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Abstract

Independent Component Analysis (ICA) is an algorithm originally developed for finding separate sources in a
mixed signal, such as a recording of multiple people in the same room speaking at the same time. Unlike Principal
Component Analysis (PCA), ICA permits the representation of a word as an unstructured set of features, without
any particular feature being deemed more significant than the others. In this paper, we used ICA to analyze word
embeddings. We have found that ICA can be used to find semantic features of the words, and these features
can easily be combined to search for words that satisfy the combination. We show that most of the independent
components represent such features. To quantify the interpretability of the components, we use the word intruder test,
performed both by humans and by large language models. We propose to use the automated version of the word
intruder test as a fast and inexpensive way of quantifying vector interpretability without the need for human effort.
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1. Introduction

This paper centers on the exploration of word em-
beddings through the lens of Independent Compo-
nent Analysis (ICA). Unlike Principal Component
Analysis (PCA), ICA permits the representation of a
word as an unstructured set of features, without any
particular feature being deemed more significant
than the others. Essentially, we view the vector
representations of words as a combination of inter-
pretable features, and our goal is to identify these
features.

The main contribution of the paper is interpretabil-
ity. Because ICA is a linear transformation of the
embedding vectors, we do not expect any change
in the results of downstream tasks. Although more
interpretable representations will not help the model
performance, they may help us understand how the
tasks are performed by the models and what infor-
mation is stored in the embeddings. In addition to
theoretical implications, this also impacts trust in
the models used in practice.

We show that most of the ICA components can
be interpreted and the interpretable components
can be combined to find words that have the fea-
tures associated with both components. To quantify
the interpretability, we use the word intruder test,
both with humans and with large language models.

2. Independent Component Analysis

ICA (Comon, 1994) is an algorithm originally devel-
oped for finding separate sources in a mixed signal,
such as a recording of multiple people in the same
room speaking at the same time. In the past, it was

also used for automatic extraction of features of
words (Honkela et al., 2010).

The ICA algorithm (Hyvarinen and Oja, 2000)
consists of:

1. optional dimension reduction, usually with
PCA,

2. centering the data (setting the mean to zero)
and whitening them (setting variance of each
component to 1),

3. iteratively finding directions in the data that are
the most non-Gaussian.

The last step is based on the assumption of the
central limit theorem: the mixed signal is a sum
of independent variables, therefore it should be
closer to the normal distribution than the variables
themselves.

The ICA algorithm is stochastic; every run gives
a slightly different result. It always returns as many
components as we specify before running it (up to
the dimension of the original data). If the data was
generated by a lower number of independent com-
ponents and some random noise, ICA will return
some components containing only the noise.

ICA may be an interesting tool for analysis of
word embeddings also from a theoretical point of
view. Following Musil (2021), we believe that it
might be useful to conceptualize meaning of an ex-
pression as a combination of various components.
These components emerge from the use of the ex-
pression in context. Each of them would represent
a specific relation to other expressions, forming
a continuous structure that does not adhere to a
simple tree hierarchy.
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Figure 1: Histograms of distributions of words along a particular component. Orange bars represent
strong-words. Blue bars represent the rest of the vocabulary. Note that the vertical axis is logarhitmic,
otherwise the orange bars would be too low to be distinguishable. There are three typical shapes of
these histograms: orange mass in the negative direction, orange mass in the positive direction, and small
amount of orange scattered randomly. This shows that the components usually capture some feature in
one direction, which is arbitrary (property of the ICA algorithm), or contain random noise.

ICA of word embeddings is a plausible candi-
date for such conceptualization because it allows
us to represent a word as an unstructured set of
features, without some of them being necessarily
more important than others.

In contrast, the commonly used PCA compo-
nents are ordered by the amount of variance in
the data explained by each component. This order-
ing can also be interpreted as a hierarchy, with, e.g.,
verbs versus nouns being a typical first component
(Musil, 2019), the following components separating
adjectives and adverbs, later components separat-
ing modal verbs from the rest of the verbs, proper
nouns from the rest of the nouns, etc.

