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Abstract
Cross-lingual pre-training methods mask and predict tokens in a multilingual text to generalize diverse multilingual
information. However, due to the lack of sufficient aligned multilingual resources in the pre-training process, these
methods may not fully explore the multilingual correlation of masked tokens, resulting in the limitation of multilingual
information interaction. In this paper, we propose a lifelong multilingual multi-granularity semantic alignment approach,
which continuously extracts massive aligned linguistic units from noisy data via a maximum co-occurrence probability
algorithm. Then, the approach releases a version of the multilingual multi-granularity semantic alignment resource,
supporting seven languages, namely English, Czech, German, Russian, Romanian, Hindi and Turkish. Finally, we
propose how to use this resource to improve the translation performance on WMT14∼18 benchmarks in twelve
directions. Experimental results show an average of 0.3∼1.1 BLEU improvements in all translation benchmarks. The
analysis and discussion also demonstrate the superiority and potential of the proposed approach.
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1. Introduction

The alignment between languages is the key mes-
sage for machine translation, and it encourages
the models to learn the correlation of different lan-
guages and to achieve multilingual interaction (Mao
et al., 2022; Tang et al., 2022; Adjali et al., 2022).
Typically, the models could acquire the multilin-
gual alignment information through the multilingual
texts during the cross-lingual pre-training (Wei et al.,
2021; Chi et al., 2021; Batheja and Bhattacharyya,
2022) or through the parallel corpora during the
fine-tuning (Fernandez and Adlaon, 2022).

However, although most models could learn ac-
curate multilingual alignment information through
the parallel corpora, they are usually limited by the
insufficient scale of the parallel corpora and thus
cannot learn sufficiently (Wang and Li, 2021; Chi-
moto and Bassett, 2022). In contrast, the cross-
lingual pre-training methods based on various train-
ing strategies and large-scale multilingual texts al-
leviate this problem to some extent and inject the
alignment information into the models (Yang et al.,
2020a; Luo et al., 2021). So these models could
present the multilingual correlation of different lan-
guages more or less. Benefiting from this align-
ment information in the pre-training process, these
methods have shown promising performances in
multilingual machine translation (Lin et al., 2020;
Pan et al., 2021). However, constrained by not us-
ing explicit multilingual alignment resources during
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Figure 1: Illustration of English-German multi-
granularity alignment linguistic units in the resource
built by this approach.

pre-training, these pre-training methods may not be
able to explore the multilingual correlation of differ-
ent tokens in multilingual texts as comprehensively
and accurately as in parallel corpora (Yang et al.,
2021). Thus, this undoubtedly presents an oppor-
tunity and raises an urgent need for a high-quality
multilingual alignment resource for the further ad-
vances of the cross-lingual pre-training methods.

To address the need, this paper proposes a life-
long multilingual multi-granularity semantic align-
ment approach via maximum co-occurrence prob-
ability in noisy parallel data and uses it to build a
semantic alignment resource. A linguistic unit is a
sequence of consecutive tokens in a sentence, So
it may be a word, phrase, segment, or short sen-
tence. The approach collects a group of noisy pairs
that contain the same linguistic unit in one language
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and computes the co-occurrence probability of one
candidate linguistic unit in the other languages. The
co-occurrence probability is the probability that one
linguistic unit appears in all sentences, so one can-
didate linguistic unit will have a higher probability
if it occurs in most sentences. Figure 1 presents
the English-German multi-granularity alignment lin-
guistic units in the resource built by this approach.
The approach can satisfy the above need from
three aspects, namely the scale and quality, the
linguistic diversity, and the lifelong property. Tak-
ing the large-scale noisy data as the data source
and constraining the aligned unit with maximum co-
occurrence probability ensure the scale and qual-
ity. The multi-granularity and multilingualism reflect
the linguistic diversity. Through a lifelong stream
of noisy data, the approach can continuously ex-
pand the resource with new languages or aligned
units. Additionally, the resource can also be used in
multilingual machine translation scenarios to boost
translation performance through the combination of
pre-training and fine-tuning strategies. In summary,
we highlight our contributions as follows:

• This paper proposes a lifelong multilingual
multi-granularity semantic alignment approach
that only relies on the co-occurrence con-
straints in the multilingual noisy data, and can
identify massive semantically aligned linguistic
units at various granularity through the maxi-
mum occurrence probability continuously and
unsupervised.

• The proposed approach releases a version of
the lifelong multilingual multi-granularity
semantic alignment resource (called
LM2

gSAR). In this version, LM2
gSAR sup-

ports the multilingual alignment between
seven languages, namely English (en), Czech
(cs), German (de), Russian (ru), Romanian
(ro), Hindi (hi) and Turkish (tr). Meanwhile,
it also supports the continuous expansion in
scale, language coverage, and granularity.
The resource will be publicly available1.

