature on utilizing Big Data processing and
analysis on structured data has focused on the re-
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lation to knowledge graphs, such as data storage
(e.g. Chawla et al., 2020), distribution (e.g. (e.g.
Chawla et al., 2021), and query optimization (e.g.
Konstantopoulos et al., 2016). Janev et al. (2020b)
provide an excellent overview of Big Data tools and
applications in connection with knowledge graphs.
Another rapidly evolving related field is that of
Big and Open Linked Data (BOLD) (Janssen and
van den Hoven, 2015), which unites the concepts
of open data, linked data, and Big Data. However,
to the best of our knowledge, this is the first pub-
lication to focus on the potential of processing the
LLOD cloud with Big Data techniques, which we
exemplify with three use cases: uncovering trans-
lation mappings across languages, accessing lin-
guistic information, and extracting information.

2. Preliminaries

Depending on the theoretical foundation, research
community, field and representation among other
factors, data can be categorised differently. For in-
stance, particularly large and heterogeneous data
are described as Big Data, when paired with high-
quality they might be called beautiful data. Repre-
senting beautiful language data as LOD is called
LLOD. Our main focus is on the intersection of
LLOD and Big Data, both of which we briefly in-
troduce in this section. The base architecture of
querying LLOD by means of Federated SPARQL
as opposed to Big Data Apache Spark Clusters is
depicted in Fig. 1.

2.1. Linguistic Linked Open Data

High-quality digital language data are vital to tasks
in linguistics, information extraction, NLP among
others. However, creating, linking, and re-using
language data is time-consuming and challenging
since they might be represented, annotated, and
described with metadata from different perspec-
tives, with varying degrees of coverage, and in
different formats. The objective of LLOD (Chiar-
cos et al., 2011) is to establish interoperability be-
tween multilingual language data with different an-
notation layers from various, distributed, and het-
erogeneous sources by utilising the principles pro-
posed for LOD (Bizer et al., 2009). Publishing lan-
guage data as LLOD assigns global and unique
identifiers to each element, which allows them to
be addressed through standard Web protocols and
to be uniformly linked and re-used. They are rep-
resented in the Resource Description Framework
(RDF) (Cyganiak et al., 2014) format, which can be
serialized in different formats from XML and JSON
to Turtle, and queried with standardized query
languages, especially SPARQL. The predominant
model to represent LLOD is OntoLex (McCrae

et al., 2017), which also represents an important
mechanism to integrate resources and services
into language technology pipelines (McCrae and
Declerck, 2019). These data can serve as input to
Large Language Model (LLM) fine-tuning and fact
checking and LLOD formats can be used to struc-
turally represent the output of LLMs. For instance,
OleskeviCiené et al. (2021) analyze speaker at-
titude by means of discourse markers automati-
cally detected with XLM-R and then represented
as LLOD in the cloud. Comparing discourse mark-
ers across languages can uncover new knowledge
and quality issues in one language, whereby the
overall quality of the data for fine-tuning LLMS can
in turn be improved.

2.2. Big Data

In today’s world, we are experiencing unparalleled
growth in data generation, a phenomenon referred
to as Big Data. This surge is also evident in
the field of linguistics, where datasets are growing
rapidly and becoming more complex. The advent
of Big Data brings unprecedented challenges in
managing and analyzing vast, complex datasets
(Naeem et al., 2022). Traditional tools falter with
data that exceeds system RAM, demanding intro-
duction of distributed computing across computer
clusters. This shift requires rethinking the founda-
tional principles of single-node systems. For exam-
ple, distributing data across multiple nodes slows
down data access and increases failure risks. Con-
sequently, a programming paradigm aligned with
the system’s characteristics is essential for effi-
cient, parallel code execution. The concept of Big
Data is intrinsically linked to five core characteris-
tics, collectively known as the “5Vs”. These char-
acteristics, which define the nature of Big Data, are
volume, velocity, variety, veracity, and value (Ab-
dalla, 2022). In terms of Big Data processing tools,
Spark is the most popular according to a JetBrains
report in 20223, with 31% of developers using it,
followed by Hadoop MapReduce at 16% and Hive
at 13%. For streaming processing tools, Spark
Streaming leads the way with 20% of developers
using it, followed by Flink at 8% and Storm at 6%.