3. Experiments and Results

Most of our experiments were carried out on the
One Billion Word Benchmark corpus (Chelba et al.,
2013). The corpus mostly contains data from the
news and parliamentary proceedings domains. To
show examples from a different text domain, we
have also used the English side of the section c-
fiction of the CzEng 1.7 corpus (Bojar et al., 2016),
containing 78M tokens (997k unique tokens) of
short passages from various fiction books.

We have trained word2vec (Mikolov et al., 2013)
embeddings on the corpus with 512 dimensions
(skip-gram with negative sampling, window size 10),
and ran the PCA and ICA' (into 512 components)
on them.

Due to the random initialization, each run of ICA
produces a slightly different result. To assess the
consistency of ICA, we compared two independent
runs of ICA performed on the same embeddings.
For a large proportion of the components, a compo-
nent from one run is strongly correlated to exactly
one component from the other run.

'We are using the scikit-learn (Pedregosa et al., 2011)
implementation of the FastICA algorithm (Hyvérinen,
1999).

To examine what each component represents,
we can look at the words in the vocabulary that are
the highest or the lowest in that particular compo-
nent (we will call these the extreme-words). For a
vocabulary V, where each word is associated with
a d-dimensional vector representation r : V — R¢
and r(w), denoting the " component of the repre-
sentation of the word w, we can define the sets of &
extreme-words in positive and negative directions
as:

E(e,+,k)={weV :{z eV r(x)>r(w).} <k}

E(c,—k)={weV : {z eV r(z). <r(w).} <k}

From a different point of view, we can also look at
each word and determine which component is the
strongest (is the largest in absolute value) for that
word and whether it is positive or negative. Thus,
we are able to associate a particular component
and direction with each word. And for each direction
of each component, we can find a set of words
for which this component/direction is the strongest
one (see also Honkela et al. (2010)). We will call
these strong-words. Using the same notation as
in the previous equations, we can define function
SC:V — ([1,d],{’+', —'}) that assigns each word
a strong component and direction as:

SC(w) = (a := argmax.(|r(w).|),

"+ if r(w), > 0 otherwise ’-’)

and then define the set of strong-words S(c, dir)
for component ¢ and positive/negative direction as:

S(c,dir) ={w eV : SC(w) = (¢,dir)}.

3.1.

The distribution of words along a component usu-
ally follows a pattern: most words are located

Component Directionality
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around 0 and a smaller group of words is sepa-
rated in either the positive or the negative direction.
Figure 1 illustrates this pattern of uni-directionality
by plotting the distribution of strong-words along
a component. We see two characteristic patterns
of this distribution: either most of strong-words are
located in one of the positive/negative half-spaces,
or there are relatively few strong-words that are
evenly distributed across both sides.

Our hypothesis is that the components that are
one-sided are the ones that are interpretable, while
the spread-out components mostly contain noise.

In our experiments on the components of the em-
beddings trained on the Billion corpus, there were
approximately 361 one-sided components versus
161 spread-out components (averaged over multi-
ple ICA runs), based on the ratio of words for which
the component is the largest component (as in Fig-
ure 1; we count components with more than 70%
of ‘strong-words’ as ‘one-sided’).

3.2. Word Intruder Test

To estimate intepretability of the components, we
performed the word intruder test (Chang et al.,
2009), that has been widely used for this purpose
(Subramanian et al., 2018). This test presents
the annotators with 5 words, 4 of which are the
4 extreme-words of the tested component and di-
rection. The fifth word is an intruder, selected ran-
domly from the top 10% of words from another ran-
dom component and direction. If the component
is interpretable, the extreme-words should form a
coherent set and the annotators should be able to
identify the intruder.

We had the intruder test data (based on the Bil-
lion corpus, see Section 3) for word2vec and ICA
components annotated by three independent an-
notators. The results in Table 1 show that ICA
components are more interpretable than the com-
ponents of original word2vec embeddings. The
intruder test also shows that the components are
usually interpretable only in one direction.