• This paper conducts exhaustive experiments
on the aligner comparisons and the bi-direction
translation tasks between English and the
above six languages. Compared to the other
aligners, the approach shows higher alignment
accuracy. The models using LM2

gSAR have
shown significant improvements in almost all
translation directions. In addition, we perform
objective analysis and discussion as strong
evidence of the value and significance of this
work.

1https://github.com/Gdls/MCoPSA

2. Related Works

The mainstream pre-training methods rely on dif-
ferent mechanisms, techniques, or tools (Wu
et al., 2022; Dou and Neubig, 2021) to learn
multilingual alignment information. For example,
MARGE (Lewis et al., 2020) learned with an un-
supervised multilingual multi-document paraphras-
ing objective. Luo et al. (2021) plugged a cross-
attention module into the Transformer encoder to
build language interdependence. mRASP (Lin
et al., 2020) introduced a random aligned substi-
tution technique into the pre-training to bridge the
semantic space. Yang et al. (2020b) performed
lexicon induction with unsupervised word embed-
ding mapping technique to learn the cross-lingual
alignment information from monolingual corpus (Ba-
jaj et al., 2022). Tang et al. (2022) specifically
highlighted the importance of word embedding
alignment by guiding similar words in different lan-
guages. Yang et al. (2020a) performed the word
alignment with the GIZA++ (Casacuberta and Vi-
dal, 2007) toolkit to code-switch the sentences of
different languages to capture the cross-lingual con-
text of words and phrases. Yang et al. (2021) pro-
posed to use FastAlign (Dyer et al., 2013) as the
prior knowledge to guide cross-lingual word pre-
diction. These mechanisms, techniques, or tools
have boosted the capabilities of these methods on
generalizing alignment information, but due to the
absence of accurate and sufficient alignment re-
sources, there is still a lot of room for improving
their capabilities.

Normally, the common multilingual alignment re-
sources are the parallel corpora, which come from
the public releases (Ziemski et al., 2016), web min-
ing (Tiedemann and Nygaard, 2004), or compe-
titions. These resources are usually aligned at
the sentence level and can be used to train the
translation models directly. The other resources
mainly focus on the word or phrase level (Imani
et al., 2022), e.g., the multilingual paraphrase
database (Ganitkevitch and Callison-Burch, 2014),
the multilingual lexical database (Giguet and Lu-
quet, 2006), the multilingual multi-word expression
corpora (Han et al., 2020), automatic similarity-
based dataset (Yousef et al., 2022) and unpub-
lished synonym dictionary (Pan et al., 2021). Al-
though these resources could provide multilingual
alignment information, the scale or linguistic diver-
sity may not meet the need for the pre-training meth-
ods.

In view of the above, this paper proposed the life-
long multilingual multi-granularity semantic align-
ment approach to build a semantic alignment re-
source. Compared to the previous methods and
resources, the approach considers the scale, diver-
sity, and other linguistic properties. Meanwhile, the
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Algorithm 1 The maximum co-occurrence proba-
bility based semantic alignment algorithm.
1: procedure MCoPSA(ul, DN)
2: Assert ul ∈ X and uX

l = ul;
3: Initialize G(uX

l ) = (p0, ..., pn) from DN;
4: Initialize lists L = [], uL = [], dict D = {}
5: Select tY0 , tY1 from G(uX

l );
6: G(uX

l ) = G(uX
l ) - p0 - p1;

7: L.append(tY0 , tY1 );
8: uL.extend(CSFunc(tY0 , tY1 ));
9: Update cnt(uL);

10: for uli
Y ∈ uL do

11: D[ul
Y
i ] = cnt[ul

Y
i ]/len(L);

12: end for
13: while G(uX

l ) is not Ø do
14: Select tYi from G(uX

l );
15: G(uX

l ) = G(uX
l ) - pi;

16: for tYj in L do
17: uL.extend(CSFunc(tYi , tYj ));
18: Update cnt(uL);
19: end for
20: L.gappend(tYj );
21: for ulk

Y ∈ uL do
22: D[ul

Y
k ] = cnt[ul

Y
k ]/len(L);

23: end for
24: end while
25: ul

Y = maxProb(D,ϱ);
26: Return (uX

l , ul
Y );

27: end procedure

resource provides more specific and sufficient se-
mantic alignment information than those alignment
techniques in the pre-training methods.

3. Methods

In this section, we first introduce the maximum co-
occurrence probability based semantic alignment
algorithm (MCoPSA), which is the core of the pro-
posed approach. Next, we present the statistics
on the first version of the semantic alignment re-
sources (LM2

gSAR) built by this approach.