3. Use cases

The union of Linguistic Linked and Big Data ap-
proaches can be beneficial for a large number of
potential use cases from discovery of translation
equivalents to crosslingual requirements engineer-
ing, with a particular focus on efficient and fast
processing of distributed resources. In this sec-
tion, we exemplify the potential of this union by

Shttps://www.jetbrains.com/lp/devecos
ystem-2022/
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Figure 1: Architecture diagrams of (a) Federated SPARQL and (b) Apache Spark Cluster. The Federated
SPARQL architecture enables querying distributed RDF data sources, while the Spark Cluster architec-
ture is designed for processing large-scale data using the Apache Spark framework.

means of use cases where LLOD can strongly ben-
efit from efficient Big Data processing.

3.1. Linking, Expanding and Enhancing

DBnary

Wiktionary* is a well-known collaborative, multi-
lingual online dictionary that provides definitions,
translations, pronunciations, etymologies, and
other lexical information about words in various lan-
guages. Due to its status as a vast and easily
accessible lexical database, it serves as a highly
valuable resource for numerous language-related
tasks and applications. However, despite contain-
ing somewhat structured data, the lexical informa-
tion within Wiktionary is not readily annotated in a
machine-readable, formal, structured format. The
desirability, and challenge, of accessing this lexi-
cal data is evident in the numerous projects aimed
at parsing and extracting data from Wiktionary,
which have been developed over the years of its
existence.

The DBNary dataset (Sérasset, 2015) described
in Sérasset (2015) is an RDF version of lexical
data extracted from 23 languages editions of the
Wikitionary projects. Each language edition de-
scribes lexical entries of multiple languages in
the edition’s language. For instance, the English
language edition describes 1,217,180 English en-
tries® and 6,318,874 non English entries (account-
ing for 3,361 languages) with definitions in English,
while French edition describes 554,487 French en-

4https://www.wiktionary.org/

SAll counts given in this paragraph reflect the
20230420 version of the dataset, extracted from the
Wiktionary dump produced April 20th 2023.

tries and 1,090,482 non French entries (account-
ing for 4,678 languages) with French description.

DBnary is updated each time a new Wiktionary
dump is made available by the Wikimedia founda-
tion, hence it has a new version twice a month.
From September 2012 (first extract) to April 2017,
the DBnary dataset was modelled using the orig-
inal lemon vocabulary (McCrae et al., 2011) and
since then it uses OntoLex (McCrae et al., 2017)
model. Each version is kept and made available ei-
ther from Zenodo® (for versions up to 2017) or from
the DBnary website” (for versions from 2017). The
whole set of available dumps in BZip2 compressed
format represents more than 100GB of data. The
public SPARQL endpoint always reflects the latest
version of the extracted data (along with a sum-
mary of all versions statistics in RDF datacube for-
mat).

Being a dataset of more than 414M triples, with a
new version twice a week, DBnary by itself shows
the volume and velocity core characteristics of Big
Data, arguably along with veracity and value. The
velocity of DBnary is one of its major strengths as
the dataset evolves almost in real time. For in-
stance, the term COVID.,, is available in DBnary
since February 20th, 2020 while it was unavailable
in almost all other datasets and was still unknown
early 2023 in some of the major Large Language
Models. This velocity is usually eluded, and us-
ages we are aware of always consider one unique
version as, even if it is a rather big knowledge
graph, it is still manageable on a single Openlink
Virtuoso® server node. However, this drastically

®http://zenodo.org
"http://kaiko.getalp.org/about-dbnary
8https ://vos.openlinksw.com/
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limits the use cases of the dataset.

For instance, Chiarcos and Sérasset (2022) use
DBnary to create a cross-lingual query system for
DBpedia (Auer et al., 2007), by linking DBpedia
concepts with DBnary terms in the user language.
This work uses SPARQL federated query on DB-
nary and DBpedia endpoints to account for the
datasets volume and only create the linking on
the fly to escape from the velocity of DBnary (the
queries are always performed on the latest ver-
sion). If they had chosen to statically create an
alignment from DBnary to DBpedia, the alignment
itself would have to be performed twice a month or
the DBnary version would have to be fixed a priori.

