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Abstract

The study delves into the construction of entailment trees for science question answering (SQA), employing a novel
framework termed Tree-structured Entailment Reasoning (TER). Current research on entailment tree construction
presents significant challenges, primarily due to the ambiguities and similarities among candidate science facts,
which considerably complicate the fact retrieval process. Moreover, the existing models exhibit limitations in
effectively modeling the sequence of reasoning states, understanding the intricate relations between neighboring
entailment tree nodes, and generating intermediate conclusions. To this end, we explore enhancing the TER
performance from three aspects: First, improving retrieval capabilities by modeling and referring to the chained
reasoning states; Second, enhancing TER by infusing knowledge that bridges the gap between reasoning types and
rhetorical relations. Third, exploring a task-specific large language model tuning scheme to mitigate deficiencies in
intermediate conclusion generation. Experiments on the English EntailmentBank demonstrate the effectiveness of
the proposed methods in augmenting the quality of tree-structured entailment reasoning to a certain extent.
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1. Introduction

Traditional science question-answering (SQA) ap-
proaches often treat the QA process as a black
box, where a model takes a question as input and
leverages its reasoning ability and linguistic knowl-
edge to produce an answer directly. This approach,
while effective, obfuscates the inner workings of
the model’s decision-making process, making it
challenging to understand how the model reaches
the answers. To this limitation, recent research
has emphasized the importance of generating ex-
planations, which can illuminate the intricate and
implicit relations between questions and answers.
This has spurred significant studies in constructing
support facts (Mihaylov et al., 2018; Khot et al.,
2020), entailment trees (Clark et al., 2018; Dalvi
et al., 2021), explanation graphs (Jansen et al.,
2018), and reasoning chains (Lu et al., 2022; Wei
et al., 2022) to simulate the chain-of-thought infer-
ence process like humans. This paper focuses on
the realm of Tree-structured Entailment Reasoning
(TER), which facilitates a deeper understanding of
the mechanisms of SQA (Dalvi et al., 2021).

Previous research on entailment tree con-
struction predominantly falls into two distinct ap-
proaches: one-step entailment tree analysis (Ben-
tivogli et al., 2011; Bowman et al., 2015) and
multi-step entailment tree construction (Dalvi et al.,
2021). This paper places a particular emphasis
on the latter approach. The multi-step entailment
tree construction task involves the provision of a
hypothesis that explains the question-answering
(QA) pair. As illustrated in Figure 1, given the hy-
pothesis and the three supporting facts retrieved

FACT1 FACT2

FACT3INT1 the cocoons being created during 
the the pupa stage in a life cycle

HYPOTHESIS a moth builds a cocoon

FACT1 the cocoons being created occurs during the the pupa 
stage in a life cycle
FACT2 incomplete metamorphosis is when an insect reaches 
the adult stage without being a pupa
FACT3 the life cycle of a moth is different from other insects 
that undergo incomplete metamorphosis
(Mercury-SC-413243)

[QUESTION] How is a moth’s life cycle most different from 
an insect that goes through incomplete metamorphosis? 
[ANSWER] It creates a cocoon.

Figure 1: Example tree from EntailmentBank.

from the science fact pool, the primary objective
of TER is to parse these facts into a hierarchical
entailment tree which serves as an explanatory
framework for the given QA pair.

Recently, some excellent research has been con-
ducted on multi-step entailment tree building. Ini-
tially, Tafjord et al. (2020) and Dalvi et al. (2021)
cast the TER task as a sequence-to-sequence gen-
eration task; they take all the facts as input to the
pre-trained T5 transformer (Raffel et al., 2020) to
generate the entailment tree all at once. Since the
probability distribution inside the entailment steps
is invisible to the sequential model, the sequence-
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to-sequence approaches may generate unreliable
intermediate steps. In order to mitigate this issue,
more and more subsequent research proposes to
transform the TER task into a multi-step tree con-
struction process, to generate explanations step by
step (Ribeiro et al., 2022; Bostrom et al., 2022; Liu
et al., 2022) from the bottom up. Besides, (Hong
et al., 2022) introduces the first module-based
framework that generates entailment trees bidi-
rectionally through the top-down abductive and
bottom-up deductive reasoning steps.