3.1. The maximum co-occurrence
probability based semantic
alignment algorithm

The core idea of the MCoPSA algorithm is as fol-
lows: there is a group of translated pairs from noisy
data, and each pair consists of sentences in two
languages. A linguistic unit of one language exists
in all sentences in the group, and the algorithm
calculates the co-occurrence probability of each
candidate linguistic unit in all sentences in the other
language. The co-occurrence probability means
the probability of one candidate linguistic unit ap-
pearing in all the sentences of the group. Then, the

algorithm selects the candidate with the maximum
co-occurrence probability as the aligned linguistic
unit.

The calculation procedure of MCoPSA is listed
in Algorithm 1. MCoPSA takes one linguistic unit
in one language and noisy data as input and se-
lects a group of pairs from noisy data that contains
the linguistic unit. Initially, MCoPSA selects two
sentences in the other language from the group
into a list and computes the occurrence probabil-
ity of one linguistic unit in two sentences. Next,
MCoPSA continues to select one sentence and
updates the occurrence probability of one linguis-
tic unit with these sentences in the list. Finally,
MCoPSA outputs a linguistic unit with the maxi-
mum co-occurrence probability.

In Algorithm 1, ul denotes the linguistic unit. DN

denotes the noisy parallel data, which are trans-
lated sentence pairs but the translation is usually
inaccurate because two sentences may be partially
aligned. X and Y denotes two languages, and
p = (sX , tY) denotes a pair of sentence x from X
and sentence t from Y . A linguistic unit of language
X is denoted as uX

l . G(ul) = (p0, ..., pi, ...pn) is a
group of pairs with uX

l ∈ sXi and uY
l ∈ tYi . The

function CSFunc(·) takes two sentences as input
and outputs all the linguistic units that appear in
two sentences simultaneously. The function cnt(·)
takes a list of linguistic units as input and outputs
a dictionary to store the occurrence and frequency
of each unit in the current step. The function max-
Prob(·) takes a dictionary D and a penalty factor ϱ
as input, where D stores the co-occurrence prob-
ability of each unit, and outputs a linguistic unit
ul

Y with the maximum co-occurrence probability.
The penalty factor ϱ considers the length(l), fre-
quency(f), and similarity(s) of the candidate units.
For one linguistic unit ul

Y
k , the corresponding ϱk

value is calculated based on Equation 1. Here,
the normalization function(N(·)) is based on all the
candidate units ul

Y . With penalty factor ϱ, we up-
date the co-occurrence probability with D[ul

Y
k ] =

D[ul
Y
k ]×ϱk to re-calculate the co-occurrence prob-

ability, which may reduce the effect of units such
as stop-words.

ϱk =
s(ul

X , ul
Y
k )×N(fY

k , fY )

|lX − lY |
(1)

Figure 2 presents an example of English and
Romanian pairs to illustrate the processing of Algo-
rithm 1. The linguistic unit ul is from English, and
we have uEN

l = calculation error. There are four
EN-RO pairs in its group G(ul) = (p0, p1, p2, p3).
When p0 and p1 are selected, the algorithm will out-
put the candidate linguistic units, namely "erori de
calclu", "sunt", "de", and their co-occurrence prob-
abilities in the current step. Next, when p2 comes,
the algorithm updates the candidate list and their
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EN:there may be a calculation error .
RO:ar putea apare erori de calcul .

EN:the resulting difference is not a calculation error
RO:diferentele rezultate nu sunt erori de calcul

EN:he had 5 accidents at the same company, he   
       made a calculation error at another company, etc.
RO:avusese 5 accidente în cadrul aceleiași companii , 
       făcuse erori de calcul la alta și tot așa .

EN:these events are concerning because they could 
      lead to accidents or calculation error
RO:astfel de incidente sunt îngrijorătoare deoarece pot 
       conduce la accident sau erori de calcul erori de calcul(1.0), sunt(1.0), de(1.0)  

erori de calcul(1.0), sunt(0.67), de(0.67),la(0.67)  

erori de calcul(1.0), sunt(0.5), de(0.5),la(0.5)  

ul
EN= calculation error

ul
RO= erori de calcul

p0

p1

p2

p3

Figure 2: An example to illustrate the processing
of Algorithm 1. The underlined part in the English
sentences is the input linguistic unit, and the bold
and italic part in the Romanian sentences is the
output(aligned linguistic unit). The float in brackets
is the co-occurrence probability of each candidate
unit in the current step.

co-occurrence probabilities. In this step, a new unit
"la" is appended. The algorithm repeats the calcu-
lation with the coming of new pairs. Finally, when
receiving the last one p3, the algorithm outputs the
final candidate linguistic units with the ranking of co-
occurrence probability and takes the one with the
maximum co-occurrence probability as the aligned
linguistic unit, namely uRO

l = erori de calclu. So,
in this example, "calculation error" and "erori de
calclu" is the semantic alignment between English
and Romanian.