Also, Tchechmedjiev et al. (2014) showed that
the DBnary dataset itself can be enhanced by dis-
ambiguating the >10M provided translation pairs,
i.e., attaching the translation to a word sense
rather than to a lexical entry, allowing to clearly
state in which context, bleuy, can be translated
to green.,.° The shortcoming of this work lies
in the fact that it only disambiguates the source
word sense of translations but does not propose
a solution for the disambiguation of the target of
the translation, hence, we cannot clearly state
which word sense of green.,, is a valid transla-
tion of bleus,. The disambiguation of the source
of translations is light enough to be performed on
each version of the dataset as it can be done di-
rectly after extraction, using only data from the cur-
rent language edition.’® However, disambiguat-
ing the target of the translation is more complex
and attempts that have been performed exploit-
ing the topology of the full dataset or the compu-
tation of cross-lingual similarity measures lead to
two main scalability problems. First, such methods
need at least a set of fully disambiguated transla-
tions that are needed as a gold standard for in-
trinsic evaluation of the process. However, as
the dataset is constantly evolving, with changes
in definition, ordering or addition/deletion of word
senses, such a gold standard has to be corrected
for each extracted version, and this is already a
complex task that involves dealing with two differ-
ent versions and that needs to be performed twice
a month. Second, in the case of cross-lingual
similarity measurements, some experiments have
been performed using node or sentence (defini-

%Indeed, even if bleuy, is usually translated to blue.,,
when it denotes a color, it can also be translated to
rookie.., or green., when it denotes a inexperienced sol-
dier.

®Translations are usually linking the language of the
edition (source) to other languages (target), the process
simply involves a monolingual semantic similarity mea-
sure based on a string distance method and the gold
standard used to evaluate the methodology is also di-
rectly extracted from the language edition.

tion) embeddings, but current approaches fail to
scale to the size of the full dataset graph. Cur-
rent experiments on such embeddings only use
monolingual graphs and involve a computation
time that currently forbids the disambiguation to
be performed for each dataset version (twice a
month).

These considerations show that if we want to ex-
tend DBnary, either with manually created data or
with computed information, we need to resort to
Big Data techniques both to be able to compute
such data, but also to make it evolve and stay in
sync with the ever-changing DBnary versions.

3.2. Accessing Corpora and Linguistic
Information

With the proliferation of Large Language Models
(LLMs) and Generative Als, it is likely that the Inter-
net will soon become inundated with automatically
generated and machine translated text, hard to
distinguish from human-generated content. This
will significantly diminish the usefulness of new
web corpora, while curated “national” corpora are
likely to remain a valuable source of proven human-
generated texts for the time being. However, these
corpora are usually closed to outside NLP appli-
cations, and a standardized or at least a semi-
standardized way of accessing the content as LOD
would be a significant improvement. Ideally, the
access would be in a federated manner, covering
multiple sets of corpora at multiple locations, pro-
vided by separate established institutions. We are
not necessarily advocating using SPARQL in lieu
of the Corpus Query Language'' (CQL), as such
an implementation change would probably be a
major effort.

A similar concept has been implemented in
the form of CLARIN Federated Content Search'?,
which defines data formats for structuring stan-
dardized query results. This system is primarily
geared towards human interaction and has not
gained widespread usage beyond selected cor-
pora within the CLARIN infrastructure.

Diachronic research is seen as a specialized
field, where we explicitly take into account the time
dimension in the data. Big Data in the form of
massive linguistic data could be used to trace se-
mantic change, capture semantic cultural shifts,
the evolution of grammar, etc. One well-known
example of a diachronic resource (accessible in
the form of a search engine) is the Google Ngram
Viewer (Michel et al., 2011), available in several

11https://www.sketchengine.eu/document
ation/corpus-querying/
12https://www.clarin.eu/content/federa
ted-content-search-clarin-fcs—-technical
—details
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major languages and widely used, despite the
closed nature of the data themselves. For exam-
ple, Li and Siew (2022) used the English Google
Ngram Corpus to extract contextual information
about words for each year from 1800 to 2000.
The authors used contemporary data on human
processing and learning words searching for re-
lations between semantic change and cognitive
constraints. Traditionally, research on semantic
change focuses on language evolution and usu-
ally searches for the patterns and laws in historical
corpora (Hamilton et al., 2016). The framework of
NexusLinguarum (Armaselu et al., 2022) suggests
the combination of NLP and LLOD techniques for
automatically detecting and representing semantic
change using sources of linguistic data accessed
as LLOD. Generally, diachronic research is not lim-
ited to corpora, but to any source of data with a
clearly defined and accessible time dimension.