To avoid the high cost of manual annotation, we
performed further intruder tests with the GPT-3.5
language model (Brown et al., 2020). In this set-
ting, we were able to randomize the selection of
the coherent set and pick 4 words at random from
the 20 extreme-words for each component and di-
rection. We generated 5 randomized tests for each
representation/component/direction. We used the
prompt “Which word does not fit the following group
of words? <wi>, <wad, <wsd, <wy>, <ws>. Answer
using just one word." Initially we chose to put the
test words in the prompt in random order. However,
we have noticed that the language model is biased
to select words at certain positions more often than
others. We solved this by repeating each test 5
times with the test words positions rotating, in order

vect. . identified agr. i. agr. non-i.
Random baseline
204.8 (20%) 8.1 (1%) 8.1 (1%)

Human

w2v 317.3 (31%) 90 (9%) 120 (12%)

ICA 425.6 (42%) 190 (19%) 82 (8%)
GPT-3.5

w2v 2915 (£12.1) - -

PCA 273.7 (£11.7) - -

ICA 467.1 (+ 6.4) - -
GPT-4

w2v 273 - -

ICA 524 - -

Table 1: Results of the word intruder test on the
Billion corpus. Percentages indicate the propor-
tion of all of the components/directions. Ranges
in parentheses indicate standard deviation over 5
randomized test sets. For word2vec dimensions,
the intruder word was on average identified less
often than for the ICA components. The annotator
agreement on the correct intruder word is higher
for the ICA components, as is the ratio between
the number of cases where the annotators agreed
on the correct intruder word against the number
of cases where they agreed on a word that was
not the correct intruder. This indicates that the ICA
components are more interpretable than the origi-
nal word2vec dimensions. We assume that most
of the components are one-sided; therefore, the
maximum amount of interpretable components is
around 50% (we test both directions, but assume
only one is interpretable). Because every ques-
tion contains 5 possible answers, there is a 20%
chance of guessing the correct intruder at random.
Therefore the range of the interpretability score in
Table 1 is between 20% and 50%, making the dif-
ference of 11% quite large.

for the intruder word to occur in all 5 positions. We
consider the intruder word detected correctly if at
least 3 of the 5 rotated tests are answered correctly.

The results of intruder test with GPT-3.5 (Ta-
ble 1) are consistent with the manual tests. While
word2vec components tested above random base-
line, the ICA components have a significantly higher
score. The number of test instances where the
intruder was correctly identified by GPT3.5 corre-
lates with the percentage of vocabulary that are
strong-words for the tested component/direction
(Pearson’s r = 0.65). This is consistent with our
hypothesis that uni-directional components are in-
terpretable. We have also tested PCA components
in this setting. The score for PCA was slightly lower
than for word2vec. We think this is because PCA is
constructed to fit the highest amount of information
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into the lowest possible number of components,
leaving most of the components as random unin-
terpretable noise.

We also tested a limited number of examples with
GPT-4 (OpenAl, 2023). This larger model achieved
significantly higher score on the ICA components
intruder test, while the score for the word2vec com-
ponents was similar to GPT-3.5.

3.3. Combining the Components

We can combine a pair of components by search-
ing for words for which the product of the compo-
nents is the highest.? For example, in our particular
instance of ICA of word2vec embeddings of the En-
glish side of the CzEng-fiction corpus, the 15 words
for which the value of C39s (component number
398) is the highest are the following: rumble, boom-
ing, roar, wail, sound, murmur, shouts, cries, louder,
shrill, screams, noises, muffled, voices, howl. We
see that this components has high values for words
associated with sound. For 4, the top 15 words
are associated with animals: cats, predators, rats,
predator, lions, fox, rabbits, bears, wolves, lion,
deer, dogs, mice, tigers, cat. If we search for the
top 15 words for which Cs9s - C11¢ is the highest,
we get the following:

sound x animals: growl!, barking, purr, growls,
whine, baying, growling, howl, yelp, bleating, chirp-
ing, buzzing, squealing, squeals, crickets

Here are a few hand-picked examples from the
same model:

sound x horses: hooves, hoofs, hoofbeats,
snort, hoof, whinny, jingling, snorting, clop, clink,
whinnying, thudding, jingle, shod, neighing

sound x play: melody, flute, music, musical,
chords, orchestra, guitar, stringed, violin, trumpets,
tune, accompaniment, piano, Bach, melodies

sound x door: click, clang, creak, thud, clanged,
clank, clink, splintering, clunk, squeak, groan, audi-
ble, snick, thunk, footsteps

clothing « army: fatigues, uniforms, regimental,
insignia, Infantry, uniform, tabs, breastplate, vests,
stripes, Kevlar, Armored, helmets, outfit, pants

units * money: dollars, cent, cents, francs,
bucks, per, dollar, billion, roubles, shillings, million,
percent, guineas, pounds, pence

We have also succesfully tested this with pairs
of sports and countries on the Billion corpus.

