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Abstract

The advent of scalable deep models and large datasets has improved the performance of Neural Machine
Translation (NMT). Knowledge Distillation (KD) enhances efficiency by transferring knowledge from a teacher model
to a more compact student model. However, KD approaches to Transformer architecture often rely on heuristics,
particularly when deciding which teacher layers to distill from. In this paper, we introduce the “Align-to-Distill”
(A2D) strategy, designed to address the feature mapping problem by adaptively aligning student attention heads
with their teacher counterparts during training. The Attention Alignment Module (AAM) in A2D performs a dense
head-by-head comparison between student and teacher attention heads across layers, turning the combinatorial
mapping heuristics into a learning problem. Our experiments show the efficacy of A2D, demonstrating gains of
up to +3.61 and +0.63 BLEU points for WMT-2022 De —»Dsb and WMT-2014 En—De, respectively, compared to
Transformer baselines. The code and data are available athttps://github.com/ncsoft/Align—-to-Distill.
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1. Introduction

Transformer-based encoder-decoder models have
achieved remarkable success in various natural
language processing tasks (Vaswani et al., 2017;
Devlin et al., 2019; Liu et al., 2019; Lewis et al.,
2020), including Neural Machine Translation (NMT)
(Sutskever et al., 2014; Bahdanau et al., 2015;
Sennrich et al., 2016; Vaswani et al., 2017). How-
ever, the autoregressive decoding process often
imposes a significant computational burden, es-
pecially as the number of layers and parameters
escalates with increasing model complexity. This
presents substantial challenges when deploying
the Transformer-based models for real-time appli-
cations (Gu et al., 2017) and online services (Zhou
et al., 2022).

One of the possible solutions is to reduce the
model size using knowledge distillation (KD) (Hin-
ton et al., 2015). KD facilitates the transfer of knowl-
edge from a high-performing, large-parameter
teacher model to a more moderately sized student
model. This process alleviates deployment chal-
lenges by generating a distilled model that is both
lightweight and efficient, ensuring reduced infer-
ence times and lower computational resource re-
quirements. Furthermore, with the guidance of the
teacher model, the student model can potentially
achieve performance levels closer to those of the
teacher model compared to training it without the
teacher’s assistance.

KD, initially proposed by Bucila et al.; Ba and
Caruana; Hinton et al., involves transferring knowl-
edge to the student model using responses from the

network’s last layer. Among its variants, Sequence-
level KD (Kim and Rush, 2016) and Selective
KD (Wang et al., 2021) leverage the final output and
soft labels from teacher’s responses, respectively.
These strategies can be categorized as response-
based KD (Gou et al., 2021). Meanwhile, not only
the final layer outputs are used, but intermediate
features from the teacher model’s layer are also
used as a medium for a more effective and com-
prehensive distillation of knowledge (Romero et al.,
2015; Zagoruyko and Komodakis, 2017; Sun et al.,
2019; Jiao et al., 2020; Sun et al., 2020). These ap-
proaches belong to the category of feature-based
KD (Gou et al., 2021). Most feature-based KD
in Transformers has concentrated on compress-
ing encoder-based models (Sanh et al., 2019; Sun
et al., 2019; Jiao et al., 2020; Wang et al., 2020;
Sun et al., 2020; Passban et al., 2021), includ-
ing pre-trained models like BERT (Devlin et al.,
2019). On the other hand, some studies (Wu
et al., 2020; Shleifer and Rush, 2020) have ap-
plied feature-based KD to the decoder for gener-
ative tasks. However, they found it less effective
compared to response-based KD for decoder dis-
tillation (Kim and Rush, 2016; Kasai et al., 2020;
Wang et al., 2021).

While extending KD to features across the lay-
ers does enrich knowledge transfer, it prompts an
open question: ‘From which teacher layer should
the student layer learn and from which should it
not?’. Instead of resolving this issue through train-
able methods, several studies (Sun et al., 2019;
Jiao et al., 2020; Wu et al., 2020; Passban et al.,
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2021) have circumvented the issue using heuristic
approaches. Those approaches require a heuristic
skip or combination of teacher layers to align with
the student layer. However, as the number of layers
increases, the complexity of heuristically selecting
features grows, necessitating an exhaustive search
for the optimal combination strategy. For example,
Combinatorial KD (Wu et al., 2020) demonstrated
that its peak performance relies on language-pair-
specific feature mapping.

