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Abstract
Research probing the language comprehension of visio-linguistic models has gained traction due to their remarkable
performance on various tasks. We introduce EViL-Probe, a composite benchmark that processes existing probing
datasets into a unified format and reorganizes them based on the linguistic categories they probe. On top of the
commonly used negative probes, this benchmark introduces positive probes to more rigorously test the robustness of
models. Since the language side alone may introduce a bias models could exploit in solving the probes, we estimate
the difficulty of the individual subsets with a language-only baseline. Using the benchmark to probe a set of state-
of-the-art visio-linguistic models sheds light on how sensitive they are to the different linguistic categories. Results
show that the benchmark is challenging for all models we probe, as their performance is around the chance baseline
for many of the categories. The only category all models are able to handle relatively well are nouns. Additionally,
models that use a Vision Transformer to process the images are also somewhat robust against probes target-
ing color and image type. Our enrichment of EViL-Probe with positive probes helps further discriminate performance.

Keywords: corpus, evaluation methodologies, neural language representation models

1. Introduction

Visual question answering (Antol et al., 2015),
image-text retrieval (Peng et al., 2018) and retriev-
ing image patches that match an expression (Mao
et al., 2016) are just some of the visio-linguistic
tasks neural models show increasingly impressive
performance on. Since the beginning of this devel-
opment, there has been research into how deep
the language understanding of these seemingly
competent models actually goes. At times, arti-
facts in the data are found to be the source of
the observed high performance (Kafle et al., 2019).
One avenue of putting the models’ skills to the
test is to design probes, usually composed of two
minimally different descriptions of the same image.
Models then have to predict whether these descrip-
tions match the image they supposedly describe.
Figure 1 shows an example of this: While the de-
scription of two dogs matches the image, describ-
ing them as two cats constitutes a mismatch.

Gardner et al. (2020) formulate the idea behind
this probing as testing a models’ decision bound-
ary: While it is unrealistic to have an evaluation
dataset that covers the entire space of possible in-
put examples, test examples with just minor differ-
ences lead to a more densely populated subspace.
This allows to at least probe the decision bound-
ary in this specific area. Such probing datasets
have been released to target specific phenomena,
including, but not limited to, nouns, verbs or at-
tributes (Shekhar et al., 2017b; Parcalabescu et al.,
2022; Zhao et al., 2022; Bexte et al., 2024). How-
ever, these datasets are not all of the same format
and quality. In addition, models are usually only

Figure 1: Overview of our probing benchmark.

tested on some of them and not always evaluated
with the same metrics. All in all, this leaves poten-
tial for a more comprehensive performance estima-
tion.

Our contribution is three-fold: First, we method-
ically categorize existing probing datasets based
on the linguistic categories they cover. From these
datasets, we compile the Extensive Vision-and-
Language Probing resource EViL-Probe. It con-
sists of 1.5M probes across 880k images, orga-
nized into 55 datasets that cover 18 different prob-
ing categories. In contrast to previous bench-
marks, EViL-Probe is not limited to what we call
negative probes, but also includes positive probes.
In a positive probe, the two descriptions of an im-
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age are both valid. Such an example is shown in
Figure 1, where both dogs and animals accurately
describes the image content, therefore probing ro-
bustness against hypernyms.

Second, we apply a language-only baseline to
assess the quality of the probes in EViL-Probe.
We do this because a critical weakness of prob-
ing datasets can be systematic differences in the
overall likelihood of sentences. This bears the risk
of making probes solvable by not looking at the im-
ages. If this were the case, they would not be a
true test of visio-linguistic ability.

Third, we probe a set of state-of-the-art visio-
linguistic models to assess how robust they are
against probes that target the different linguistic
categories covered by EViL-Probe.

Our benchmark is publicly available on GitHub1.

2. Probing Visio-Linguistic Models

We now describe the current state of the art of
visio-linguistic models, and then discuss previous
work on probing their language understanding.

2.1. Visio-Linguistic Models
In recent years, a plethora of language-and-vision
models has emerged, mostly building on the Trans-
former architecture (Vaswani et al., 2017). Most
can be considered as augmenting BERT (Devlin
et al., 2019) with the capability to process images
in a single-stream (Chen et al., 2020; Li et al.,
2019a) and sometimes a dual-stream (Tan and
Bansal, 2019; Lu et al., 2019) architecture. Many
of the initial models require visual features ex-
tracted using a Faster R-CNN (Anderson et al.,
2018) as their visual input. More recently, there
have been proposals of models where the raw
image is directly input into a Vision Transformer
(Dosovitskiy et al., 2021). This was motivated
by models that use pre-extracted features falling
short on inter-object reasoning (Farah et al., 2022;
Cho et al., 2022), as it lifts the restriction of hav-
ing object-centered features. Vision Transform-
ers were also shown to align more closely with
human perception than Convolutional Neural Net-
works (Tuli et al., 2021). CLIP (Radford et al.,
2021) is a popular model that embeds image and
text into a shared embedding space, where simi-
larity can then be measured using cosine.

As is typical for a transformer architecture, visio-
linguistic models are usually pretrained on large
amounts of data and then fine-tuned for down-
stream applications. During pretraining, one task
that is often employed and sometimes even the
only one used (Radford et al., 2021) is image-text

1https://github.com/mariebexte/
vl-probing

alignment. While some models implement this via
contrastive loss (Radford et al., 2021), others apply
cross entropy loss to the output of a binary classi-
fication head (Tan and Bansal, 2019; Chen et al.,
2020). Since this image-text matching is however
only a pretraining task, performance on it is usually
not reported (Parcalabescu et al., 2021). Instead,
models are evaluated on downstream tasks, such
as visual question answering (Antol et al., 2015),
image-text retrieval (Peng et al., 2018), image cap-
tioning (Hossain et al., 2019), and even detecting
hateful memes (Kiela et al., 2020). While models
continue to achieve more and more impressive per-
formance on these downstream tasks, there is a
remaining concern regarding their true integration
of the two modalities (Salin et al., 2022). To some
extent, they could rely on spurious correlations in
the data, such as cows usually appearing on grass
or even watermarks being associated with certain
image contents (Boreiko et al., 2022).

2.2. Probing
To gain insight into how deep the multi-modal un-
derstanding of visio-linguistic models goes, there
have been efforts regarding what Gardner et al.
(2020) call contrast sets. These are sets of min-
imally different input examples that are designed
to probe model decisions in a more densely pop-
ulated area of the example space. They are usu-
ally centered around a decision boundary, which
means that the minimally different examples fall
into different classes. This is visualized in Figure
1, where two descriptions match the image (two
dogs, two animals), while the third is a mismatch
(two cats).

Apart from a probing set, Gardner et al. (2020)
provide for the NLVR2 dataset (Suhr et al., 2019),
a number of other visio-linguistic probing datasets
have been released. FOIL-IT (Shekhar et al.,
2017b,a), VALSE (Parcalabescu et al., 2022), VL-
Checklist (Zhao et al., 2022) and EqBen (Wang
et al., 2023) are some of the more extensive ones
that target different linguistic categories. All of
these datasets, among others, are part of EViL-
Probe.