Using LLOD is not limited to a linguistic audi-
ence. As an end-user-oriented use case, we in-
troduce the platform Slovake.eu, offering language
courses for Slovak at different levels. The web-
site provides a variety of exercises, tests, and dic-
tionaries to help users familiarize themselves with
Slovak grammar, learn new words, and improve
their language skills. Additionally, users can inter-
act with other learners of Slovak through the site.
Apart from language courses, the portal also con-
tains reading material (information about Slovakia,
its history, geography, and some fiction) aimed to
improve users’ proficiency with the language. The
portal is interactive, with exercises containing links
to spoken sentences and a built-in multilingual dic-
tionary. The learners can invoke the dictionary by
clicking on any individual word in the teaching texts.
Currently, the portal is being overhauled with the
addition of new lessons covering additional profi-
ciency levels and with a new version of the built-in
dictionary. The dictionary uses DBpedia, DBnary,
and Wikidata'? to extract structural information for
the word and present the relevant data (such as
translation into the language of the instruction and
grammatical categories) to the user in an intuitive
and unobtrusive way.

The use of LLOD in this portal is a prime exam-
ple of an end-user application. The portal utilizes
an existing source of Big Data (i.e. DBPedia) with
a clearly defined structure and access to obtain in-
formation relevant for its purposes.

3.3.

Although Information Extraction (IE), the task
of automatically extracting structured information
from unstructured documents, is by now a well-
established branch of NLP, much of the work car-

Information Extraction

13https ://www.wikidata.org

ried out has been directed towards the analysis of
fixed text databases pre-established in advance of
processing.

One of the defining characteristics of Big Data
mentioned earlier is velocity. This typically applies
to streamed data generated in real-time at a rate
that precludes such pre-storage in one place be-
fore processing begins. A representative use-case
is weather prediction which draws on information
continuously arriving from thousands of weather
stations, for which it has been shown that Big Data
streaming techniques can be used to great advan-
tage (see Fathi et al. (2021) for a comprehensive
review). Now, such techniques have mainly been
applied to numerical data.

We suggest that there exist domains for which
Big Data streaming techniques could also offer
advantages where the data is predominantly fin-
guistic. For example, IE where predominantly tex-
tual data arrives dynamically, as when monitoring
evolving news sources. A (pre-Big Data) forage
into such a domain was NewsExplorer (Pouliquen
etal., 2006), developed at the Joint Research Cen-
tre, Ispra, which automatically acquired knowledge
by continuously analysing approximately 15,000
incoming newspaper articles per day. The sys-
tem displayed evolving stories dynamically on a
geographical map. Amongst the sub-services re-
quired were the identification of people, places and
other named entities, computation of relationships
between them, such as the most important people
mentioned in the context of a certain country or is-
sue. In addition, the source material occurred in
13+ languages, further complicating the problem
of correctly linking entity mentions to their seman-
tic referents.

More recently, Herodotou et al. (2020) real-time
detection framework for aggression on Twitter data
employs state-of-the-art streaming Machine Learn-
ing (ML) methods deployable on engines such
as Apache Spark. Of note is the authors’ claim
that the framework can easily scale to increase
its throughput to accommodate the entire Twitter
Firehose with only a small number of commodity
machines. Another use-case is the field of social
influence analysis based on social networking ser-
vices, such as Facebook, Twitter, and LinkedIn. All
of these generate huge quantities of streamed mul-
timodal content that includes not just text, but also
images, audio, and video that is used for tasks
such as extraction of popular topics, evaluation of
social influence, identification of influential users,
and modeling of information diffusion. Peng et al.
(2017) survey mentions that the achievement of
these tasks involves not only dealing with the inher-
ent computational complexity of a social network
with millions or billions of nodes but also the inte-
gration of multiple data sources with implicit con-
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nections.

All of these examples tend to confirm that the
combination of Big Data streaming with an LLOD-
based representation system is a promising direc-
tion for investigating ‘dynamic’ IE. The key issue is
how to define a set of key services (such as entity
and event extraction) based on the potential for in-
tegrating different kinds of information offered by
LLOD.

4. Existing LOD and Big Data
Approaches

This section organizes existing LOD and Big Data
approaches based on their contributions to LLOD,
which include data distribution, storage, mining, in-
tegration, and query optimization.