In this paper, we introduce a novel KD strategy,
Align-to-Distill (A2D), that addresses the feature
mapping problem using a trainable Attention Align-
ment Module (AAM). Unlike earlier KD methods
that relied on combinatorial feature mapping heuris-
tics, A2D provides an end-to-end trainable solu-
tion. The adaptive alignment of features removes
the necessity for a data-dependent mapping strat-
egy. Furthermore, AAM aligns the student atten-
tion map in each head with those of the teacher,
resulting in more effective distillation compared to
layer-wise feature mapping. AAM enables each at-
tention head in the student model to be compared
with every head in the teacher model across dif-
ferent layers, by employing pointwise convolution
with only a few additional parameters. As a result,
there is no longer a need for head or layer parity
between the student and teacher models.

Notably, our experimental results and analysis
show that due to its fine-grained attention transfer
in a head-wise manner, A2D is effectively appli-
cable to the decoder of the Transformer, an area
where previous feature-based KD approaches have
typically struggled. By compressing the decoder
with A2D, we could reduce the cost of autoregres-
sive inference while preserving its performance.
Our comprehensive studies on both high-resource
and low-resource NMT tasks show that our method
consistently outperforms state-of-the-art baselines,
spanning both feature-based and response-based
KD methods. In particular, even with a smaller
model size than the teacher, students trained with
A2D can match or even surpass teacher perfor-
mance in low-resource settings.

Our contribution is three-folded as follows:

» We introduce “Align-to-Distill” (A2D), a novel
attention-based distillation method that can be
effectively applied to the decoder of the trans-
former.

» A2D overcomes the limitations imposed by
feature-mapping heuristics of previous distil-
lation approaches by introducing a learnable
alignment between attention heads across dif-
ferent layers.

» A2D enables fine-grained attention knowledge
transfer from teacher to student, thereby out-
performing state-of-the-art KD strategies in
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both high-resource and low-resource transla-
tion tasks.

2. Preliminaries

2.1. Multi-Head Attention

Multi-head Attention (MHA) is a core compo-
nent of the Transformer architecture introduced by
Vaswani et al.. We use X € RY*4 to denote the
input to the Transformer layer, which is a sequence
of embeddings fed into MHA, where L is the length
of the text input and d is the dimension of model
embedding.

In the Transformer layer, the input sequence X
is mapped to three unique vector embeddings: the
query (Q), the key (K), and the value (V). Each
of these embeddings is associated with its own
projection weight, denoted by W,, Wy, and W,
respectively.

Q=XW,K=XW,V=XW, (1)

Note that these projection weights (W |,) are
unique for each attention head and layer. The
shape of W, is R¥*deaa  which results in
Q, K, V € RIxdneaa, Head dimension dheaq is
d divided by the number of attention heads in a
layer.

Scaled dot-product attention, attn(X), that each
MHA head computes is defined as follows:

attn(X) = s(QKT /\/dhead)V = HV € RF*head
2
where s(-) denotes a softmax function. The atten-
tion output denoted by attn(X) is concatenated
over dpeaq to form MHA of shape RE*4.
Attention map denoted by H above, is the scaled
dot-product of the query-key for each head, rep-
resented as s(QK ' /\/dyeaq) € REXE. To make
clearer notion of distinct heads and layers, through-
out the paper the attention map will appear as:

H(m,n) =S (Q(m,n)KErm,n)/ \% dhead) € RLXL (3)

where m and n serve as indices for head and layer
inside the whole Transformer architecture. Thus,
H,, ) represents as attention map m-th head in
n-th Transformer layer. Similarly Q. ny, K(m,n)s
and V,, ) refer to the query, key, and value of the
same head.

2.2. Knowledge Distillation

The idea of knowledge distillation from a larger
neural network to a smaller network was proposed
in (Hinton et al., 2015). In the paper, the output



distribution of the larger teacher network is used
as a soft target for training the student network.

Lxp=—Y_ p"log(p®) (4)

zeX

where p” and p° denote the output distributions of
the teacher and student. The core idea of training
the student to imitate the teacher extends further
from comparing the output distribution to any valu-
able intermediate features. In general, the following
loss function provides an abstraction.

L= D(f"(x), f5(x)) (5)

reX

Equation (5) compares the features of the teacher
and student models (f7 (z), f°(x)) for a given input
x from a dataset X’ with a measure of dissimilarity
(D). There are a number of widely used choices for
features to distill knowledge from, such as hidden
states (Sun et al., 2019; Passban et al., 2021) or
attention maps (Jiao et al., 2020; Wu et al., 2020).
A common choice for D is Kullback-Leibler Diver-
gence (Joyce, 2011) or mean-squared error. As the
student network learns to imitate the features from
the teacher with Equation (5), the teacher model’s
knowledge, represented by the feature f7(z), is
transferred to the student. This transfer of knowl-
edge helps the student model converge to a better
optimum that it could not reach on its own.