3.2. The statistics on LM2
gSAR

Based on the MCoPSA algorithm, this paper re-
leased the first version of the lifelong multilingual
multi-granularity semantic alignment resource
(LM2

gSAR). This section will detail the statistics on
LM2

gSAR from three aspects: the languages, the
scale, and the linguistic diversity.

In this release, LM2
gSAR supports seven lan-

guages, namely English, Czech, German, Russian,
Romanian, Hindi and Turkish. Meanwhile, it is built
on the noisy bilingual data from published CCMa-
trix v1 (Schwenk et al., 2021) between English and
the other six languages. When building it with the
en-XX bilingual data, the MCoPSA algorithm takes
the English linguistic units as input and outputs its
alignment in language XX, where XX is one of the
other six languages.

From the scale, Table 1 lists the statistics on the
scale of the bilingual data used in the MCoPSA al-
gorithm for building LM2

gSAR, including the volume
of the bilingual data and its percentage in CCMatrix
v1. Table 2 shows the statistics on the scale of the
aligned linguistic units in LM2

gSAR between seven
languages.

Since the original scale of the bilingual data in
CCMatrix v1 varies greatly, we randomly sampled
a certain percentage for each en-XX bilingual data.

Languages Volume PinND (%)
en-de 21.5M 8.7
en-ru 20.6M 14.7
en-cs 15.6M 27.7
en-ro 15.1M 27.2
en-tr 14.2M 29.2
en-hi 5.5M 36.4

Table 1: The scale of the bilingual data from published
CCMatrix v1 (Schwenk et al., 2021) used in the MCoPSA
algorithm for building LM2

gSAR. The magnitude "M" in the
second column is million. The third column "PinND" is
the final percentage of CCMatrix data used in this work.

en cs de ru ro tr
cs 3.30M -
de 2.53M 0.33M -
ru 3.04M 0.19M 0.13M -
ro 3.11M 0.53M 0.30M 0.17M -
tr 1.95M 0.36M 0.21M 0.11M 0.34M -
hi 1.01M 0.19M 0.13M 0.33M 0.20M 0.18M

Table 2: The statistics on the scale of the aligned lin-
guistic units in LM2

gSAR between seven languages.

It is 10% for en-de, 20% for en-ru, 30% for en-
cs, en-ro, and en-tr, and 40% for en-hi. Table 1
presents the final scale and percentage after the
post-processing, e.g., deduplication, discarding,
merging, etc. In Table 2, the first column indicates
that the scale of the aligned linguistic units between
English and each language is in millions, which
is an encouraging scale. In the construction, the
MCoPSA algorithm takes the English linguistic unit
as input and outputs its aligned unit. So we take
the English linguistic unit as a bridge and can eas-
ily get the aligned linguistic unit between any two
languages except English. The remaining columns
in Table 2 present the scale of the aligned linguistic
units between the other six languages. Obviously,
the scale between any two of these languages is
more than one hundred thousand, and it is also a
promising scale.

From the linguistic diversity, Table 3 shows
the statistics on the granularity distribution of the
aligned linguistic units in LM2

gSAR on the en-XX
alignment. In each row, Table 3 presents the per-
centage of this granularity in all alignments. For
accuracy, we only report the statistics on the en-
XX alignment since the granularity in the English
linguistic unit is known during the construction. In
Table 3, most of the aligned units belong to the
phrase or segment level, which is because the
phrases and segments are widely used through
the word combination in language expression. But
the words are usually finite, so the percentage is
stable. As for the short sentence-level granularity, it
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Aligment Multi-granurality(%)
w-1 p-2 p-3 s-4 ss-5+

en-cs 3 21 44 31 1
en-de 4 23 42 30 1
en-ru 4 20 44 31 1
en-ro 3 19 42 34 2
en-tr 3 30 44 21 2
en-hi 4 28 43 24 1
Avg 3.5 23.5 43.2 28.5 1.3

Table 3: The statistics on the granularity distribution(%)
of the aligned linguistic units in LM2

gSAR based on the
en-XX alignment. ’w-1’: word-level by unigram, ’p-2’ and
’p-3’: phrase-level by bi-gram or tri-gram, ’s-4’: segment-
level by four-gram, and ’ss-5+’: short sentence-level.

is really rare. Table 2 also indicates the multilingual-
ism in LM2

gSAR. Though LM2
gSAR only relies on the

en-XX bilingual data, it can still find the alignment
between any two languages.