CREPE (Ma et al., 2023) and ConStruct-VL
(Smith et al., 2023) are two further interesting prob-
ing datasets that have however not (yet) been
publicly released. While the majority of probing
datasets is meant for evaluation purposes, some
also include training data to increase the robust-
ness of models through fine-tuning (Shekhar et al.,
2017b; Cascante-Bonilla et al., 2023).

The existing work on probing generally follows
the setup of slightly altering a matching descrip-
tion to derive a mismatched one. Descriptions are
thus modified to change the ground truth. Replac-
ing dogs with cats in Figure 1 is an example of

https://github.com/mariebexte/vl-probing
https://github.com/mariebexte/vl-probing
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such a probe, to which we refer as negative probes.
An interesting avenue that is already pursued in
visual question answering is robustness against
paraphrasing (Jimenez et al., 2022). They perform
ground truth-preserving changes that should thus
not affect model predictions either. EViL-Probe
contains nine datasets of such nature, which we
refer to as positive probes. In Figure 1, replacing
dogs with animals is an example of such a probe
where both sentences are accurate descriptions of
the image. Our positive probes cover six differ-
ent categories, such as hypernym- or specificity-
based alterations.

3. EViL-Probe

Figure 2 (left) gives an overview of the overall
setup of our benchmark: Each probe consists of
two texts t1 and t2 that refer to the same image
i. This forms two tuples (i, t1) and (i, t2), a setup
that allows both ranking-based and classification-
based evaluation ( Figure 2, right). In the following,
we first describe the datasets EViL-Probe builds on
and how they were processed to form the bench-
mark. We then describe the evaluation setup we
employ to probe models with it.

EViL-Probe is a compilation of existing probing
data. This data is sometimes taken as-is and in
other cases rearranged to fit the required form, so
that each probe consists of two image-text tuples
that share the same image. Table 4 in the Ap-
pendix gives an overview of if and how the respec-
tive source datasets were processed to fit this de-
sired format.2 Some of the original datasets also
include training and validation data. Since EViL-
Probe is meant as an evaluation resource, we only
use the testing split of these datasets.

We organize the many subdatasets into the lin-
guistic categories they probe. As described, a
probe consists of two descriptions of the same im-
age that are minimally different with regard to the
tested aspect. In the existing datasets, one of
these descriptions matches the image, while the
other does not (negative probe). EViL-Probe also
contains positive probes, where both descriptions
match the image. Note that the examples in the
positive probes are therefore all of the same class.
Thus, they are solvable with perfect accuracy by a
model that classifies every description as match-
ing its respective image. Since EViL-Probe does
however also include negative probes, these serve
as a control on models exhibiting such a bias. Ta-
ble 1 gives an overview of the different categories
we probe, grouped into negative (top) and positive
(bottom) probes.

2We ensure that the two texts in a probe are never
identical and that no duplicate probes are present.

3.1. Negative Probes
To ensure that models can generally reject mis-
matched descriptions, we compile two datasets
with pairs of a matching and a random mis-
matched description. One is derived from
MS COCO (Lin et al., 2014), the other bases
on Flickr30k (Young et al., 2014)3. Both of
these source datasets contain high-quality crowd-
sourced descriptions of photographs.

We incorporate the probes from Winoground
(Thrush et al., 2022), where word order changes
semantics. An example of such a description pair
would be a person underneath lights and lights un-
derneath a person. Diwan et al. (2022) did how-
ever find that some probes in this dataset are am-
bivalent, because both descriptions match the im-
age4. We exclude these cases.

VL-Checklist (Zhao et al., 2022) contains two
subsets of attribute probes that are based on Vi-
sual Genome (VG; Krishna et al. (2017)) and VAW
Pham et al. (2021). These are each further split
into the attribute types action, material, size and
state. From these probes, we create one com-
bined probing set for each of the four attribute
types. In addition to this, we include the attribute
probes from EQ-Kubric (Wang et al., 2023) and
ARO (Yuksekgonul et al., 2023).

To probe color understanding, we use the VL-
Checklist color probes and isolate the probes in
EQ-SD (Wang et al., 2023) that target color. EQ-
SD can be separated into multiple subsets that tar-
get different categories. We further derive probes
that vary the described image type and test noun
understanding. Since manipulating the objects
mentioned in a description is a straightforward
way of creating probes, there are many other
datasets that target nouns: We aggregate the ob-
ject probes from VL-Checklist into three subsets
that are based on different source datasets: HAKE
(Li et al., 2019b), SWiG (Pratt et al., 2020), and
VG.5 We also use the probes from the FOIL-IT
dataset (Shekhar et al., 2017b) and the noun ex-
amples from Nikolaus et al. (2022). Further, we
combine the respective subject and object subsets
from SVO Probes (Hendricks and Nematzadeh,
2021) and ComVG (Jiang et al., 2022) into two ad-
ditional noun probing subsets.

Just as we do for nouns, we create three
verb probing subsets from the VL-Checklist ac-
tion probes based on the three different source

3We use the Karpathy and Fei-Fei (2017) test splits.
4E.g. The taller (shorter) person hugs the shorter

(taller) person both match an image of a taller and a
shorter person hugging.

5A substantial amount of the Visual Genome probes
has texts that do not have any overlap, e.g. blue cot-
ton tee shirt paired with potato salad. We exclude such
examples.
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Ranking-Based Evaluation

Alignment Score (i, t1)

Alignment Score (i, t2)

Accranked

Classification-Based Evaluation

Classification (i, t1)

Classification (i, t2)

Acc/P/R

Accpaired

i

Two dogs sitting
on a bench.t1

Two cats sitting
on a bench.t2

Two animals sitting
on a bench.t2

pairs of
minimally
different

texts

negative probe

positive probe

Desired Properties

Works with positive probesRespects text correspondenceNot anchored on another text

Figure 2: Overview of the structure of EViL-Probe (left) and the properties of different evaluation possi-
bilities (right). Our preferred metric paired accuracy is non-relative, takes the correspondence between
the two texts in a probe into account and can accommodate positive probes.

Category # Datasets # Images # Triples Example: Text 1 (matches respective image) Example: Text 2

Negative Probes

Attribute 6 29289 72426 The lace gown and the large painting. The large gown and the lace painting.
Color 2 36656 75102 silver sculpture bright yellow sculpture
Image Type 1 414 414 An oil painting of car. A pencil sketch of car.
Negation 3 1590 2647 There are people in the water. There are no people in the water.
Noun 8 36656 493829 An animal sits in a meadow. A girl sits in a meadow.
Number 7 8554 11318 There are 5 players. There are 6 players.
Random 2 6000 30010 A bunch of bananas are sitting on the stand. The airplane has begun its ascent in the skies.
Semantic Role 1 1028 1028 A woman bites her shoe. A shoe bites a woman.
Spatial Relation 5 19721 56776 The bowl is on the plate. The plate is on the bowl.
Verb 7 144322 272557 A woman is riding a horse. A woman is feeding a horse.
Video-based 3 487048 487048 Spread the dough out in the pan. Sprinkle garlic powder on the crust.
Word Order 1 708 708 A person underneath lights. Lights underneath a person.