3. Related Works

In the field of feature-based KD studies, which incor-
porate intermediate representations of the teacher
for KD, an aligning strategy has been explored to
handle different architectural settings between the
teacher and student. Since the teacher model gen-
erally has more layers than the student model, Pa-
tient KD (Sun et al., 2019) proposed skipping every
other layer or using only the last consecutive layers
of the teacher model so that the number of matching
layers becomes equal. Likewise, TinyBERT (Jiao
et al., 2020) formulated a layer-mapping function
that selects hint layers to match the student layers
at a similar depth level. Meanwhile, MiniLM (Wang
et al., 2020) circumvented the aligning issue by dis-
tilling only the last layer. However, it constrained the
number of heads to be equivalent between teacher
and student networks.

To address the issue of skipped teacher layers,
CKD (Wu et al., 2020) proposed layer fusion, a
method that projects several teacher layers into
one fused layer. The fusion is then matched with
the corresponding student layer, enabling distilla-
tion from all teacher layers. Although CKD benefits
from the representations contained in more teacher
layers, the mapping between fused teacher layers

and student layers is set heuristically, before train-
ing. As a result, its optimal combination varies due
to the training dataset, and the number of cases
for mapping becomes intractable when the num-
ber of layers increases. Additionally, performance
degradation was reported when the method was
applied to the decoder part of the Transformer, re-
gardless of the combination setting. This led to
CKD being applied solely to the encoder side of
the Transformer. While ALP-KD (Passban et al.,
2021) made the mapping partially adaptive with an
attention mechanism, it still requires dividing stu-
dent layers into buckets, which involves heuristics,
and the result is dependent on how the buckets are
grouped. Both CKD and ALP-KD are layer-wise fu-
sion distillation methods and do not consider more
detailed mappings which can be found in attention
heads.

4. Methodology

In this section, we provide a detailed overview of the
architecture and training of the Attention Alignment
Module (AAM), the core component of our Align-
to-Distill (A2D) approach. Figure 1 illustrates the
overall framework.

4.1. Attention Map as a Knowledge

The attention mechanism is a vital component in
Transformer models, capturing the context and re-
lationships between words in a sentence. Attention
alignment ensures that the student model, despite
potential differences in network structure compared
to the teacher model, focuses on the same word re-
lationships and contextual nuances as the teacher.
This process allows the student model to gain in-
sights beyond mere output mimicry; it learns the un-
derlying relationships that the teacher model uses
for prediction, effectively transferring knowledge
from the teacher model to the student.

A2D compares the attention maps in Equation (3)
from the teacher and student for knowledge distil-
lation. As depicted previously the shape of the
attention map is determined by the length of the
input (i.e. H,, ) € RL*L), not by the model hyper-
parameters. This eases the comparison between
knowledge features between the teacher and stu-
dent models on a different scale.

In the encoder-decoder model, there exist three
distinct attention that computes relation within, and
in between the encoder and decoder input se-
quences: self-attention within the encoder and de-
coder, and cross-attention from encoder to decoder.
The A2D method incorporates all three types of at-
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Figure 1: Attention Transfer with A2D. The Attention Alignment Module (AAM), implemented as a pointwise
convolution layer, produces intermediate attention maps from a collection of student attention maps. The
number of intermediate maps matches the total attention maps of the teacher model, encompassing all
layers and heads. These intermediate maps are then directly compared to the teacher’s attention maps

using KL-Divergence, without any form of reduction.

tention maps for effective knowledge distillation:

H?’ii;c;?elf c RLsrcXLsrC7 (6)

H((lec—.)self c RLtgt XLtgt, (7)
m,n

Hdec—cross c RLsrcXLtgt (8)

(m,n)

Note that L., and L, are the lengths of the source
and target sentences for machine translation, which
make the shape of attention maps among three
types of attention. During the attention knowledge
transfer, each type of attention map is compared
between teacher and student, respectively.