4. Experiments and Results

4.1. Experimental datasets and metrics
In this work, we validate the proposed approach
through two experiments, namely the aligner com-
parison experiment and the machine translation ex-
periment. In the aligner comparison experiment, we
select the well-known statistical aligners (GIZA++,
Fast-Align) and neural aligner (Awesome-align) to
compare with our proposed methods on the same
test set. In this process, we first randomly col-
lected a group of en-XX corpora that are not used
in Section 3.2 and selected the top 500 language
units in each en-XX corpus based on the term fre-
quency and inverse document frequency. Second,
we recruited some language experts with English
and XX backgrounds, and for each pair, they man-
ually annotated the golden alignment of the En-
glish language unit in XX sentences, which serves
as the evaluation test set. Next, we applied the
proposed MCoPSA algorithm, GIZA++, Fast-Align,
and Awesome-align to compute the alignments of
the top 500 language units. Finally, we performed
the evaluation using the metrics of the alignment
error rates (AER).

In the machine translation experiment, we ap-
ply the resource that the approach built to the
machine translation tasks. We select the WMT
datasets including twelve translation directions as
the evaluation benchmarks, namely en-de (4.5M),
en-ru (1.1M), and en-hi (32K) in WMT14, en-ro
(0.6M) in WMT16, en-tr (0.2M) in WMT17, and en-
cs (11M) in WMT18. Based on the scale of the
training data in each dataset, we follow the division
in Tang et al. (2021) and Lin et al. (2020) to divide
the datasets into four categories: extremely low

resource (<100K), low resource(>100k and <1M),
medium resource (>1M and <10M), and high re-
source (>10M). These datasets are publicly avail-
able, and anyone can easily access the same train-
ing, validation, and test sets for reproduction or
comparison. For all evaluation benchmarks, we
take the BLEU score as the metrics and it is com-
puted with the official sacreBLEU (Post, 2018) with
default tokenization.

4.2. Baseline and comparison methods
In the aligner comparison experiment, the statistical
aligners for comparison are GIZA++ (Casacuberta
and Vidal, 2007) and Fast-Align (Dyer et al., 2013),
and the neural aligner is Awesome-align (Batheja
and Bhattacharyya, 2022). In these experiments,
we followed the default setting of each method.

• GIZA++ is an extension of the program GIZA
(part of the SMT toolkit EGYPT). We used the
version2 released by Och and Ney (2003).

• Fast-align is a simple, fast, unsupervised word
aligner. We used the version released by Dyer
et al. (2013) from the Github page3.

• Awesome-align is a tool that can extract word
alignments from multilingual BERT. We used
the version released by Dou and Neubig (2021)
from the Github page4.

In machine translation experiments, three fa-
mous open-source multilingual models are selected
as the baseline, namely mBART (Liu et al., 2020),
M2M100 (Fan et al., 2021), and mT5 (Xue et al.,
2021). In these experiments, all the codes and
checkpoints for these models are from the public
Hugging Face hub. One reason is that these mod-
els are all multilingual models and cover enough
languages to evaluate our LM2

gSAR as it grows
continuously. Another reason is that these mod-
els come from different types of pre-training tasks,
which can demonstrate the quality of LM2

gSAR from
different aspects.

• mBART is one of the first methods for pre-
training a complete sequence-to-sequence
model by denoising full texts in multiple lan-
guages. The initial checkpoint of mBART
model we used in this work is mbart-large-
cc255.

• M2M-100 is a Many-to-Many multilingual trans-
lation model that can translate directly between

2http://www2.statmt.org/moses/giza/GIZA++.html
3https://github.com/clab/fast_align
4https://github.com/neulab/awesome-align
5https://huggingface.co/facebook/mbart-large-cc25
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any pair of 100 languages. The initial check-
point of M2M-100 model we used in this work
is m2m100_418M6.

• mT5 is pre-trained on a new Common Crawl-
based dataset covering 101 languages and
has shown SOTA performance on many multi-
lingual benchmarks. The initial checkpoint of
mT5 model we used in this work is mt5-base7.

4.3. Experimental setup
Some experimental settings or hyperparameters
for the machine translation task in this work are
listed below: all experiments with pre-training
or fine-tuning are based on three baseline mod-
els. In these experiments, the tokenizer in each
model is the default one, namely MBartTokenizer,
M2M100Tokenizer, and T5Tokenizer. The training
batch size is 4∼16 in all experiments. The max se-
quence length is 1024. The beam size for decoding
is 5. Checkpoints are saved every 1000 steps in
high and medium resource benchmarks, and every
100-500 steps for low and extremely-low resource
benchmarks. We use the AdamW (Loshchilov
and Hutter, 2017) optimizer with an initial learn-
ing rate of 5e-5. Early stopping is used when
the training loss converges during the pre-training
and fine-tuning process, and we select the hyper-
parameters based on the validation set.