In general, the TER task involves two stages,
with the first stage to retrieve relevant facts as
premises and the second to build the entailment
tree with the premises acting as leaf nodes. Al-
though considerable efforts have been made to
enhance the retrieval ability of recent multi-step
reasoning systems (Ribeiro et al., 2022), there re-
mains room for improvement in performance. More-
over, previous work (Hong et al., 2022) has un-
derscored the effectiveness of reasoning types in
building entailment trees, prompting further investi-
gation into how discourse information functions on
entailment reasoning. In particular, recent years
have witnessed the extraordinary prowess of Large
Language Models (LLMs) in natural language gen-
eration, yet TER based on instruction-tuned LLMs
remains largely unexplored.

With these inspirations, in this paper, based on
the multi-module TER system of Hong et al. (2022),
we enhance the system’s fact-retrieving ability by
enriching the model with state chains to retrieve
facts dynamically. Besides, this research investi-
gates the correlation between the entailment rea-
soning types and the rhetorical relations (Mann
and Thompson, 1987). On this basis, we train
a rhetorical relation classifier and have the TER
system learn to imitate the rhetorical relation pre-
diction during the reasoning steps, thus infusing
the rhetorical knowledge into the TER system. Fur-
thermore, in order to alleviate the error propagation
issue of our TER system in the bottom-up and top-
down tree-building process, we explore improving
the quality of the generated intermediate conclu-
sions. Specifically, we design the instruction-tuning
data tailored for TER, with which we tune the LLMs
to more accurately generate the conclusion of each
intermediate step. Experimental results on Entail-
mentBank demonstrate the effectiveness of our
proposed approaches. Notably, to our knowledge,
this research is the first to investigate the effects of
rhetorical knowledge and LLM-driven interpretabil-
ity on tree-structured entailment reasoning.

2. Related Work

QA explanation. Previous research on QA ex-
planation mainly focuses on searching for facts

that can support the hypothesis but neglects the
relations inside the retrieved facts (Jansen and
Ustalov, 2019; Yadav et al., 2019, 2020; Jham-
tani and Clark, 2020). With the recent publication
of EntailmentBank (Dalvi et al., 2021), more and
more researchers have turned to tree-structured
explanation generation. The studies mainly lie in
two styles. On the one hand, Dalvi et al. (2021)
cast the entailment tree construction process as a
sequence-to-sequence generation task and intro-
duced the seq2seq EntailmentWriter based on the
T5 transformer (Raffel et al., 2020). On the other
hand, more and more researchers cast the task
into a multi-step generation process (Ribeiro et al.,
2022; Bostrom et al., 2022; Hong et al., 2022; Liu
et al., 2022). Among these studies, Ribeiro et al.
(2022) propose to generate explanations step by
step, where the reasoning and fact-retrieving pro-
cesses are combined to allow the model to lever-
age intermediate conclusions for retrieving and
reasoning. Bostrom et al. (2022) decompose the
original task into separate steps through a search
procedure, which has been proven to generate bet-
ter quality than the end-to-end T5 model. Liu et al.
(2022) introduce the reinforcement learning frame-
work into this task and design a flexible reward
scheme to consider the entire reasoning chain for
better TER. Recently, Hong et al. (2022) transform
the TER task into the process of constructing tree
nodes in bottom-up or top-down directions step by
step, which serves as the baseline system in our
work.

Rhetorical discourse structure. Rhetorical struc-
ture theory (RST) (Mann and Thompson, 1987) is
a fundamental discourse structure theory, which
describes each article as a constituency tree. Sub-
sequently, with the publication of RST Discourse
Treebank (Carlson et al., 2002), more and more
RST parsers have been proposed so far (Zhang
et al., 2020, 2021; Yu et al., 2022; Kobayashi et al.,
2022), which push RST parsing to a relatively ma-
ture stage. From the application viewpoint, many
efforts have been made to apply this discourse
knowledge to NLP applications like text summa-
rization (Xu et al., 2020), text categorization (Ji
and Smith, 2017), and document-level machine
translation (Tan et al., 2022). This paper explores
applying such discourse knowledge to TER.