4.2. Attention Alignment Module

4.2.1. Module Architecture

The student and teacher models share the same
L. and L4 during distillation, leading to attention
maps of the same shape for both models, regard-
less of model differences. However, the number
of attention maps in these models differs since the
teacher model has more layers and more heads in
each layer compared to the student model. This
discrepancy in numbers makes it infeasible to make
a straightforward one-to-one mapping of attention
maps between teacher and student models. To re-
solve this, we devise an Attention Alignment Mod-
ule (AAM) that generates intermediate attention
maps, bridging the gap between the two groups of
attention maps.

AAM performs pointwise convolution (1 x 1 Conv.
as in Figure 1) on the student attention maps. This
operation creates an equal number of intermediate
attention maps to the teacher maps. Each interme-
diate map results from a weighted sum of all stu-
dent attention maps. Consequently, a one-to-one
comparison between the teacher maps and the in-
termediate maps simulates transferring knowledge
with a fully-connected mapping between teacher
and student attention maps.
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Two desirable attributes of pointwise convolution
take major roles in effective attention knowledge
transfer: (1) convolution operation preserves se-
quential information in each attention map, while
(2) allowing fully-connected weighted mapping be-
tween the groups.

We can represent the intermediate attention
maps, HZ, from student attention maps, Hfm)n)
with the learnable parameters of AAM:

M N
Hg = Z Zw(m,n),cHA(Sf;n,n) —|—bc,(C€ 1,...,0)
m=1n=1

9)
Here, w(,, »),. and b. represent the weight and bias
of AAM, respectively. These parameters generate
the c-th intermediate attention map (c € 1, ..., C),
where C denotes the total number of teacher’s at-
tention heads. The variables M and N denote the
number of student attention heads within a single
layer, and the maximum layer depth of the student
respectively.

In summary, AAM is a pointwise convolution layer
that generates C intermediate attention maps from
atotal of M x N student attention maps. The convo-
lution operation of AAM ensures that a one-to-one
comparison of intermediate maps to teacher atten-
tion maps functions similarly to a fully-connected
comparison between student and teacher attention
maps. The trained weights of AAM (w(,, ) ) after
the distillation can be used to analyze the align-
ment between student and teacher attention heads
(discussed further in the Analysis section; see Fig-
ure 2).

Finally, the AAM only adds a small number of
extra parameters and operations when determining
map discrepancy, compared to the student model.
These are estimated as M x N « C for parameters
and C = L? for operations. After training, the AAM
can be discarded, as it serves no function during
inference.



4.2.2. Module Training

AAM generates intermediate attention maps (de-
noted as H!) that have the same number as the
teacher attention maps, referred to as HZ. We
minimize the KL-Divergence between the attention
distributions of the intermediate attention maps and
the teacher attention maps as:

c
Law =Y Dgp(HE||HY).

c=1

(10)

This equation represents the attention transfer loss
function, L., which quantifies the difference be-
tween the teacher’s attention maps and the inter-
mediate attention maps. To break down further,
L.+ incorporates three different terms according to
the types of attention maps.

enc—se. 1 ec—se. dec—cCross
Latt = Ly . + 5 (ﬁgcc . + 'Czitt ) (1 1)

genemself - pdec—sell “gng pdec—cross ahove corre-
spond to the loss in Equation (10) estimates from
three different types of attention maps in Equa-
tion (6), (7), (8). To balance the loss scale between
the encoder and decoder, we divide the sum of
losses for the decoder by 2. To sum up, the atten-
tion transfer loss L, incorporates three types of
attention mechanism in the encoder-decoder model
(i.e. self-attention of each encoder and decoder,
and cross attention) with balancing for the encoder
and decoder-side losses.

Since L. is orthogonal to the loss from knowl-
edge distillation by Hinton et al. (Lkp), it can be
used jointly to give additional supervision. Through-
out the paper, we denote the distillation approach
with only Lxp as vanilla KD. To form a final loss for
A2D, we add the cross-entropy loss L of student
model for translation task as follows:

L = Lcr + Aatt + nLxD (12)
The student model and the AAM are collaboratively
optimized through an end-to-end approach, as de-
scribed in Equation (12). Given that H! is differ-
entiable with respect to w,., the L., from Equa-
tion (10) actively modifies w. and the student’s pa-
rameters to minimize the KL-Divergence between
the teacher’s attention maps and the intermediate
attention maps. At the same time, both Lcg and
Lkp indirectly affect the adjustment of w,, since H®
is related to the student model’s predictions. The
hyperparameters A\ and . serve as modulating fac-
tors to balance the weights of L.+ and Lkp. In line
with Dynamic KD (Li et al., 2021), we modulate the
value of A during training to adjust the supervision
derived from L,; and Lkp.