Positive Probes

Hypernyms 1 633 1232 A car smashed into a tree. A vehicle smashed into a tree.
Paraphrase 2 534 534 Flat on the bottom and pointy on top. Flat bottom and pointed top.
Perspective 3 1499 59580 A professional baseball player in a game. He is playing baseball.
Specificity 1 369 369 A photo of dog wearing a scarf. A photo of dog.
Word Order 1 91 127 Someone bakes the dough before it is eaten. Before the dough is eaten someone bakes it.
Slang 1 417 608 There are two people and three windows. There are two peeps and three windows.

Table 1: Data in EViL-Probe. For statistics on individual datasets see Table 5 in the Appendix.

datasets. We also incorporate the verb subsets
from SVO Probes, ComVG and Nikolaus et al.
(2022). In addition, we use the action replacement
examples from the VALSE (Parcalabescu et al.,
2022) benchmark. As a special case of verb un-
derstanding, we include the VALSE actant swap
probes to probe semantic role comprehension.

To probe negation understanding, we include
the existence and coreference67 examples from
the VALSE benchmark.

VALSE also includes relation probes, which we
use as part of our probes targeting spatial rela-
tions. On top of these, we also include the rela-

6We merge the standard and hard split.
7These are of the form Statement. Question?

Yes/No. This format is intended to require resolution
between question and statement to determine whether
the yes/no assessment is correct. However, our exper-
iments (see Appendix A.5) show that they do not really
require resolution. Therefore, we also include a version
where they are reduced to just Question? Yes/No.

tion probes from ARO (Yuksekgonul et al., 2023),
EQ-Kubric (Wang et al., 2023) and VL-Checklist.
Further, we add the probes from the Visual Spatial
Reasoning dataset (Liu et al., 2023).

Another category we base off of VALSE are
number probes. We use their plurals, adversarial,
balanced and small numbers counting probes. In
addition, we incorporate the the standard and hard
splits of Parcalabescu et al. (2021) and the count-
ing examples from EQ-Kubric. Note that these
number-based probes follow the Gricean maxim of
quantity (Grice, 1975): In a strictly logical sense,
an image showing three girls sitting on a bench
would still be correctly described as two girls sit-
ting on a bench. However, as the sentence bears
the implicature of not more than two girls, such a
description would be considered uncooperative.

A special group of examples are formed by the
EQ-AG, EQ-GEBC, and EQ-YouCook2 subsets of
EqBen (Wang et al., 2023). These are all based on
videos and derive probes from different frames of
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the same video. This makes them challenging due
to the small degree of change between frames.

3.2. Positive Probes
The image descriptions in many of the standard
datasets are what Hodosh et al. (2013) call concep-
tual: face-value descriptions of what is shown in an
image. Cafagna et al. (2023) augment the object-
centered image descriptions from MS COCO (Lin
et al., 2014) with alternate descriptions. These ei-
ther describe the scene in general, the actions peo-
ple are taking, or possible rationales for why peo-
ple are taking these actions. We adopt this data
as three subsets that probe perspective. Cafagna
et al. (2023) perform a second round of annotation
with plausibility scores. We only use descriptions
that have a plausibility score of at least 4 out of 5.

The EQ-SD subset of EqBen (Wang et al., 2023)
has examples where one sentence is a substring
of the other. Combined with the images depicting
what is described in the longer sentence, these
form an additional set of probes. They test whether
both descriptions are accepted by a model, irre-
spective of their level of specificity.

Diwan et al. (2022) augment Winoground
(Thrush et al., 2022) through hypernym replace-
ment, the introduction of slang, and creating para-
phrases8. In performing rule-based reordering
they further create semantics-preserving changes
in word order. We include all of these probes
as additional subsets of EViL-Probe. We do
not include their synonym substitutions due to
a relatively high number of pairs where seman-
tics change substantially. Examples of this are
changes of car to cable car or fall to precipitate
when it is a person falling.

3.3. Evaluation
Figure 2 (right) shows different possibilities of eval-
uating performance on our probes and the proper-
ties of these metrics. Each probe consists of a pair
of two image-text tuples (i, t1) and (i, t2) that de-
scribe the same image i. Processing these yields
two separate outputs, one for each tuple. All visio-
linguistic models we probe output the probability
of an input image and text matching. These prob-
abilities can either be taken as-is (ranking-based
evaluation), or be mapped to the classes match (p
> .5) and mismatch (p <= .5) (classification-based
evaluation).

Ranking-Based Evaluation A metric that is of-
ten used to evaluate probing is ranking-based ac-
curacy (Accranked). Here, the alignment score a1

8We incorporate their backtranslation and diversepa-
raphrase probes.

between an image i and a matching text t1 is com-
pared to the alignment score a2 of i and a mis-
matched text t2. If a1 > a2, i.e. the matching de-
scription is found to have higher alignment with the
image, this counts as the model having made the
correct decision.

This is however a relative evaluation that com-
pares the scores of the two texts. It does there-
fore only permit the assessment of whether one
description aligns better than another.

Classification-Based Evaluation To avoid the
need for a reference text to evaluate against, we
evaluate probes in a binary classification setting.
This requires a separate binary decision regard-
ing the alignment of each image-text tuple. Such
binary decisions can be evaluated using accu-
racy, precision, recall and f-score. This evaluation
would however not take into account the paired na-
ture of the two texts in a probe.

In the spirit of testing the model’s decision
boundary, it is of interest whether the model clas-
sifies both texts in a probe correctly. In this regard,
Nikolaus et al. (2022) and Thrush et al. (2022) cal-
culate image-based accuracy scores. These re-
quire a model to be correct on all texts an image is
paired with. We argue for this same mode of eval-
uation and focus on paired accuracy (Accpaired).
Figure 3 demonstrates how this metric can un-
cover differences between models that achieve the
same performance when evaluated based on indi-
vidual image-text tuples.

A crucial requirement for a metric that evaluates
EViL-Probe is the ability to give useful results for
both negative and positive probes. In a positive
probe, both texts match the image. This means
that all examples are of the same class match,
which prohibits calculation of precision or recall.
Accuracy does not require the definition of a tar-
get class and can therefore be calculated for both
negative and positive probes alike. Therefore, we
report both standard (tuple-based) accuracy and
paired accuracy in our experiments. Do note that
while the random baseline of standard accuracy
lies at .5, it is .25 for paired accuracy.

To summarize, as is visualized in Figure 2
(right), paired accuracy satisfies three crucial re-
quirements: First, it is based on classification. It
does not anchor the alignment estimate on another
text, which is the case for ranking-based accuracy.
Second, it respects the correspondence between
the two texts in a probe. Traditional classification
evaluation measures such as precision or recall do
not take this into account. Third, it yields useful re-
sults even for positive probes, i.e. when both texts
match the image.
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Ground Truth Prediction

match

mismatch

3

7

accept

reject

⇒ Same individual classification statistics

⇒ Difference in correctly separated tuples

Model A

3 3 3 7 7

3 3 7 7 7

Acc = 6
10

= 0.6

Accpaired = 1
5

= 0.2

Model B

3 3 7 3 7

7 7 3 3 7

Acc = 6
10

= 0.6

Accpaired = 2
5

= 0.4

Figure 3: Each square represents a tuple of an image and a description. The respective upper and lower
tuple share the same image, but differ in its description of it. While the description in the upper tuple
matches the image, the one in the lower tuple does not. The two hypothetical models both correctly
recognize three matches and three mismatches. They therefore have identical accuracy, precision and
recall. However, calculating accuracy on the basis of pairs of tuples (white rectangles) reveals that model
B is superior in separating the matching from the mismatched description of an image.