2As we have seen in Section 3.1, each component
is either positive, negative, or noisy. We can compute
the mean value of strong-words for each component
and then flip the sign of that component if the mean is
negative. In the rest of this section, we assume that this
operation was carried out on the model and all of the
components that represent semantic features do so in
the positive direction.

4. Discussion and Future Work

ICA can provide components that are interpretable
without relying on predetermined set of categories.
The resulting components may represent cate-
gories that are not very general and are perhaps
not suitable as a general semantic representa-
tions to use in practical applications. They do not
seem to represent semantic primitives as defined
by Wierzbicka (2021). Examples from the ICA of
word2vec embeddings trained on the Billion cor-
pus, interpreted by looking at the extreme-words
and finding what they have in common, include
components that represent various sports, states,
types of numbers (e.g. years, basketball scores,
percentages; each have their own component) or
a component representing surnames of famous
people who's first name is David. This may not be
very useful in general, but because the ICA can
easily be mapped to the original embeddings, it
shows how the information is organised in the em-
beddings and consequently in the corpus itself (in
this case, large portion of the corpus consists of
news articles). Furthemore, there is the possibility
of combining the individual components.

Regarding lexical semantics, this work is con-
nected with theories that use the notion of a ‘se-
mantic feature’ and shows that we can empirically
find this kind of structure in the embeddings. Our
work presents a possible way to fix one of the short-
comings of componential analysis, that “The dis-
covery procedures for semantic features are not
clearly objectifiable”®. W.r.t the structure of the lexi-
con, this tells us that we can organize the lexicon
by binary semantic features that words either have
or do not have.

In future work, we are going to concentrate on
automatically detecting the interpretation for each
component and finding which components can be
combined together, aiming at unsupervised con-
struction of a compositional semantic map of word
embeddings (and by extention also of the underly-
ing text corpus). We believe that this may be useful
not only for interpreting various forms of vector rep-
resentations, but also as a method of computational
analysis of compositional structures present in vari-
ous corpora, as a form of “distant reading" (Moretti,
2000).

ICA could also be useful to identify potential for
various biases in the representations (e.g. gender
bias; see Appendix A for examples). If there are
components clearly showing structure related to a
sensitive attribute associated with a word (such as
gender role), there is a potential of misusing this
information in a machine learning system that uses
or generates the representations.

Based on experiments presented in this paper, it

Shttps://en.wikipedia.org/wiki/Componential_analysis
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seems that the automated word intruder test with
large language models is a viable alternative to
other methods to quantify the interpretability of
word vector representations without requiring hu-
man effort, such as the one proposed by Senel et al.
(2018). The benefits of automated intruder test are
its simplicity and possibility of directly comparing
the results to human evaluation of the same test
examples in cases where the human labour is avail-
able. More work needs to be done to determine
under what conditions (specific prompts, language
models, and other variables) is it possible for the
automated word intruder test to be used reliably.

5. Related Work

Vayrynen and Honkela (2005) devised a method
to quantify how well the unsupervised features cor-
respond to a set of linguistic features such as part
of speech categories. They compared SVD and
ICA on context-word matrix and concluded that ICA
corresponds better to human intuition.

Musil (2019) examined the structure of word em-
beddings with PCA. They found that PCA dimen-
sions correlate strongly with information about Part
of Speech (POS) and that the shape of the space
is strongly dependent on the task for which the
network is trained.

Faruqui et al. (2015) and Subramanian et al.
(2018) generated sparse interpretable represen-
tations from word embeddings. Unlike ICA, these
are not simple projections of the original vectors.