4.3. Comparison with Previous Methods

Previous works have also utilized attention distri-
butions as knowledge features (Jiao et al., 2020;
Wang et al., 2020). However, their approaches
treat attention heads within the same layer as a
singular unit for distillation. Considering that the
attention map from each head captures distinct in-
formation across the layer (Voita et al., 2019; Gong
et al., 2021), establishing a rigid mapping between
student and teacher layers imposes a potential loss
of knowledge from the teacher.

In contrast, A2D facilitates a flexible alignment
between each individual attention head of the
teacher and student models, eliminating the need
for pre-defined mapping combinations (Wu et al.,
2020) or bucket divisions (Passban et al., 2021).
Additionally, A2D is not bound by architectural con-
straints, such as matching the number of heads
or layers, or embedding dimensions, between the
teacher and student models.

5. Experiments

5.1.

We use the public IWSLT and WMT datasets to eval-
uate our method on translation. The datasets of
low-resource scenario include the IWSLT-2014 Ger-
man — English (De — En), IWSLT-2017 English —
Chinese (En — Zh), WMT-2022 German — Lower
Sorbian (De — Dsb) translation. Tokenization is
done with Subword-NMT (Sennrich et al., 2016)
for IWSLT-2014 dataset and Sentencepiece (Kudo
and Richardson, 2018) for the others. To prove
the effectiveness of our method on high-resource
scenarios, we evaluate NMT models on the WMT-
2014 English — German (En — De) datasets. we
use newstest2013 datasets as a validation set and
newstest2014 as the test set. Data preparation for
WMT-2014 En—De follows (Vaswani et al., 2017)
to ensure a fair comparison of baselines in Table 2.

Datasets

5.2. Distillation Settings

For every experiment, the teacher and student are
trained and evaluated with the same datasets.

Low-resource translation Teacher models are
6-layer Transformers (Vaswani et al., 2017) with
4 attention heads, hidden dimensions, and the
feed-forward dimension of 512, and 1024 for each.
Unless specified otherwise, student models are
3-layer Transformers with the same hyperparame-
ters as the teacher, except for the number of lay-
ers. For a fair comparison with CKD (Wu et al.,
2020) which reported results with 2-layer student
networks, we additionally test our approach for 2-
layer Transformer students. To show that A2D does
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Models De -En De—-Dsb En—Zh
Teacher (6-layer) 36.79 +0.51  38.68 +2.02 23.97 +0.34
Student (3-layer)

No KD 36.24 +050 35.88 +1.97 23.20 +o0.31
Vanilla KD (Hinton et al., 2015) 37.00 +o0.50 35.25 +1.96 24.47 +0.34
Sequence KD (Kim and Rush, 2016) 36.61 051 33.41 +1.76 24.67 +o0.35
Selective KD (Wang et al., 2021) 37.30 +050 35.94 +1.95 22.66 +0.32
TinyBERT (Jiao et al., 2020) 37.24 052 38.01 +1.80 24.31 +0.34
MiniLM (Wang et al., 2020) 36.93 +0.50 36.43 +1.97 24.32 +0.33
ALP-KD (Passban et al., 2021) 3713 z051  37.07 £2.05 24.36 +0.33
A2D (4 heads) 3717 +0.49 38.61 +1.96 24.61 +0.32
A2D (8 heads) 37.75 051 39.49 +2.06 24.32 +0.33
Student (2-layer)

No KD 35.56 +0.51 35.89 +1.88 23.69 +0.33
CKD-sc (Wu et al., 2020) 35.73 +0.49 32.90 +1.85 22.55 +0.33
CKD-cc (Wu et al., 2020) 35.46 +0.48 31.28 £1.74 22.86 +0.31
A2D (4 heads) 36.68 +0.51 37.06 +1.94 23.64 +0.34

Table 1: BLEU scores of various KD approaches across language pairs. ‘No KD’ denotes student models
trained exclusively with the cross-entropy loss. Each baseline model incorporates 4 attention heads per
layer. For a direct comparison with CKD, we train our students with A2D across 2 layers. The highest
scores among student models are highlighted in bold, while the second highest are underlined.