4.1. Data Distribution

Data partitioning (or fragmentation) is employed
by Big Data systems to offer improved query per-
formance, reduce storage requirements per node,
and increase scalability (Truica and Apostol, 2021).
This involves splitting data into smaller shards
using various configurations, including horizon-
tal, vertical, mixed horizontal-vertical, and mixed
vertical-horizontal fragmentation methods. Big
Data systems use data replication to offer high
availability, fault tolerance, and seamless access
to data in case of downtime (Truica et al., 2015)
using either primary-secondary (single primary
node) or multi-primary (multiple primary nodes)
configurations. In a primary-secondary configu-
ration, the clients only interact with the primary
node, synchronizing secondary nodes, while in
a multi-primary configuration, clients interact with
all the nodes, with synchronisation occurring syn-
chronously or asynchronously. Synchronous repli-
cation guarantees data integrity but may impact
performance, while asynchronous replication en-
hances performance but may risk data loss if the
primary storage fails. Additionally, the Interplane-
tary File System (IPFS), a decentralized, peer-to-
peer file system, is proposed to publish LOD (Si-
cilia et al., 2016), offering LOD availability, re-
silience, and sustainability, particularly suitable for
data fragmentation and replication in BOLD sys-
tems due to its built-in decentralized distribution
and deduplication capabilities.

4.2. Data Storage

Various technologies and frameworks, including
Hadoop, centralized RDF stores, and in-memory
stores, can be used to implement Big RDF stor-
age solutions (Chawla et al.,, 2020). In the

Hadoop framework, query processing options in-
clude MapReduce or Apache Spark, with data stor-
age in Hadoop Distributed File System (HDFS) or
NoSQL databases like HBase (Shvachko et al.,
2010; Zaharia et al., 2016; Vora, 2011). Some
HDFS Big RDF frameworks delegate query pro-
cessing to centralized RDF stores like RDF-
3x (Neumann and Weikum, 2010), offering flexibil-
ity and scalability for large RDF datasets. These
storage schemes can be broadly classified into
(Chawla et al.,, 2020): (i) Triple table (use a
single table with subject, predicate, and object
columns for RDF triples but become inefficient
with data growth, requiring costly self-joins for
queries); (ii) Binary table (employing two-column
tables for each RDF property, addressing null val-
ues and multi-valued properties but it result into
slow queries involving multiple properties and in-
sert operations); (i) Property table (store triples in
wide horizontal tables with n-ary columns, group-
ing subjects by common properties making it effi-
cient for star pattern SPARQL queries but suscep-
tible to null values and multi-valued attributes); (iv)
Mixed (property-binary table) (combining property
and binary tables mitigate null and multi-valued at-
tribute issues while reducing necessary joins); (v)
Graph-based (representing RDF data as a labeled
directed graph, offering advantages in visualiza-
tion, flexibility, and integration); (vi) Hybrid (Triple-
based-Graph-based) (combining triple and graph-
based storage, supporting efficient SPARQL query
processing and adaptability to specific dataset and
query workload requirements).

When selecting the appropriate RDF storage
model for a specific application, practitioners
should consider dataset size, query workload,
data dynamics, and performance requirements.

4.3. Data Mining and Integration

A compelling domain highlighting the advantages
of merging Big Data and Semantic Web tech-
nologies is data integration. Specifically, in the
work by Boury-Brisset (2013), the fusion of Big
Data technologies with a semantic layer of onto-
logical models and semantic-based analysis ser-
vices is employed to facilitate querying, analytics,
text annotation, and information extraction. Es-
pinosa Oliva et al. (2015) leverage Big Data tech-
niques to mine heterogeneous data sources and
represent the results in LOD format, promoting
interoperability and reusability. Additionally, Bar-
talesi et al. (2023) combines information extrac-
tion techniques with Wikidata disambiguation to
create LOD-based story maps on a territory from
textual data. Furthermore, Truica et al. (2023)
use Spark to automatically recognize and extract
domain-specific terms that can be further modeled
with OntoLex-FRaC (Chiarcos et al., 2022).
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4.4. Query Optimization