°50 0 50
DiÆerence in Sentence Likelihood

Word Order

Specificity

Slang

Perspective

Paraphrase

Hypernyms

Word Order (accr: 0.50)

Video-Based (accr: 0.50)

Verb (accr: 0.75)

Spatial Relation (accr: 0.70)

Semantic Role (accr: 0.82)

Random (accr: 0.50)

Number (accr: 0.52)

Noun (accr: 0.75)

Negation (accr: 0.52)

Image Type (accr: 0.50)

Color (accr: 0.63)

Attribute (accr: 0.66)

Figure 4: Language-only baseline that shows the
differences in likelihood of the first and second sen-
tence in a probe. For negative probes ( ), we give
the ranking-based accuracy this baseline would
achieve in parentheses. Since both texts match
the image in the positive probes ( ), we cannot
calculate the ranking-based accuracy for these.

4. Benchmark Analysis

We now estimate the linguistic bias present in the
different datasets of EViL-Probe. Afterward, we
discuss results of probing a set of models.

4.1. Language-Only Baseline

To assess the quality of the probes in EViL-Probe,
we determine to what extent there may be a lan-
guage bias in them. Such a bias could systemat-
ically make one of the two texts in a probe more

likely than the other. If for example the matching
sentence is A green banana and the probe A blue
banana, it may be determined from the language
alone that the former is more likely a match. Note
that in all probes, the first text always matches the
respective image, while the second one is a mis-
match in negative and a match in positive probes.

To determine the language-only baseline, we
need a way of assigning probabilities to texts.
This should preferably be done using a language
model that is similar to how language is processed
in visio-linguistic models. These models usually
rely on BERT. This is why we use the approach
of Salazar et al. (2020), who obtain pseudo log-
likelihood scores from BERT models. They apply
sequential token masking to the inputs and deter-
mine the probabilities of the correct tokens9.

We determine the difference in likelihood for
each probe by subtracting the likelihood of the sec-
ond text from that of the first. Results are displayed
in Figure 410. For the negative probes, we also
show the ranking-based accuracy this language-
only approach would achieve (in parentheses).

Irrespective of whether probes are positive or
negative, the desire is for them to be unbiased,
i.e. close to the zero line (vertical black line in Fig-
ure 4). While deviations vary, the average differ-
ence in likelihood is close to this line for all but two
categories: specificity and slang. This indicates
that BERT prefers the less specific and (presum-
ably more familiar) sentences that do not contain
slang.

Some of the datasets with negative probes are
cleverly designed to achieve a ranking-based ac-
curacy of .5. In these, each text occurs both as
a matching description and a mismatched one.
Datasets for which this is not the case display a

9https://github.com/awslabs/
mlm-scoring. We use the bert-base-en-cased
model.

10See Figures 6 and 7 in the Appendix for results on
the individual datasets.

https://github.com/awslabs/mlm-scoring
https://github.com/awslabs/mlm-scoring
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Model Architecture Visual Input #Images

LXMERT 2-stream Faster R-CNN 0.2M

UNITER (large) 1-stream Faster R-CNN 4M
VILLA (large) 1-stream Faster R-CNN 4M

SOHO end2end ResNet 0.2M
ALBEF (large) end2end ViT-B/16 14M
TCL (base) end2end ViT-B/16 4M
BLIP (base129M) end2end ViT-B/16 129M

Table 2: Overview of the models we probe.

slight bias towards the correct sentences, which is
most pronounced for the semantic role category.
This might be due to the fact that a large propor-
tion of the role reversals are nonsensical. An ex-
ample is A woman is sucking a candy cane, which
is turned into A candy cane is sucking a woman.
To examine the general quality of the language in
the probes, we give absolute likelihood scores for
the different datasets in Appendix A.2.

4.2. Probing Models with EViL-Probe
We now probe a set of existing pretrained models
with our benchmark.

4.2.1. Models

We need to obtain matching probabilities for in-
put image-text pairs and want to evaluate existing
pretrained models without further fine-tuning them.
Therefore, we can only consider models that were
pretrained on image-text matching. We use the
output of the respective pretraining head and ap-
ply softmax to obtain the matching probability of
image-text pairs. Models are provided by the re-
spective authors and summarized in Table 2.

The first group of models we test are those that
rely on pre-extracted image region features, either
in a one-stream or a two-stream architecture. We
also include the more recent models that do not
have this restriction and instead take the entire im-
age as input (end2end in Table 2). Wherever mul-
tiple pretrained model versions are available, we
use the largest one. The rationale behind this is
that our aim is less so a between-model compari-
son. Rather, we want to gain an overall picture of
how challenging EViL-Probe is for the current visio-
linguistic models.11

VILLA is an improvement of UNITER that intro-
duces adversarial training through permutations
in the embedding space. UNITER, VILLA and
LXMERT (Tan and Bansal, 2019) all use random
mismatched examples in their pretraining of image-
text matching. ALBEF (Li et al., 2021) makes an ef-
fort to sample hard negatives with shared seman-
tics, but different fine-grained details. TCL (Yang

11For results that include different model sizes see Ap-
pendix A.3.
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Negative Probes
- Acc .54 .62 .61 .57 .63 .62 .63
- Accpaired .27 .26 .24 .20 .29 .27 .29

Positive Probes
- Acc .47 .80 .83 .82 .54 .52 .75
- Accpaired .25 .70 .75 .73 .41 .37 .65

Table 3: Macro-averaged performance of models.

et al., 2022) adds to ALBEF by introducing intra-
modal self-supervision. To make the most of noisy
web-scraped data, BLIP (Li et al., 2022) performs
bootstrapping on captions by generating and then
filtering them. Note that due to the nature of the
source datasets and the rather extensive datasets
used to pretrain models, some of them may have
already seen some of the probing images during
pretraining.

In our experiments, we focus on pair-wise accu-
racy as the metric that fulfills all three of our require-
ments (see Figure 2). We also include standard ac-
curacy as an alternative metric that gives useful re-
sults for both negative and positive probes. Wher-
ever we aggregate results of multiple datasets, we
take the macro average.

4.2.2. Negative vs. Positive Probes

Table 3 shows aggregated results for negative and
positive probes.12

Comparing standard and paired accuracy, mod-
els show different relative performances. While
TCL outperforms LXMERT when it comes to stan-
dard accuracy, the two have the same level of
paired accuracy. Similarly, while SOHO outper-
forms LXMERT when it comes to standard accu-
racy, it is the other way around when evaluated
with paired accuracy.