Teacher No KD

PKD CKD-rc

CKD-oc A2D A2D (w/o Lkp)

27.70 +065 | 25.74 061 23.38

24.14

23.97  26.37 +o0.64 25.97 +o.61

Table 2: BLEU scores for WMT-2014 En — De. ‘PKD’ and ‘CKD’ refer to Patient KD (Sun et al., 2019) and
Combinatorial KD (Wu et al., 2020), respectively. Underlined results are imported from CKD (Wu et al.,
2020). Our reproduced teacher and No KD student model, used for A2D training on En — De, yielded
slightly better BLEU scores than those reported in the CKD paper, which are 27.03 and 24.31 respectively.
Nevertheless, the trend of their model underperforming compared to No KD remains consistent.

not require the same number of attention heads be-
tween student and teacher, we also present the re-
sults with student models having 8 attention heads.
For loss scaling, in Equation (11), A and n are ini-
tially set to 1, and we set exponential decay on A
at a rate of 0.9 over epochs.

High-resource translation To properly scale the
model to the high-resource data, we enlarge the
teacher model and student model to 12-layer and
4-layer, respectively. The other hyperparameter
settings such as attention heads and hidden di-
mension are set identically with (Vaswani et al.,
2017). To adjust to the increased number of atten-
tion maps, We used A of £, as 0.1.

5.3. Baselines

Selective KD (Wang et al., 2021) is a variant of
vanilla KD (Hinton et al., 2015) which selectively
chooses words to distill based on entropy. For se-
lective KD, we use a “word rate" of 0.5. For Tiny-
BERT (Jiao et al., 2020), every other layer of the
teacher model is correspondingly mapped to a layer
in the student model. MiniLM is originally proposed
for knowledge distillation in the pre-training stage,
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so we augment the MiniLM objective with Lcg and
Lxp for a fair comparison. For ALP-KD (Passban
et al., 2021), we train the student with an attention
mask spanned over all teacher layers. For Com-
binatorial KD (Wu et al., 2020) (CKD), ‘-sc’, ‘-cc,
‘-rc’, and ‘-oc’ refer to its different layer mapping
configurations.

5.4. Results on Low-resource datasets

Low-resource datasets present a unique challenge
for NMT models, emphasizing the importance of
effective knowledge distillation. Table 1 summa-
rizes all the results for low-resource NMT. Models
are compared with BLEU scores computed using
sacreBLEU (Post, 2018), with a confidence interval
of 95%, and the number of bootstrap resamples is
1000. Previous KD methods, such as TinyBERT
and MiniLM, impose a constraint that the number of
heads in the student must match that of the teacher.
In contrast, A2D does not have this limitation re-
garding the number of attention heads, allowing
us to train students with 8 heads using teachers
with only 4 heads. We also present the results of
students with 8 heads in section 6. Doubling the



number of attention heads from 4 to 8 does not alter
the overall parameter count in the ’A2D (8heads)’
model. This is achieved by proportionally reduc-
ing the dimension per head (drcad = dimodel/Mhead)
while keeping the feature dimension (d;4e1) CON-
stant, thus ensuring a fair comparison.

In the De —» En and De — Dsb language pairs,
students trained with A2D yield higher BLEU scores
than those trained with other KD methods. For the
En — Zh language pair, A2D yields superior results
compared to other feature-based KD baselines and
is on par with Sequence-level KD. In all language
pair settings, students trained with A2D surpass the
performance of their teachers despite having only
half the number of transformer layers. Remarkably,
the effectiveness of our method was most evident in
the De — Dsb dataset, which had the least amount
of training data at 39K samples. These results
indicate that training with A2D allows students to
achieve better generalization, particularly with low-
resource training data.

To compare with CKD, we trained 2-layer stu-
dents using A2D. While the score of CKD varies on
its mapping option, our model consistently outper-
forms CKD regardless of the dataset or their map-
ping option. Moreover, a 2-layer studentin De — En
achieves results comparable to its 6-layer teacher.
The results not only validate the robustness of A2D
but also show that our learned alignment of atten-
tion heads is more effective for knowledge transfer
than the heuristic mapping of CKD.

In low-resource settings, a student model could
outperform the teacher under the guidance of the
teacher model. This is due to the enhanced gen-
eralization provided by the regularization effect of
distillation, as discussed in (Mobahi et al., 2020;
Yuan et al., 2020). The teacher model, often being
larger and more complex, captures rich feature rep-
resentations (such as attention maps) of the data.
Through distillation, the student model learns these
representations, which might be more generaliz-
able than those learned from the relatively small
amount of raw data alone.

5.5. Results on High-resource dataset

To assess the versatility of our method, we
extended our experiments to the high-resource
dataset. Table 2 describes our results with different
baselines. From our observations, traditional KD
techniques like Patient KD and Combinatorial KD
did not enhance the performance of the student
models for high-resource data. Surprisingly, they
even underperform compared to a student model
trained without any KD techniques.