In the domain of query optimization, the integration
of Big Data and Semantic Web technologies holds
significant importance. Konstantopoulos et al.
(2016) assert that the integration of these technolo-
gies offers the advantage of explicating semantics
and cross-linking of the data. Furthermore, it fa-
cilitates the creation of a unified endpoint capa-
ble of federating numerous distributed SPARQL
endpoints, including the seamless incorporation
of non-RDF data through Apache Solr (Charalam-
bidis et al., 2015). This concept is further rein-
forced by the proposal of BigOWLIM (Bishop and
Bojanov, 2011), an approach aimed not only at
query optimization but also at reasoning on exten-
sive knowledge graphs, now available as Ontotext
GraphDB . It is important to highlight the impor-
tance of available SPARQL endpoints and the diffi-
culties in optimizing federated queries when deal-
ing with larger datasets (Fernandez et al., 2017).
To support this, the LOD-a-lot method serves
very big triple stores via a single, self-indexed
Header-Dictionary-Triples (HDT) file, which can ei-
ther be queried online or downloaded and used lo-
cally. Several Big RDF systems leverage Hadoop
MapReduce and related Big Data frameworks to
optimize and coordinate query processing across
distributed clusters of nodes (Chawla et al., 2020;
Janev et al., 2020a). Consequently, many joint
Big LOD query optimization approaches can be
adapted and extended for Big LLOD processing in
the context of Big Data and KGs.

5. Processing LLOD using Big Data

In this section, we explore the advantages of uti-
lizing Big Data tools for processing the vast LLOD
cloud. By employing these tools, researchers and
developers can efficiently manage, process, and
analyze large volumes of LOD, thereby gaining
valuable insights.

5.1.

Apache Spark (Zaharia et al., 2016) is a widely rec-
ognized open-source Big Data processing frame-
work that offers fast, scalable, and fault-tolerant
data processing capabilities and depicted in Fig. 1.
Its in-memory processing engine, coupled with an
extensive set of libraries and APIs, has made it a
popular choice for handling large-scale data pro-
cessing tasks across various industries and re-
search domains.

The architecture of Apache Spark is based
on a master/worker paradigm, where a driver

Big Data Platform: Apache Spark

“https://www.ontotext .com/products/gr
aphdb/

program manages multiple worker nodes across
a distributed computing cluster (Armbrust et al.,
2015). The driver program coordinates the exe-
cution of tasks across the cluster, manages Re-
silient Distributed Datasets (RDDs), and commu-
nicates with external storage systems and clus-
ter managers. The cluster manager, such as
Apache Mesos, Hadoop YARN, or Spark’s stan-
dalone cluster manager, is responsible for allo-
cating resources like CPU, memory, and network
bandwidth to Spark applications. Executors run
tasks on worker nodes, manage data storage and
caching for RDDs, and report the status of tasks
back to the driver program.

The popularity of Apache Spark is due to its ver-
satility, performance, and ease of use. Addition-
ally, it offers a comprehensive set of libraries that
cater to a wide range of data processing and anal-
ysis tasks, including Spark SQL, Spark Streaming,
MLlib, and GraphX.

By leveraging Spark’s capabilities, users can ef-
fectively process and analyze large-scale data, in-
cluding data in the LLOD cloud, to extract insights
and make data-driven decisions. In a compre-
hensive benchmarking study (Ragab et al., 2019,
2020, 2021a,b), Apache Spark SQL demonstrated
superior performance over Apache Jena in query-
ing large-scale RDF datasets. Specifically, Spark
SQL executed queries up to four times faster and
used up to 60% less memory on datasets as large
as 91 GB. However, Jena was more efficient for
smaller datasets and complex queries. The au-
thors suggest Spark SQL as a promising solution
for large-scale RDF querying but advocate for addi-
tional research to improve its efficiency for intricate
operations.

5.2. Big Data Stream Analysis

Big Data batch processing methods are inade-
quate for analyzing real-time application scenarios,
as they cannot handle the demands of instanta-
neous data analysis. Stream computing, on the
other hand, addresses the need for real-time pro-
cessing of massive, high-velocity data from vari-
ous sources with minimal latency. In-stream com-
puting, the assumption is that the data’s value is
intrinsically tied to its freshness, prompting imme-
diate analysis upon arrival in a stream rather than
being stored for later analysis as in batch comput-
ing. This necessitates the development of paral-
lel architectures and scalable computing platforms,
enabling organizations to analyze and respond to
rapidly changing data in real-time (Inoubli et al.,
2018).

One important application of Big Data stream
processing in the fields of linguistics and NLP is
real-time event detection in news and social media
streams. Numerous studies have employed Spark
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Streaming to identify events on social media plat-
forms (Balachandrudu, 2021), analyze tweet sen-
timent (Zaki et al., 2020; Patil et al., 2022), and de-
tect instances of hate speech (Doan et al., 2022).