LLM-driven explanation generation. With the
rapid development of LLMs (Brown et al., 2020;
Chung et al., 2022; Touvron et al., 2023a; OpenAI,
2023; Touvron et al., 2023b), LLM-driven explana-
tion generation has become more and more crit-
ical, especially when more and more facts have
shown that the explanation can help improve the
model’s understanding of natural language (Wei
et al., 2021; Mishra et al., 2022b,a; Parmar et al.,
2022). In particular, the recent explanation in a
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Figure 2: Multi-module entailment tree generation framework. Signs r-ctrl, c-ctrl, and s-ctrl refer to the
controller module used for fact retrieval, combination selection, and state selection, respectively.

chain-of-thought fashion (Wei et al., 2022) can
wildly dig out the ability of current LLMs thus im-
proving their ability in few-shot logic inference. In
this paper, we propose a scheme of tuning and
incorporating LLMs tailored for the TER task.

3. Baseline

In this paper, we take the recent module-based
entailment tree construction framework METGEN1

as our baseline system. As shown in Figure 2,
METGEN treats the TER task as a multi-step bidi-
rectional reasoning process. Initially, a transformer-
based controller (r-ctrl) is used to select facts from
all candidates, s1, . . . , sn, obtaining the premises,
s1, . . . , s5, most related to the hypothesis. Then,
the five selected premises are further combined in
two different forms for top-down abductive (-) and
bottom-up deductive (+) reasoning at each itera-
tion. For example, in Figure 2, the hypothesis and
the leaf node s1 are combined to form the low-layer
node i1 from the top down; While the two leaves
s1 and s5 are combined to form the upper-layer
node i2 from the bottom up. To achieve the pro-
cess, the controller (c-ctrl) module is first used to
select suitable combinations within the premises
and hypothesis, then a T5-based generative rea-
soning module is utilized to draw an intermediate
conclusion for each new node. Subsequently, with
these newly built internal nodes, some new reason-
ing states are obtained, and the controller (s-ctrl)
module is further utilized to select m good states
to form m independent beam paths for subsequent
iterations. The TER process ends when the hypoth-
esis is proved, or the reasoning process reaches
the maximum iteration setting.

4. Method

Based on the above-mentioned benchmark sys-
tem, this section introduces our TER system with
enhancements on fact retrieval, rhetorical percep-
tion, and LLM interpretability integration.

1https://github.com/Raising-hrx/MetGen

4.1. Fact Retrieval

Fact retrieval, as the first stage of the TER task,
is critical since it can cause error propagation
to the subsequent entailment tree building pro-
cess. As depicted in Figure 2, the baseline sys-
tem establishes a solid framework of bidirectional
entailment reasoning, where the controller mod-
ule is trained to select facts at the initial stage
once and for all. Such a scheme may poten-
tially lead to severe error propagation in subse-
quent reasoning stages (Ribeiro et al., 2022). To
mitigate this issue, we develop an approach of
training the retrieval controller iteratively through-
out the multi-step entailment tree reasoning pro-
cess, enhancing the overall performance of the
retrieval module. For the representation of facts
and states, we follow the previous work (Hong
et al., 2022) to utilize a pre-trained transformer
of albert-xxlarge-v2 (Lan et al., 2019) to en-
code each sequential state. For example, in the ini-
tial state, [CLS]H[SEP]s1[SEP]...sn[SEP],
we use the embedding of [CLS] to represent the
state and compute the averaged token embeddings
within H and sn to represent the hypothesis and
the n-th fact, respectively. Different from the base-
line system, we propose training the controller to
select correct facts at each step while considering
the tracked states and the hypothesis, as follows:

H
state
t = mean(

tX

i

H
[CLS]
i )

%t ⇠ ⇡✓(%t|Hstate
t , H

hypo)

where H
[CLS]
i refers to the state representation

at the i-th reasoning step, Hstate
t represents the

tracked state sequence at the t-th step, and H
hypo

denotes the embedding of the hypothesis. Sub-
sequently, the controller is trained by maximizing
the probability of selecting the “good” fact %t, while
concurrently minimizing the probability of choosing
irrelevant or “bad” facts within the current state.