However, a noticeable distinction arises when
training the student model with the A2D approach,
demonstrating a performance level similar to that
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Nhead | A2D  No KD | ABLEU L
2 36.33 35.79 0.54 0.036
4 37.17 36.24 0.93 0.024
8 37.75 36.25 1.5 0.016
16 | 37.19 35.78 1.41 0.013

Table 3: BLEU score and our attention distillation
loss (L.tt) at convergence over a different number
of heads (npeaq) in A2D and No KD. ABLEU indi-
cates BLEU score difference between A2D and No
KD.
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Figure 2: Attention head connection weights in the
trained AAM. Axes indicate attention head numbers
in the student (3 layers of 8 heads) and teacher (6
layers of 4 heads) models. The dashed grid shows
layer boundaries. Darker colors signify stronger
connections. Best viewed in color.

of its teacher, even when modeled with only one-
third number of the transformer layers compared to
its teacher. This performance gain remains even
without integrating our method with vanilla KD, un-
derscoring its effectiveness.

6. Analysis and Discussion

6.1. Effect of Fine-grained Alignment

We focus on two attributes of A2D that enable fine-
grained alignment: (1) dense, head-wise distillation
(2) the use of an attention map as a feature. Our
hypothesis is that the detailed head-wise attention
alignment is what gives A2D-trained students an
edge in performance. In Table 3, we present how
our attention transfer loss and performance gap
between students trained with A2D and students
trained without KD vary with different numbers of at-
tention heads at the point of convergence. Note that
varying the number of heads in the student model
does not change the total number of parameters.
Our observation suggests that as we reduce the
L., ABLEU becomes more pronounced, which
indicates the effectiveness of our method. This in-
verse correlation between L, and ABLEU as the
number of heads increases could be attributed to
our attention alignment module (AAM), which gen-
erates intermediate attention maps from original



Datasets A2D (All)  A2D (Enc-Self) A2D (Dec-All) A2D (Dec-Self) A2D (Dec-Cross)
De — En 37.75 +o0.51 37.39 +o0.50 37.21 +o0.51 37.16 +0.49 37.25 +o0.51
De — Dsb 39.49 +2.06 36.80 +2.01 37.81 +1.95 36.81 +2.13 37.66 +1.97
En — Zh 24.32 +0.33 24.77 +o0.32 24.75 +0.35 24.67 +0.33 24.64 +0.35

Table 4: Ablation studies by applying A2D on different parts of Transformer. Dec-All setting indicates that
both self-attention and cross-attention maps are used for A2D. For Dec-Self and Dec-Cross settings, we
increased the weight of Ldcc—sIf gand Ldec=ross from 1/2 to 1 respectively to match the loss scale on the

Dec-All setting.

Model #Params | CoLA | MNLI-(m/mm) | SST-2 | QNLI | MRPC | QQP | RTE | STS-B | Avg
(Mcc) (Acc) (Acc) | (Acc) (F1) (Acc) | (Acc) | (Spear)

BERTvase 110M 58.7 84.5/84.5 91.7 91.3 89.0 91.1 67.9 89.5 82.9
BERTs 66M 51.2 81.7/82.6 91.0 89.3 89.2 90.4 | 66.1 88.3 80.9
PD 66M - 82.5/83.4 91.1 89.4 89.4 90.7 | 66.7 - -

PKD 66M 45.5 81.3/- 91.3 88.4 85.7 88.4 | 66.5 86.2 79.2
TinyBERT 66M 53.8 83.1/83.4 92.3 | 89.9 88.8 90.5 | 66.9 88.3 81.7
A2D 66M 58.8 83.2/83.5 91.7 | 90.3 89.2 90.9 | 67.5 88.7 82.5

Table 5: Evaluation results on the dev set of GLUE Benchmark. We use BERT,,,. and BERTg as teacher
and student model, respectively. Both BERTg, a 6-layer smaller variant of BERT, and ‘PD’, a distilled
model, are released by Turc et al.. The results of baselines are imported from Park et al..