4.4. Training strategy in machine
translation experiment

We adopt a new strategy to (pre-)train a baseline
model with LM2

gSAR, called LM2
gSAR-based pre-

training and fine-tuning.
In this training strategy, we first apply the align-

ment substitution technique (AST) with LM2
gSAR to

prepare the pre-training corpus. In this part, the
monolingual sentences used to construct the align-
ment substitution with LM2

gSAR come from the cor-
responding bilingual training data. Therefore, dur-
ing the LM2

gSAR pre-training, no additional mono-
lingual or bilingual data is introduced; the same
data source is utilized in the fine-tuning phase. A
baseline model is pre-trained with the corpus. Next,
the pre-trained model is fine-tuned with the training
data. Finally, the trained model is evaluated on the
test set. The AST technique is similar to the previ-
ous works (Lin et al., 2020; Yang et al., 2020a) that
given a monolingual sentence S, AST substitutes
the linguistic units in S with the corresponding align-
ments in LM2

gSAR to produce a mixed language
sentence Sx. During the pre-training, the input of
the model is Sx, and the output is its original sen-
tence S. For example, in pair p3 of Figure 2, for

6https://huggingface.co/facebook/m2m100_418M
7https://huggingface.co/google/mt5-base

Benchmark Scale(->/<-) PinT(%) AvgLSu AvgLSe AvgP(%)

en-cs 1.2M/1.2M 10.4 2.3 9.7 23.8

en-de 3.0M/3.0M 66.5 5.6 23.1 24.1

en-ru 0.2M/0.2M 11.8 1.9 15.9 11.9

en-ro 0.6M/0.6M 92.9 5.3 23.1 22.3

en-tr 0.1M/0.1M 70.1 2.9 21.4 13.5

en-hi 5.0K/7.6K 19.2 1.1 2.1 51.2

Table 4: The statistics on the pre-training corpus for
each benchmark. "Scale(->/<-)" is the pre-training cor-
pus scale for both translation directions. "PinT" indi-
cates the percentage of the pre-training corpus scale
in each benchmark to its training data scale. "AvgLSu"
is the average length of the substitution, and "AvgLSe"
is the average length of the original sentence. "AvgP" is
AvgLSu/AvgLSe.

GIZA++ Fa-Align Aw-Align MCoPSA
en-cs 48.4 42.1 30.8 19.8
en-de 61.2 58.7 29.0 17.2
en-hi 67.2 66.0 30.3 16.2
en-ro 53.4 50.2 24.4 16.4
en-ru 50.1 46.1 21.8 15.2
en-tr 63.2 72.6 30.3 12.4
Avgs 57.3 55.9 24.4 16.2

Table 5: The AER scores on each en-XX test set of the
MCoPSA, GIZA++, FastAlign (Fa-Align), and Awesome-
Align (Aw-Align).

word phrase segment Avgs
GIZA++ 52.2 48.4 58.1 52.9
Fa-Align 54.5 47.4 56.1 52.7
Aw-Align 14.1 24.1 20.2 19.5
MCoPSA 25.4 13.1 13.4 17.3

Table 6: The AER score of each method at word, phrase,
and segment granularity of the linguistic unit on the en-ru
test set. The "Avgs" column is the average of the three
granularities and is therefore slightly different from that
in Table 5.

en→ro direction, the input Sx is "there may be a
erori de calclu" and the output is "there may be a
calculation error". A similar operation goes in the
other direction. Since a sentence may contain mul-
tiple linguistic units that can be substituted, we take
a random combination from the smallest granularity
to the biggest each time. Table 4 lists the statistics
on the pre-training corpus.

4.5. Experimental results and analysis
Table 5 lists the alignment error rates(AER) of the
MCoPSA and three aligners, and the last line gives
the average score. Obviously, MCoPSA presents
the best performances on each set. In particular,
though MCoPSA is an unsupervised algorithm as
GIZA++ and Fast-Align, it can still surpass the su-
pervised aligner Awesome-Align. The main reason
may be that the MCoPSA algorithm can fully ex-
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Benchmark mBART M2M100 mT5 Avg∆→ ← → ← → ←

en-csH 16.6 28.9 17.2 30.1 18.1 27.9
::::
+0.817.5↑ 30.5(+1.6)↑ 17.7↑ 29.4 18.5(+0.4)↑ 29.7↑

en-deM 26.5 32.5 26.9 31.6 24.4 28.9
::::
+0.527.3(+0.8)↑ 33.0(+0.5)↑ 26.9 32.2↑ 24.6↑ 29.6↑

en-ruM 33.0 32.2 33.0 32.4 26.8 26.8
::::
+0.434.1(+1.1)↑ 32.6(+0.4)↑ 33.1↑ 32.4 26.9↑ 27.0↑

en-roL 25.6 36.2 26.4 36.7 22.8 32.9
::::
+0.426.8(+1.2)↑ 37.0(+0.8)↑ 26.3 36.6 22.9↑ 33.2↑

en-trL 19.1 22.7 19.8 22.7 13.1 17.2
::::
+0.320.0(+0.9)↑ 23.1↑ 19.8 23.3(+0.6)↑ 13.3↑ 16.8

en-hiEl 0.9 1.1 10.3 13.6 0.2 0.1
::::
+1.12.3↑ 2.1↑ 13.1(+2.8)↑ 14.5(+0.9)↑ 0.3↑ 0.3↑