The highest paired accuracy is achieved by AL-
BEF and BLIP, two models that use a Vision Trans-
former to process images. Looking at the positive
probes can further differentiate the performance
of these two models: While they perform equally
on the negative probes, BLIP outperforms ALBEF
by a large margin on the positive probes. As
we remarked when we introduced them, perfor-
mance on positive probes is to be seen as an ex-
tension of results on the negative probes. While
UNITER, VILLA and SOHO perform well on the posi-
tive probes, this is linked to a general tendency of
these models to accept a high proportion of texts.
On the negative probes, VILLA and SOHO achieve
the lowest paired accuracy.

Models in Table 3 are ordered in chronological

12See Appendix A.4 for additional metrics.
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Figure 5: Category-wise performance of models on negative (top) and positive (bottom) probes. Results
are macro-averaged over all datasets that belong to the respective category.

order of emergence. Newer models do not per-
form drastically better than older ones. Do also
note that while the newest model (BLIP) gives an
overall relatively good performance, this model is
trained with a substantially higher number of im-
ages than previous models (see Table 2).

We now take a closer look at how the different
linguistic categories play into the observed results.

4.2.3. Category-Based Results

Figure 5 shows score breakdowns for the individ-
ual categories. LXMERT shows poor performance
across all probing categories. While this model is
superior on some categories, its performance on
these is around the chance baseline.

Results for the random probes confirm that all
models other than LXMERT are able to reliably re-
ject mismatched descriptions. Another category
many of the models are able to handle relatively
well are nouns. Interestingly, UNITER and VILLA
are performing best here. Both of these models
use pre-extracted image features to process the
visual inputs. These features were obtained from
a Faster R-CNN that was designed for object de-
tection - this focus on objects seems to reflect in
the superior performance of models using these
features on probes that target nouns, i.e. objects.

Image type and color are two other categories
for which at least ALBEF and BLIP show some dis-

criminatory ability.
When it comes to the positive probes, all models

(except LXMERT) perform relatively well on speci-
ficity and show the greatest difficulty regarding
slang and hypernym probes. While it may be un-
derstandable that models are simply not familiar
with slang, they will be familiar with the more gen-
eral terms used in the hypernym probes. The su-
perior performance of BLIP over ALBEF on the pos-
itive probes we saw in Table 3 is revealed to be
consistent across all categories.

5. Conclusion and Future Work

We present EViL-Probe, an extensive composite
benchmark of visio-linguistic probes. It is de-
signed to reveal a detailed picture of the capa-
bilities of visio-linguistic models when it comes
to comprehending different linguistic categories.
Our benchmark not only contains the standard
negative probes, but augments these with addi-
tional sets of positive probes. In our experiments,
these help distinguish further between models that
demonstrate equal performance on the negative
probes.

Overall, all models struggle with the majority of
the negative probes. Even the best-performing
models only scores higher than the random base-
line for random, noun, image type and color
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probes. For the eight other categories, perfor-
mance is at or below chance level.

Future efforts may derive a smaller, manually
validated version of EViL-Probe, filtering out cases
where the gold standard labels taken from the orig-
inal datasets may be questionable. Another excit-
ing direction for future work are more interpretable
evaluations of image-text alignment. This might
be pursued through identifying the parts of the de-
scription that constitute the mismatch. The FOIL-
IT (Shekhar et al., 2017a,b) benchmark already in-
cludes this as a visionary follow-up task to detect-
ing a mismatched description, even going as far as
to correct the misalignment.

Limitations

One limitation of our benchmark is that it is unbal-
anced, as some aspects (such as probing noun
comprehension) have received greater attention in
previous work. While an ideal setting would have
an equal amount of probes for all categories, we
did not want to artificially down-scale EViL-Probe
by reducing the number of examples for all cat-
egories to the size of the category with the least
amount of probes. To prevent larger subsets from
diluting the effects of smaller ones we use macro
averaging when aggregating results.

An issue that is passed on from the source
datasets of EViL-Probe is that some of them in-
clude images some models have already seen dur-
ing pretraining. While the steadily growing number
of images used to pretrain visio-linguistic models
make this increasingly hard to prevent, a perfect
zero-shot setting would consist of images that are
entirely novel to the models.

A further limitation arises from the fact that many
of the images were collected from Flickr13 (e.g. MS
COCO (Lin et al., 2014), Visual Genome (Krishna
et al., 2017)). Flickr gets over half of its traffic from
the USA, UK, Germany and France14, making it
predominantly a reflection of Western culture.

Ethics Statement

Composite benchmarks should make sure that all
included datasets are free of ethical concerns. To
the best of our knowledge all source datasets of
EViL-Probe fulfill this requirement. In case new is-
sues should surface, we would drop the respective
dataset from the benchmark.

13https://www.flickr.com
14https://www.similarweb.com/website/

flickr.com
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A. Appendix

For more insight into the properties of EViL-Probe
and the performance models achieve on it, we in-
clude some additional statistics that may be of in-
terest.

A.1. Source Datasets
Section 3 only describes which datasets contribute
to which of the linguistic categories in EViL-Probe.
Table 4 gives details on how these different source
datasets were processed to fit the desired format.
The result are probes that consist of two descrip-
tions of the same image.

When it comes to statistics on the number of
probes per dataset, Section 3 only gives values
that are aggregated to category-level. This is why
we include more extensive overviews of the indi-
vidual subdatasets of EViL-Probe. In Table 5, we
give statistics on dataset level. Table 6 shows ex-
emplary probes of the different datasets and the
average likelihood of the texts in these datasets,
determined using our language-only baseline.

These values can serve as an estimate of
the overall quality of the language in the probes.
Lower likelihoods may hint at more unusual, per-
haps ungrammatical or implausible texts. The two
sets of random probes are based on crowdsourced
high-quality captions, which is reflected in higher
likelihoods for the texts in these probes. The ma-
jority of the other subsets falls into the same range
as these, with just some exceptions where the av-
erage likelihood is lower. It is lowest for the SWiG-
based probes, which is in tune with our manual in-
spection of these: They are frequently ungrammat-
ical and use uncommon terms, such as describing
water as h2o or a horse as an equus caballus.

A.2. Language-Only Baseline
In Section 4.1, we report our language-only base-
line. These results are however aggregated to
category-level. Figures 6 and 7 therefore give
the per-dataset differences in likelihood. This
reveals FOIL-IT and some of the datasets from
VL-Checklist to be solved more easily by our
language-only baseline.

A.3. Influence of Model Size
In Section 4.2, we limit results to one version per
model (the respective largest available one) for the
sake of brevity. Table 8 includes results for differ-
ent model sizes. Perhaps unsurprisingly, albeit mi-
nor in some places, larger models tend to perform
better. The only exception to this is BLIP, where
the large model is outperformed by the base model
trained with 129M images. Details on the different
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models are shown in Table 7. We also give infor-
mation on which image datasets went into the pre-
training of the respective models, for transparency
on how these may overlap with the image data in
EViL-Probe (which can be gathered from Table 5).

A.4. Probing Results
As an extension to the results in Table 3, Table
8 gives more detailed performance statistics of
the different models, including separate results for
matching and mismatched texts.