Head-wise A2D

Datasets Layer-wise A2D

(Default)
De — En 37.01 +o0.49 37.75 +0.49
De — Dsb 36.70 +1.96 39.49 12.06
En — Zh 24.07 +0.34 24.32 +0.33

Table 6: Comparison of our original A2D (head-
wise distillation) with its layer-wise counterpart.

student maps. AAM draws all the student atten-
tion maps (H®) to mimic each teacher map (HY)
via pointwise convolution operation; approximat-
ing H” from an increased number of H? is more
feasible. However, employing an excessive num-
ber of heads might degrade the performance by
reducing the expressiveness of each student’s at-
tention head. We hypothesize that the choice of
nhead = 16 was overly complex for a model with
specifications d.,,.qe; = 512 and reduced the capac-
ity of each head. This led to the model’s optimal
performance in BLEU with ny..q = 8, but recorded
a dip in performance when escalated t0 npeqq = 16.

In Figure 2, we present the connectivity between
attention maps learned by AAM (pointwise convo-
lution layer) with heatmap. It shows that heads
from students associate not only within but across
the layers to form intermediate maps (H’) that are
purposed to emulate the teacher maps (HT). This
suggests that transferring knowledge using entire
layers as units may not be the most effective ap-
proach for knowledge transfer. To justify the claim,
we also carried out evaluations on the layer-wise
variant of A2D, as demonstrated in Table 6. Layer-
wise A2D, which uses per-layer averaged maps as
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a knowledge feature, underperforms the original
head-wise A2D by a significant margin on every
language pair. This observation reinforces our hy-
pothesis emphasizing the impact of our head-wise
comparison approach in distillation.

6.2. Decoder Distillation

While previous feature-based KD methods focused
on distilling encoder-only models (Jiao et al., 2020;
Wang et al., 2020; Passban et al., 2021) and did
not discover effective KD settings for the decoder
in NMT tasks (Wu et al., 2020), A2D distills both
the encoder and decoder.

Our claim regarding the effectiveness of our
method on the decoder is supported by the ab-
lation studies presented in Table 4. Generally, ap-
plying A2D to both the encoder and decoder to-
gether yielded the best results. In the En — Zh
direction, there is a slight performance degradation
when using integrated encoder and decoder distil-
lation compared to using encoder-only or decoder-
only distillation. Nevertheless, our model trained
with decoder-only distillation outperforms the one
with distillation on both the encoder and decoder,
demonstrating its effectiveness on the decoder.

To investigate why A2D is effective on the de-
coder, we examine the AAM of the decoder, as
described in Figure 2. From the heatmap, we ob-
serve that the connection between heads tends
to be sparse at the encoder level, with most val-
ues near 0. Conversely, in the decoder, the con-
nection between heads is more evenly distributed,
with values shifting away from 0 and closer to 0.2.
Based on this observation, we believe that our soft,



fine-grained connections between teacher-student
features led to more successful KD for decoder
tasks, as compared to the strict on/off connections
proposed in earlier KD studies.

6.3. Effectiveness on Different Tasks

In this study, we assessed our method using NMT to
demonstrate its potential beyond tasks solely asso-
ciated with encoders. Additionally, we present per-
formance metrics for the A2D method when applied
to encoder-only models on natural language under-
standing benchmarks given that most of the KD in
natural language processing research has focused
on the encoder-only models and tasks. Specifically,
we applied our method to BERT (Devlin et al., 2019)
distillation, benchmarked on the GLUE (Wang et al.,
2018) dataset. The comparative results with base-
lines are presented in Table 5. For training, we
used fine-tuned teacher models for each GLUE
task and then applied A2D to the corresponding
student model. We experimented with the hyper-
parameter \ of Equation (12), selecting from the
values {0.01, 0.02, 0.05, 0.1}. For all other con-
figurations, we followed BERT’s settings. Notably,
our method demonstrated superior performance
over encoder-oriented baselines, even without ded-
icated task-specific hyperparameter tuning.

7. Conclusion

In this paper, we introduce Align-to-Distill, a novel
approach to knowledge distillation that enables
a detailed alignment of attention heads between
teacher and student models. We propose a strat-
egy to overcome the need for heuristic feature map-
ping in a learnable manner. Our approach shows
promising results in decoder distillation, effectively
compressing models while preserving translation
quality.

8. Limitations and Future work

Although A2D is architecturally flexible without con-
straints on hidden size or number of attention
heads, the teacher and student models must share
the same vocabulary. This requirement potentially
restricts its broader applicability. Also, while our
work demonstrates A2D’s effectiveness on the de-
coder module in Table 4, we have not yet tested
A2D on decoder-only models. The scope of this
paper primarily focuses on encoder-decoder-based
translation models. In future work, we plan to
extend A2D’s application to decoder-only models.
Moreover, the concept of A2D may encompass a
broader range of architectures in future work, as the
idea of adaptively aligning features is not restricted
to using attention as a feature.
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