Table 7: The BLEU scores of the baseline models under different training strategies on the test sets of each WMT
benchmark.The blocks in "Benchmark" corresponds to the "high(H)/medium(M )/low(L)/extremely low(El)" resource
according to their official training data volume. The bold is the best BLEU score in this direction. Here, " ": with
fine-tuning only, "

::
":with LM2

gSAR pre-training and fine-tuning. "→/←" is the translation direction. "Avg∆": average
of the difference of all models between the upper line and below line, and "+" and "↑" mean improvement.

plore the correlation of language units between
the parallel data based on the co-occurrence con-
straint. Besides, the performance difference be-
tween MCoPSA and the others also indicates that
the alignments by MCoPSA are of better quality and
more promising for the pre-training stage in real-
world scenarios. To further investigate their ability,
we report the AER score of each method at word,
phrase, and segment granularity of the linguistic
unit on the en-ru test set in Table 6, which helps to
indicate the ability of each method on different gran-
ularity. The GIZA++ and Fast-Align seem to have
the similar performance on each granularity, while
the Awesome-Align performs best on word-level.
However, the proposed McoPSA show a much bet-
ter performance on phrase and segment-level, and
this may be the main reason why the proposed
McoPSA achieves the best results in Table 5 and 6.

Table 7 lists the BLEU scores of the baseline
models under different training strategies on the test
sets of each WMT benchmark. For each test set,
we provide two lines of results from three baseline
models. The upper one is the results of fine-tuning
the baseline models with the official training data,
and the below one is the results of the LM2

gSAR-
based pre-training and fine-tuning. In table 7,
we highlight the lines of fine-tuning with underline
and

:::
the

:::::
lines

::
of

:::::::::::::::
LM2

gSAR-based
:::::::::::
pre-training

::::
and

:::::::::
fine-tuning with wave line, respectively. For clarity,
we denote a model with only fine-tuning as modelf
and that with LM2

gSAR-based pre-training and fine-
tuning as modelp·f .

From the results, we have the following observa-
tion: 1) Each model with the LM2

gSAR pre-training
and fine-tuning shows better performances than
the only fine-tuning one on all benchmarks, with an
average of 0.3∼1.1 BLEU improvement in the six

benchmarks (See "Avg∆" column). This is strong
evidence that LM2

gSAR contributes to the translation
task. 2) Almost all modelsp·f show some improve-
ment over modelsf that were only fine-tuned (see
results with "↑"). In particular, the improvement
of the best results in bold on each benchmark is
significant. Even though in some directions, such
as M2M100 in en<-cs, en->de, en-ro, and mT5 in
en-<tr, modelsp·f is slightly worse than modelsf ,
the results are still very competitive. 3) The table
also indicates the LM2

gSAR pre-training is some-
what helpful for the high/medium/low/extremely low
resource translations, and the results show a con-
sistent improvement trend. 4) In the table, we have
bolded the best BLEU scores for both directions,
and the best results are almost from mBARTp·f .
The M2M100p·f and mT5p·f also perform better in
most cases. It is worth noticing that on en-hi bench-
marks, the M2M100p·f far exceeds the others in
both directions. This may benefit from the mecha-
nism in M2M1008 that its initial parameters are pre-
trained with pseudo-parallel data, and the LM2

gSAR
pre-training in this work can further strengthen its
ability.

At present, the LM2
gSAR pre-training in this ex-

periment is just an initial attempt, the improvement
is still significant. Once we expand the scale of the
pre-training, it will be really encouraging. Consider-
ing the improvement from multiple dimensions, the
experimental results show LM2

gSAR has a signifi-

8One may notice that the BLEU scores in this exper-
iment are different from those in M2M100 paper (Fan
et al., 2021). One reason is that the evaluation bench-
marks between this work and the original M2M100 paper
are different, and there is almost no overlap. The other
reason is that they reported the scores of the M2M100-
1.2B model while we used the M2M100-418M.
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Figure 3: The average LaBSE score curve of each fold on the en-XX languages. The X-axis is the
distribution interval of each fold, and the Y-axis is the LaBSE score. MCoPSA w/(w/o) maxProb():
MCoPSA algorithm with(without) the maxProb(·) function.

cant contribution to translation tasks.

4.6. Significant test

In this work, we also performed the significance test
on machine translation task based on the models
that report the best BLEU scores in both directions
(see the bold results in Table 7). The well-known
Wilcoxon signed-rank test was used to measure
whether the improvement between the correspond-
ing data distributions in two samples is significant.