Results for the negative probes reveal that
UNITER, VILLA and SOHO have some imbalance in
their ability to classify matching and mismatched
texts. They show high recall for matching texts, but
low recall for mismatched ones, because they tend
to accept texts rather than reject them. These num-
bers are much more balanced for the models that
use a Vision Transformer to process the images
(ALBEF, TCL and BLIP).

A.5. Analysis: Coreference Probes
In compiling a benchmark such as EViL-Probe,
source datasets should not be included blindly,
and we felt it necessary to delve deeper into the
coreference probes of the VALSE benchmark (Par-
calabescu et al., 2022). These are of the form
Statement. Question. Yes/No, supposedly requir-
ing coreference resolution between statement and
question to determine whether they match the re-
spective image. Upon manual inspection of these
probes, we did however note examples such as A
book that is on the edge of a desk. is this a color
photo? yes, which can be answered without con-
sidering the statement. We thus include a derived
version of the coreference probes that reduces
them to just Question? Yes/No. Table 9 shows
how this adaptation affects performance. Focus-
ing on our target metric of paired accuracy, we
see that dropping the question tends to increase
performance. This seems to confirm that the ques-
tion, and therefore coreference resolution between
question and statement, is not necessary to solve
the probes. On the contrary, the questions seem
to introduce noise that makes solving the probes
harder. This finding is why we include the corefer-
ence probes as part of our negation probes rather
than dedicating a coreference category to them.
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Dataset Initial Example Structure Adapted Structure Comments

ARO
(Yuksekgonul et al., 2023)

(i, t, f),
t matches i, but f does not

taken as-is

FOIL-IT
(Shekhar et al., 2017b)

(i, t, f),
t matches i, but f does not

taken as-is

Predicate-noun
(Nikolaus et al., 2022)

(i, t, f),
t matches i, but f does not

taken as-is

VALSE
(Parcalabescu et al., 2022)

(i, t, f),
t matches i, but f does not

taken as-is

Visual Spatial Reasoning
(Liu et al., 2023)

(i, t, f),
t matches i, but f does not

taken as-is we use the cleaned (validated)
data provided by Liu et al. (2023)

VL-Checklist
(Zhao et al., 2022)

(i, t, f),
t matches i, but f does not

taken as-is

EqBen
(Wang et al., 2023)

(i1, i2, t1, t2),
t1 (t2) matches i1 (i2), but not i2 (i1)

(i1, t1, t2), (i2, t2, t1)

Winoground
(Thrush et al., 2022)

(i1, i2, t1, t2),
t1 (t2) matches i1 (i2), but not i2 (i1)

(i1, t1, t2), (i2, t2, t1)

Compositional Visual Genome
(Jiang et al., 2022)

(i1, i2, t1, t2),
t1 (t2) matches i1 (i2), but not i2 (i1)

(i1, t1, t2), (i2, t2, t1) t2 is SVO triple; we only use
those where the corresponding
sentence can be looked up from
the remaining dataset

SVO Probes
(Hendricks and Nematzadeh, 2021)

(i1, i2, t1, t2),
t1 (t2) matches i1 (i2), but not i2 (i1)

(i1, t1, t2), (i2, t2, t1) t2 is SVO triple, we only use
those where the corresponding
sentence can be looked up from
the remaining dataset

Counting probe
(Parcalabescu et al., 2021)

(i, t, f1, f2, f3),
t matches i, but fj do not

(i, t, f1), (i, t, f2), (i, t, f3) we use the declarative statements

Winoground (augmented)
Diwan et al. (2022)

(i, t, f1, ..., fn), t and all fj match i,
fj are paraphrases of t

(i, t, fj)
for all fj

High Level Dataset
(Cafagna et al., 2023)

(i, t1, t2, ..., t5, f1, f2, f3),
all tj and fj match i, but with different focus

(i, tj , f1), (i, tj , f2), (i, tj , f3)
for all tj

Flickr30k
(Young et al., 2014)

(i, t1, t2, ..., t5),
all tj match i

(i, tj , fj) for all tj , with a
random mismatched description
fj drawn from other examples

all descriptions appear once
as match and once as mismatch

MS COCO
(Lin et al., 2014)

(i, t1, t2, ..., t5),
all tj match i

(i, tj , fj) for all tj , with a
random mismatched description
fj drawn from other examples

all descriptions appear once
as match and once as mismatch

Table 4: Source datasets of EViL-Probe and how they were processed to fit its format. Each probe in
EViL-Probe is made up of two descriptions of the same image.
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Category Text Source Image Source # Images # Triples
Dataset