To process the LLOD streaming data, we can
employ two approaches. The first one is to use
some of the RDF Stream Processing platforms like
Continuous SPARQL (C-SPARQL) (Barbieri et al.,
2009) or Continuous Query Evaluation over Linked
Stream (CQELS) (Le-Tuan et al., 2022). The sec-
ond approach is to use general-purpose stream-
ing platforms like Spark Streaming (Zaharia et al.,
2012) or Apache Kafka (Garg, 2013).

5.3. Distributed Machine Learning

Distributed ML systems can be classified into two
main categories: data-parallel and model-parallel
(Janbi et al., 2023). In data parallelism, the train-
ing data is partitioned across the machines, and
each machine computes the gradients on its local
data subset. The gradients are then aggregated
across the machines to update the model param-
eters. In model parallelism, the model itself is par-
titioned across the machines, and each machine
computes the gradients on its local model subset.
The gradients are then communicated across the
machines to update the global model.

There are several tools, frameworks, and li-
braries that support parallel and distributed pro-
cessing to speed up model training and inference
(Janbi et al., 2023). Several well-known frame-
works and libraries, such as TensorFlow (Abadi
et al., 2016), PyTorch (Li et al., 2020), and MXNet
(Chen et al., 2015), support distributed training
in a range of hardware configurations, from sin-
gle GPUs to clusters of interconnected machines.
Although each framework provides different train-
ing options, strategies, and paradigms, they all
support data parallelism (Janbi et al., 2023). In
addition, TensorFlow supports both synchronous
and asynchronous training and offers various dis-
tribution strategies depending on the underlying
hardware (Abadi et al., 2016). PyTorch sup-
ports data parallelism as well as other training
paradigms, such as pipeline parallelism (Li et al.,
2020). MXNet enables data parallelism across
multiple machines but only supports model paral-
lelism within a single machine (Chen et al., 2015).

Distributed ML is of essential importance for
LLMs. LLMs have recently achieved break-
throughs in NLP tasks, such as language trans-
lation, sentiment analysis, and text classification
(Liu et al., 2023). However, LLMs require signifi-
cant computational resources and can take weeks
or even months to train on a single machine
(Narayanan et al., 2021).

6. Discussion

In this position paper, we argue that Linguistic
Linked Open Data and some of its use cases show
most of the characteristic aspects of Big Data, i.e.
volume, velocity, variety, and value. Hence, Big
Data techniques may be of use in the LLOD con-
text. This argument draws on the fact that gen-
eral LOD has already embraced such techniques.
However, Linguistic LOD exhibits specific aspects
that may be even more challenging.

LLOD is usually produced by a myriad of differ-
ent actors, e.g., corpus linguists, lexicographers,
and wiki communities, usually dealing with one or
a few languages at a time. This leads to a very
scattered data cloud where federated queries have
to be used in use cases involving the cloud as a
whole.

Also, such data is hybrid in nature, combin-
ing highly structured graph-based data with nodes
containing language strings where the information
is not explicitly structured, e.g., definitions or ex-
amples in dictionaries, complex text segments in
annotated corpora, or even images. This aspect
favours Deep Learning techniques as a good can-
didate to tackle all the graph and text based infor-
mation in a common model. This implies a huge
need for computing power in order to train embed-
dings in contexts where velocity is an issue and to
handle graph queries along with vector space op-
erators.

The integration of Big Data tools with LLOD of-
fers numerous benefits, including:

+ Large-scale data processing: Apache Spark is
designed to handle large-scale data processing
and can scale horizontally by adding more nodes
to the cluster. This makes it well-suited for man-
aging and processing large volumes of LOD.

» Complex data processing: Apache Spark can be
used to perform complex data processing tasks,
such as data transformations, machine learning,
and graph processing. These tasks can be ap-
plied to LOD to extract insights or to perform data
analysis.

* Integration with other Big Data tools: Apache
Spark can be used together with many other Big
Data tools like Hadoop and Flink to create a com-
prehensive Big Data processing stack for LOD

* Fault tolerance: Apache Spark provides built-in
fault tolerance so that the data will be always
available, even in the event of hardware or soft-
ware failures.

+ Parallel processing: As a distributed processing
framework, Apache Spark can perform parallel
processing on LOD, which can help to reduce
processing time and improve performance

» Stream processing: By employing streaming
techniques, it will become feasible to handle the
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continuous influx of data, ensuring real-time up-
dates and analyses. Platforms such as Apache
Spark, Kafka, Flink, and Storm are well-suited
for this purpose.