In the Wilcoxon signed-rank test, we first ran-
domly sampled 50% data in each test set 20 times
and used the modelp·f and modelf to predict the
translations on the sample data. Second, we
scored the translation results with the sacreBLEU
script to obtain the BLEU score on each direction of
each benchmark. After sampling 20 times, we had
a sequence of BLEU scores with the length of 20
for modelp·f and modelf , respectively. Finally, the
corresponding BLEU score sequences for modelp·f
and modelf were input into the "wilcox.test()" func-
tion in R Tutorial, and the function will output the
P-value of two sequences to indicate the signifi-
cance. If P-value<0.05, the improvement between
modelp·f and modelf is significant, otherwise not.
Finally, in Table 7, on each translation direction
of each benchmark, the improvement between
modelp·f and modelfon BLEU score is significant
(P-value<0.05).

5. Discussion

In section 3.2, this paper has proven the advan-
tages of scale and linguistic diversity of the pro-
posed approach via statistics on LM2

gSAR. This
section discusses the quality and lifelong property.

5.1. Quality control in MCoPSA agorithm

In the MCoPSA algorithm, the function maxProb(·)
provides a series of post-processing operations
to output the co-occurrence probability. We find
that it is a key point to control the quality of the
aligned linguistic units in MCoPSA. To prove the
quality, we perform an analysis experiment on en-
XX languages. In this experiment, we use the public
LaBSE (Feng et al., 2022) to evaluate the aligned
linguistic units that MCoPSA extracted with or with-
out the maxProb(·) function. LaBSE can map lan-
guages to a shared vector space and compute their
similarities. Then given the en-XX aligned linguistic
units, LaBSE will output a similarity score.

First, we collected the aligned linguistic units
based on "MCoPSA w/o maxProb(·)" in en-XX lan-
guages. Second, we used LaBSE to compute the
similarity scores and ranked them in ascending
order. Then, we divided the ranked units into five-
folds, and each fold contains 20% of the whole
units. Finally, we averaged the LaBSE scores in
each fold. The average LaBSE score curves (Dot-
ted curve) for each fold on en-XX languages are
presented in Figure 3. The dotted curves indicate
that the scores range from 0.2 to 1.0, and a cer-
tain percentage (≈40%) of data falls into 0.2∼0.6.
Based on our manual statistics, the aligned lin-
guistic units with a LaBSE score of less than 0.6
are quite noisy. Next, we repeated the operations
with "MCoPSA w/ maxProb(·)" to recollect and re-
compute the LaBSE score of the aligned linguistic
units. The solid curves in Figure 3 indicate the
distributions of the scores, which range from 0.7
to 1.0, which brings a great improvement for each
language. The score ranges between two curves
prove that the maxProb(·) function plays a key role
in quality control. Meanwhile, the LaBSE scores
are over 0.7 and beyond our statistics of 0.6, indicat-
ing that the aligned linguistic units via the MCoPSA
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algorithm have good quality.

5.2. Lifelong property of the approach
The term "lifelong" is an important property of the
proposed approach and a key differentiator from
other known methods. It refers to the sustainability
and extensibility of the proposed approach, which
is mainly reflected in the language extension and
continuous scale expansion of the resource.

First, in this paper, the proposed approach re-
leased the first version of LM2

gSAR, which supports
seven languages. But from Table 1 in Section 3.2,
we know that the approach only relies on the en-XX
bilingual data. The multilingualism in Table 2 also
shows that the approach presents positive effects
between languages. So the approach can easily
extend new languages into LM2

gSAR through their
bilingual data, and make connections between the
new language and other languages to improve lin-
guistic diversity. Second, Table 1 also shows that
the noisy bilingual data used in this paper is only a
part of the original library, and the linguistic units
are far from reaching the upper bound. Thus, with
the expansion of the parallel data, the approach can
expand the scale of the resource, and supplement
more linguistic units to perfect its resource.

6. Conclusion

In this paper, to alleviate the problem of lacking
sufficient alignment resources in the pre-training
methods, we proposed a lifelong multilingual multi-
granularity semantic alignment approach via maxi-
mum co-occurrence probability in the noisy parallel
data and released a version of its corresponding
resource. We also conducted experiments to prove
the ability of the MCoPSA algorithm compared to
the traditional aligners and elaborate on how to use
the resource to prove its effectiveness in machine
translation tasks. The experimental results, anal-
ysis, and discussion also prove the superiority of
the proposed approach and resource.

In the future, we will continue to optimize the
approach from the quality and linguistic diversity.
Meanwhile, we will release more versions of the
resource with the optimized approach to support
more languages and provide a bigger scale. Be-
sides, we will explore the strategies for utilizing the
resource to contribute to the pre-training methods.
At the same time, the approaches and resources
will gradually be opened to the public.
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