Negative Probes

Attribute
- ARO-attribute ARO Visual Genome (Krishna et al., 2017) 4517 28053
- EQ-Kubric-attribute Wang et al. (2023) EqBen (Wang et al., 2023) 4000 4000
- VL-Checklist-attribute-action Zhao et al. (2022) Visual Genome ()VisualGenome 3321 4854
- VL-Checklist-attribute-material Zhao et al. (2022) Visual Genome (Krishna et al., 2017) 9435 14207
- VL-Checklist-attribute-size Zhao et al. (2022) Visual Genome (Krishna et al., 2017) 11453 15921
- VL-Checklist-attribute-state Zhao et al. (2022) Visual Genome (Krishna et al., 2017) 4551 5391
Color
- EQ-SD-color Wang et al. (2023) EqBen (Wang et al., 2023) 426 426
- VL-Checklist-attribute-color Zhao et al. (2022) Visual Genome (Krishna et al., 2017) 36230 74676
Random
- Flickr30k-Random Young et al. (2014) Flickr30k (Young et al., 2014) 1000 5000
- MS COCO-Random Lin et al. (2014) MS COCO 2014 (test) (Lin et al., 2014) 5000 25010
Image Type
- EQ-SD-image-type Wang et al. (2023) EqBen (Wang et al., 2023) 414 414
Negation
- VALSE-coreference Parcalabescu et al. (2022) MS COCO (train/val2014) (Lin et al., 2014) 1057 1057
- VALSE-coreference-q-only Parcalabescu et al. (2022) MS COCO (train/val2014) (Lin et al., 2014) 1057 1057
- VALSE-existence Parcalabescu et al. (2022) Visual Genome (Krishna et al., 2017) 533 533
Noun
- ComVG-noun Jiang et al. (2022) Visual Genome (Krishna et al., 2017) 473 2040
- EQ-SD-noun Wang et al. (2023) EqBen (Wang et al., 2023) 1448 1448
- FOIL-IT-noun Shekhar et al. (2017b) MS COCO (val2014) (Lin et al., 2014) 32150 99456
- Predicate-Noun-subject Nikolaus et al. (2022) Open Images (Kuznetsova et al., 2020) 901 1098
- SVO-Probes-noun Hendricks and Nematzadeh (2021) SVO Probes (Hendricks and Nematzadeh, 2021) 3562 21285
- VL-Checklist-noun-HAKE Zhao et al. (2022) HAKE (Li et al., 2019b) 72207 143441
- VL-Checklist-noun-SWiG Zhao et al. (2022) SWiG (Pratt et al., 2020) 23139 109688
- VL-Checklist-noun-VG Zhao et al. (2022) Visual Genome (Krishna et al., 2017) 9963 115373
Number
- Counting-probe-hard Parcalabescu et al. (2021) Visual Genome (Krishna et al., 2017) 1348 1348
- Counting-probe-standard Parcalabescu et al. (2021) Visual Genome (Krishna et al., 2017) 3610 3610
- EQ-Kubric-counting Wang et al. (2023) EqBen (Wang et al., 2023) 4000 4000
- VALSE-counting-adversarial Parcalabescu et al. (2022) Visual Genome (Krishna et al., 2017) 756 756
- VALSE-counting-balanced Parcalabescu et al. (2022) Visual Genome (Krishna et al., 2017) 991 991
- VALSE-counting-small-numbers Parcalabescu et al. (2022) Visual Genome (Krishna et al., 2017) 1000 1000
- VALSE-plurals Parcalabescu et al. (2022) MS COCO (val2017) (Lin et al., 2014) 939 1000
Semantic Role
- VALSE-actant-swap Parcalabescu et al. (2022) SWiG (Pratt et al., 2020) 1028 1028
Spatial relations
- ARO-relation Yuksekgonul et al. (2023) Visual Genome (Krishna et al., 2017) 5316 22921
- EQ-Kubric-Location Wang et al. (2023) EqBen (Wang et al., 2023) 4000 4000
- VALSE-Relations Parcalabescu et al. (2022) MS COCO (val2017) (Lin et al., 2014) 546 614
- VL-Checklist-relation-spatial Zhao et al. (2022) Visual Genome (Krishna et al., 2017) 8686 26183
- Visual-Spatial-Reasoning Liu et al. (2023) MS COCO (train/val2017) (Lin et al., 2014) 1179 3058
Verb
- ComVG-verb Jiang et al. (2022) Visual Genome (Krishna et al., 2017) 374 648
- Predicate-Noun-object Nikolaus et al. (2022) Open Images (Kuznetsova et al., 2020) 1136 1486
- SVO-Probes-verb Hendricks and Nematzadeh (2021) SVO Probes (Hendricks and Nematzadeh, 2021) 9088 30502
- VALSE-action-replacement Parcalabescu et al. (2022) SWiG (Pratt et al., 2020) 779 779
- VL-Checklist-relation-action-HAKE Zhao et al. (2022) HAKE (Li et al., 2019b) 104815 201312
- VL-Checklist-relation-action-SWiG Zhao et al. (2022) SWiG (Pratt et al., 2020) 25147 25147
- VL-Checklist-relation-action-VG Zhao et al. (2022) Visual Genome (Krishna et al., 2017) 5281 12683
Video-based
- EQ-AG Wang et al. (2023) Action Genome (Ji et al., 2020) 391744 391744
- EQ-GEBC Wang et al. (2023) GEBC (Wang et al., 2022) 3624 3624
- EQ-YouCook2 Wang et al. (2023) YouCook2 (Zhou et al., 2018) 91680 91680
Word Order
- Winoground Thrush et al. (2022) Winoground (Thrush et al., 2022) 708 708

Positive Probes

Hypernyms
- Winoground-hypernyms Diwan et al. (2022) Winoground (Thrush et al., 2022) 633 1232
Paraphrase
- Winoground-backtranslation Diwan et al. (2022) Winoground (Thrush et al., 2022) 534 534
- Winoground-diverseparaphrase Diwan et al. (2022) Winoground (Thrush et al., 2022) 534 534
Perspective
- High-Level-action Cafagna et al. (2023) MS COCO (train2014) (Lin et al., 2014) 1496 19969
- High-Level-rationale Cafagna et al. (2023) MS COCO (train2014) (Lin et al., 2014) 1486 19203
- High-Level-scene Cafagna et al. (2023) MS COCO 2014 (train2014) (Lin et al., 2014) 1497 20468
Slang
- Winoground-slang Diwan et al. (2022) Winoground (Thrush et al., 2022) 417 608
Specificity
- EQ-SD-specificity Wang et al. (2023) EqBen (Wang et al., 2023) 369 369
Word Order
- Winoground-rulebased Diwan et al. (2022) Winoground (Thrush et al., 2022) 91 127

Table 5: Overview of the probing datasets in EViL-Probe and the linguistic categories they target.
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Category ø Likelihood Example Probe
Dataset Text 1 Text 2 Text 1 (Matches respective image) Text 2

Negative Probes

Attribute
- ARO-attribute -36.50 -41.17 The metal floor and the striped shirt The striped floor and the metal shirt
- EQ-Kubric-attribute -61.43 -61.43 The black hat is above the green turtle toy [...] grey hat [...] above the green turtle toy
- VL-Checklist-attribute-action -28.52 -30.73 Hair on reading man Hair on drinking man
- VL-Checklist-attribute-material -24.28 -27.52 Tiled floor Cement floor
- VL-Checklist-attribute-size -25.51 -25.49 Long counter Short counter
- VL-Checklist-attribute-state -25.52 -26.70 Dry floor Wet floor
Color
- EQ-SD-color -37.49 -37.49 A painting of black car A painting of red car
- VL-Checklist-attribute-color -25.85 -26.89 Brown flooring Purple flooring
Random
- Flickr30k-Random -28.09 -28.09 A Boston terrier is running in the grass Two nuns stand talking to a person
- MS COCO-Random -27.35 -27.35 Girl blowing out the candle on an ice-cream A Giraffe standing outside [...]
Image Type
- EQ-SD-image-type -28.27 -28.27 An oil painting of train A pencil sketch of train
Negation
- VALSE-coreference -50.88 -51.24 A woman [...] is gasping. is she inside? yes. A woman [...] is gasping. is she inside? no.
- VALSE-coreference-q-only -25.21 -25.65 Is she inside? yes. Is she inside? no.
- VALSE-existence -16.03 -15.50 There are no pets pictured There are pets pictured
Noun
- ComVG-noun -20.59 -21.48 A man is sitting at a table A man is sitting on a bridge
- EQ-SD-noun -30.68 -30.68 A photo of camel in the zoo A photo of cattle in the zoo
- FOIL-IT-noun -27.02 -34.75 A woman in a room with a cat A woman in a room with a dog
- Predicate-Noun-subject -21.37 -21.37 A woman is holding a bottle A man is holding a bottle
- SVO-Probes-noun -19.70 -19.89 A businessman walks down a beach A businessman walks down a busy street
- VL-Checklist-noun-HAKE -33.91 -36.94 Person ride horse Person ride mouse
- VL-Checklist-noun-SWiG -58.20 -63.03 Man pats man using manus at a place Man pats man using dozer at a place
- VL-Checklist-noun-VG -28.69 -35.69 Train has wheels Snail has wheels
Number
- Counting-probe-hard -21.13 -20.42 There are 4 windows and doors There are 6 windows and doors
- Counting-probe-standard -20.98 -20.17 There are 4 pizzas There are 5 pizzas
- EQ-Kubric-counting -38.09 -38.09 1 brown bull is in the scene There are 4 brown bulls in the scene
- VALSE-counting-adversarial -25.81 -27.24 There are exactly 4 cows shown There is exactly 1 cow shown
- VALSE-counting-balanced -26.30 -26.13 There are exactly 5 buses There are exactly 0 buses
- VALSE-counting-small-numbers -26.54 -26.41 There is exactly 1 hot dog There are exactly 2 hot dogs
- VALSE-plurals -30.17 -30.09 A single man and woman are in a kitchen A number of men and woman are in a kitchen
Semantic Role
- VALSE-actant-swap -16.07 -22.82 A man displays a certificate A certificate displays a man
Spatial relations
- ARO-relation -28.24 -30.02 The truck is in front of the tree The tree is in front of the truck
- EQ-Kubric-Location -56.20 -56.20 [...] is behind the blue gloves [...] is located on the top of the blue gloves
- VALSE-Relations -25.96 -28.63 An elephant is standing in a dirt field An elephant is standing beside a dirt field
- VL-Checklist-relation-spatial -28.35 -32.89 Scissors on table Scissors under table
- Visual-Spatial-Reasoning -23.87 -23.75 The bus is behind the horse The bus is in front of the horse
Verb
- ComVG-verb -21.23 -21.77 A man is standing on the water A man is drinking the water
- Predicate-Noun-object -21.74 -21.74 A woman is wearing glasses A woman is standing
- SVO-Probes-verb -20.12 -20.23 Girl stand near tree A girl sits in a tree
- VALSE-action-replacement -16.35 -19.68 The people package the food The people eat the food
- VL-Checklist-relation-action-HAKE -34.43 -38.41 Person sit on chair Person break chair
- VL-Checklist-relation-action-SWiG -54.74 -60.62 The elephants stampede in srubland The elephants mopping in scrubland
- VL-Checklist-relation-action-VG -29.38 -38.23 Man wearing a shirt Man holding shirt
Video-based
- EQ-AG -25.21 -25.21 The person is sitting on the chair [...] The person is not contacting the chair [...]
- EQ-GEBC -46.64 -46.64 Man [...] standing in the pool [...] move his head inside the water [...]
- EQ-YouCook2 -36.06 -36.06 Rinse the rice Add vinegar and mix together
Word Order
- Winoground -31.61 -31.61 A car smashed into a tree A tree smashed into a car