Related work on the examination of vector repre-
sentations in Natural Language Processing (NLP)
was surveyed by Bakarov (2018). More informa-
tion can also be found in the overview of methods
for analysing deep learning models for NLP by Be-
linkov and Glass (2019). For more on interpretation
in general and unsupervised methods in examining
word embeddings, see Marecek et al. (2020).

6. Conclusion

ICA components correspond to various features,
that seem to be mostly semantic. These features
tend to be binary and the components are unidi-
rectional. We have demonstrated that components
can be combined as semantic features by simple
multiplication, giving high values to words that com-
bine the semantic features associated with the com-
ponents. To quantify the interpretability, we have
successfully used the word intruder test with large
language models.
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A. Examples of Components

In this section, we present a few examples of com-
ponents to show the type of information they repre-
sent. The description of each component contains
the corpus on which the word2vec embeddings
were trained, the id of the component (arbitrary
number and direction) and whether the words pre-
sented are end-words or strong-words (see Sec-
tion 3 of the paper).

The first three examples show components repre-
senting specific groups of words: names of people
associated with “David”, abbreviations for represen-
tatives in the US, popular music groups.

Billion C3- end-words:

David Copperfield Archuleta Beckham Nalban-
dian Plouffe Letterman Goliath Friehling Lammy
Souter Blanchflower Vitter Duchovny Martinon
McKiernan Adom Garrard Legwand Cronenberg
Fincher Aardsma Buik Skrela Hasselhoff Pe-
traeus Wyss Pogue Furnish Mamet

Billion C4- end-words:

Reps. R-Mich D-Mich Rep. D-Pa R-Calif R-la
D-Ohio D-Mo D-Calif Edolphus D-Md D-CA R-
Pa D-Minn R-Texas D-Conn R-Maine D-Hawaii
R-Va D-Ind D-Wis D-Wash D-N.D. R-Tex D-Ore
R-Ga R-lowa D-N.Y. D-N.J.

Billion C10- end-words:

Tings Coldplay MGMT Rascal Kasabian Metal-
lica Radiohead Linkin rockers Flatts Dizzee
Raconteurs Interscope Nickelback Zeppelin Bill-
board Prodigy Billboard.com Leppard Verve
Paramore Depeche album supergroup R.E.M.
Beastie Weezer Gorillaz Glasvegas Stryder

Component number 143 shows words represent-
ing people in the Billion corpus (Chelba et al., 2013).
Notice that this component (and no other compo-
nent in this particular set of embeddings) does
not differentiating the words based on the asso-
ciated gender roles. Compare this with component
73 from word2vec embeddings trained on English
Wikipedia*, which shows ordering according to gen-
der (in the opposite directions). Understanding how

“Downloaded from https://dumps.wikimedia.
org/enwiki/20231020/.

is this type of information represented and under
what conditions is it more prominent in the repre-
sentations may help us prevent unwanted bias in
the systems that use these representations as the
first step of a machine learning pipeline.

Billion C143+ end-words:

motorcyclist cyclist hiker firefighter serviceman
sailor soldier sufferer climber protester skier man
worker airman scientist diver rider woman jog-
ger businesswoman journalist diplomat shopper
traveler teenager surfer pensioner attendee per-
son holidaymaker

Billion C143+ strong-words:

man woman journalist person teenager worker
guy performer politician motorcyclist sailor res-
ident pensioner businessman scientist banker
musician kickboxer supporter shopper salesman
coworker colleague staffer traveler athlete holi-
daymaker citizen diplomat reveller player

Wikipedia C73+ end-words:

feminist headmistress Giveen abbess prioress
lady suffragist Xaveria Petyarre nun feminists
Pizan suffragette benefactress alumna Nardal
chairwoman Tig Abbess actresses matron
Bessola Sister Abrikosova regnant Alacoque
Overstake Smeal needleworker Tyutcheva

Wikipedia C73- end-words:

Jesse Harold Robert Ryusuke Arthur David
Daniel Lukas Woodie Guy Andreev Shintaro
balding Bjorn Remo countryman Richard Stan-
field Adam Frat Hamish Jason Seth Kelvin
Michael Granollers Zorin tukasz Hieronymus
Kaspar
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