All three presented use cases can greatly ben-
efit from Big Data techniques, especially the Big
Data streaming capabilities, and Big Data machine
learning techniques. For the first use case, Big
Data techniques can facilitate the dynamic expan-
sion and enhancement of DBnary. These ap-
proaches will enable frequent and near-real-time
updates of the DBnary dataset. Streaming data
processing frameworks, such as Apache Spark
or Apache Storm, will allow for the real-time pro-
cessing of new Wiktionary dumps. Furthermore,
machine learning algorithms supported by Apache
Spark can be applied to disambiguate translation
pairs, thereby enhancing the accuracy of linking
word senses across languages. In the second use
case, focusing on accessing corpora and linguistic
information, Apache Spark can be utilized to ana-
lyze extensive corpora over time. This will enable
fast and efficient tracking of semantic changes and
understanding of language and grammar evolu-
tion through large datasets. In the Information Ex-
traction use case, Big Data techniques are indis-
pensable for managing and analyzing the contin-
uous influx of textual data from various sources,
such as news articles. Stream processing engines
like Apache Kafka and Apache Spark Streaming
can efficiently facilitate the dynamic processing
and extraction of valuable information from the
textual content, including identifying and linking
named entities across languages. Machine learn-
ing models trained for real-time Information Extrac-
tion tasks, such as entity recognition, sentiment
analysis, and event detection, can be updated in
real time using incremental learning techniques.

The union of LLOD and Big Data could also of-
fer new perspectives to machine learning by fa-
cilitating the application of neural approaches to
very large-scale Knowledge Graphs and neural ap-
proaches, e.g. in the form of Linguistic Graph
Neural Networks or knowledge graph infusion to
enhance the factual and multilingual knowledge
in large language models. A concrete example
where the application of Big Data techniques holds
great potential for LLOD is link discovery, whereby
federated SPARQL queries are replaced with Big
Data techniques. This could bring unprecedented
efficiency to the solution of well-known problems
that include finding translation equivalents, acquir-
ing lexicons for low-resource languages, and ex-
tracting information cross-lingually. By providing a
fast and efficient platform for exploring LLOD re-
sources that offer a unified, formalized (machine
accessible) connection to a wide variety of linguis-
tic resources, the incorporation of Big Data tech-

niques could also help to advance the progress
made in such complex areas of linguistic investi-
gation as analysis of diachronic change within and
across languages.

One potential risk of this union of Big Data and
LLOD we see is that applications of Big Data tech-
niques might be slightly more complicated than
LLOD on its own, and solutions should not become
so complex that they are not viable. Furthermore,
the union requires staying up to date with devel-
opments in two fields and having expertise in two
fields. Another challenge is that the large collec-
tion of language data across languages, descrip-
tion levels, e.g. phonology and semantics, and
types of language resources, e.g. corpora and
terminologies, need to be collected to hold poten-
tial for training language models or other applica-
tions. If we collect all these language data, we ob-
tain large, high-quality datasets. However, there is
a general lack of computational power and infras-
tructure, for which the distributed architecture of
Big Data provides a solution. Furthermore, LLOD
are fragmented and distributed with SPARQL end-
points or as data dumps, which also requires a dis-
tributed architecture to collect all this data and run
single reliable processes on all of them at once.

Currently, scalability (volume), speed of access
for sampling (velocity), and correctness of infor-
mation (veracity) are well-known issues, however,
these topics merit discussion in more detail than
space available here permits. Although it is un-
clear exactly which role, if any, Big Data tech-
niques and frameworks might play, the higher the
number of languages and the greater the variety
of data in a knowledge graph, the more pertinent
these issues become.

7. Conclusion

In this position paper, we argue that if we want
to benefit from the potential of the LLOD cloud to
become a directly accessible very large dataset
of high-quality data, we need to move from triple
stores, data dumps, and federated queries to
SPARQL endpoints to processing the LLOD with
Big Data techniques. The distributed architec-
ture holds the potential to access and process
fragmented and distributed LLOD resources at
once. We specify and exemplify this potential in
form of concrete use cases, which are uncover-
ing translation mappings across languages, ac-
cessing linguistic information, and extracting infor-
mation across languages. To foster this union of
LLOD and Big Data, the first steps will be to pro-
vide training events so that experts in one field can
acquire knowledge on the other, and networking
meetings to exchange ideas and expertise.
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