Positive Probes

Hypernyms
- Winoground-hypernyms -32.20 -34.57 A car smashed into a tree A vehicle smashed into a tree
Paraphrase
- Winoground-backtranslation -33.40 -30.79 A tree smashed into a car Tree crashed into car
- Winoground-diverseparaphrase -33.40 -30.79 A brown dow is on a white couch A brown dog sitting on a white sofa
Perspective
- High-Level-action -27.08 -25.33 A man in glasses is wearing a tie The person is posing for a photo
- High-Level-rationale -27.06 -25.91 A man in glasses is wearing a tie He’s working and took a professional photo
- High-Level-scene -27.05 -21.62 A man in glasses is wearing a tie In an office
Slang
- Winoground-slang -32.44 -51.01 A young person kisses and old person A young bod kisses and old bod
Specificity
- EQ-SD-specificity -41.22 -27.32 A photo of dog wearing a scarf A photo of dog
Word Order
- Winoground-rulebased -37.76 -41.44 They’re enjoying cold water on a hot day On a hot day they’re enjoying cold water

Table 6: Exemplary probes and the average likelihood of the texts in the individual subdatasets.
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Figure 6: Language-only baseline for the negative probes. The ranking-based accuracy this approach
would achieve is given in parentheses.
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Figure 7: Language-only baseline for the positive probes.

Model Architecture Visual Input Datasets in Pretraining #Images

LXMERT (Tan and Bansal, 2019) 2-stream Faster R-CNN COCO, VG 0.2M

UNITER (Chen et al., 2020)
base 1-stream Faster R-CNN CC, SBU, COCO, VG 4M
large 1-stream Faster R-CNN CC, SBU, COCO, VG 4M

VILLA (Gan et al., 2020)
base 1-stream Faster R-CNN CC, SBU, COCO, VG 4M
large 1-stream Faster R-CNN CC, SBU, COCO, VG 4M

SOHO (Huang et al., 2021) end2end ResNet COCO, VG 0.2M

ALBEF (Li et al., 2021)
base end2end ViT-B/16 CC, SBU, COCO, VG 4M
large end2end ViT-B/16 CC, SBU, COCO, VG, CC12M 14M

TCL (Yang et al., 2022) base end2end ViT-B/16 CC, SBU, COCO, VG 4M

BLIP (Li et al., 2022)
base14M end2end ViT-B/16 CC, SBU, COCO, VG, CC12M 14M
base129M end2end ViT-B/16 CC, SBU, COCO, VG, CC12M, LAION 129M
large end2end ViT-L/16 CC, SBU, COCO, VG, CC12M, LAION 129M

Datasets are: Conceptual Captions (CC, Sharma et al. (2018)), SBU Captions (SBU; Ordonez et al. (2011)), MS COCO 2014
(COCO; Lin et al. (2014)), Visual Genome (VG, Krishna et al. (2017)), Conceptual 12M (CC12M, Changpinyo et al. (2021)), LAION
(Schuhmann et al., 2021). Faster R-CNN (Anderson et al., 2018) is pretrained on Visual Genome, ResNet (He et al., 2016) and all
Visual Transformer (ViT, Dosovitskiy et al. (2021)) models are pretrained on ImageNet (Deng et al., 2009).

Table 7: Overview of the models we test with EViL-Probe.
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Negative Probes
- Accranked .56 .74 .76 .76 .78 .64 .72 .74 .73 .75 .76 .76
- % Accept .46 .78 .70 .80 .74 .78 .39 .48 .45 .39 .63 .61
- Acc .54 .60 .62 .59 .61 .57 .61 .63 .62 .63 .63 .64
- Precisionmatch .56 .58 .60 .58 .59 .56 .65 .64 .64 .67 .62 .63
- Recallmatch .50 .88 .82 .89 .85 .85 .50 .61 .57 .52 .76 .74
- Precisionmismatch .54 .71 .71 .72 .72 .63 .63 .66 .65 .63 .68 .68
- Recallmismatch .59 .32 .41 .29 .37 .30 .73 .65 .67 .73 .50 .53
- Accpaired .27 .22 .26 .20 .24 .20 .26 .29 .27 .28 .29 .30

Positive Probes
- Acc (= % Accept) .47 .86 .80 .88 .83 .82 .44 .54 .52 .54 .75 .72
- Accpaired .25 .79 .70 .81 .75 .73 .28 .41 .37 .39 .65 .62

Table 8: Detailed results for all tested models, split into positive and negative probes. As positive probes
consist entirely of matching image-text pairs, not all metrics can be calculated for these examples.
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- Accranked .01 .03 .00 .00 .00 .00 -.04 .01 .02 .00 -.05 -.02
- Accpaired -.05 .03 .05 .03 .03 .09 -.02 .01 .04 .00 .07 .09

Table 9: Shift in performance when reducing the Statement. Question? Yes/No descriptions in the
VALSE coreference probes to just Question? Yes/No. Overall, dropping the statement tends to increase
performance. This indicates that the task is solvable without them, and that they potentially even introduce
noise.
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