Previous work (Bengio et al., 2009) has substan-
tiated that training with “easy” examples can yield
lower generalization error, which is of great refer-
ence value for the current need to select premises
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Fact1 leo is a 
kind of 
constellation

Fact25 a
constellation 
contains stars

Fact17 the earth revolving 
around the sun causes stars 
to appear in different areas 
in the sky at different times 
of year

Int1 leo is a constellation 
containing stars

Hypothesis the earth revolving around the sun 
causes leo to appear in different areas in the sky 
at different times of year

Figure 3: Lexical clues within entailment trees.

from many noisy facts. To facilitate “easy” learn-
ing in the fact-retrieving process, we define the
criteria for the “good” facts with two points: textual
intersection and structural correlation.
Textual intersection. Previous work (Ribeiro et al.,
2022) has provided evidence that numerous leaf
facts, seemingly unrelated to the root, may pos-
sess connections with intermediate conclusions.
With this empirical basis, we propose training the
model to retrieve facts during the internal node
generation process. To this end, at timestep t, we
consider facts that exhibit a non-stop word inter-
section with the hypothesis and the intermediate
conclusion generated at step t� 1 as “good” facts
to retrieve, thereby increasing the probability of
p̂
pos
t = p̂(st|s1...n, Hhypo

, H
state
t�1 ). For the exam-

ple in Figure 3, considering that only Fact1 and
Fact17 have lexical connections (i.e., the words
earth and leo) with the hypothesis at the initial
stage, we take them as good facts to retrieve, and
the negative ones can be randomly selected from
the corpus, excluding the ground truth.
Structural correlation. In addition to training the
model’s ability to discern relevant facts from irrel-
evant ones, we also introduce a greedy approach
to retrieve the most suitable facts at each step,
mitigating the risk of falling into local optima. A
review of EntailmentBank reveals a linguistic pat-
tern: nouns employed within a tree node ⌧ are
more likely to be reused in nodes proximate to ⌧

than those farther away. Drawing inspiration from
this, we select the fact that is structurally closest
to the newly built internal node at step t as the
optimal fact to retrieve at step t+ 1. Furthermore,
once ⌧ emerges as the root of a sub-tree following
bottom-up deductive reasoning, there is no longer
a necessity to retrieve the leaf facts related to ⌧ .
Similarly, when ⌧ serves as a child node after the
top-down abductive step, there is no need to re-
trieve its sibling facts anymore. For example, in
Figure 3, given that the deductive action is taken
at the initial state to combine Fact1 and Fact25
into Int1, then Fact17 is structurally closest to

the newly built node and deemed the most suitable
fact to retrieve.

To achieve the above goals, we employ a two-
fold training strategy that minimizes the max-
margin ranking loss between the positive and neg-
ative facts, coupled with the negative log-likelihood
(NLL) loss, to train the model in selecting the most
appropriate fact at each step.

L=
X

steps

(�1max(0,M+p̂
neg
t �p̂

pos
t )��2log(p̂

opt
t |✓))

where parameters �1 and �2 are used to balance
the two training components, p̂negt and p̂

pos
t denote

the retrieval probabilities for negative and posi-
tive facts respectively, M denotes the max-margin
value, and p̂

opt
t means the probability of selecting

the optimal fact at step t.

4.2. Rhetorical Relation Incorporation

Statistics in (Dalvi et al., 2021) show that the rea-
soning types of Substitution, Conjunction,
and If-then collectively cover over 90% of the
steps in EntailmentBank. Previous paper (Hong
et al., 2022) has explored utilizing well-formed syn-
thetic data containing logical regularities of the
three reasoning types to train their TER system.
Building upon the examples used in (Hong et al.,
2022), we delve deeper into the correlation be-
tween reasoning types and rhetorical relations, as
illustrated in Table 1. Examining the tree struc-
ture encompassing s1, s2, and i1, the substitution
type is employed to transform the entity “planet” in
s1 into “earth” in s2, ultimately leading to the con-
clusion i1. In this case, we designate s2 as the
nucleus unit in RST, with s1 serving as the satellite
unit responsible for elaborating upon the nucleus
unit on “the earth planet”. Therefore, the rhetorical
relation of Elaboration can be bridged between
the two premises. Analogically, the conjunction
reasoning type takes the two facts s3 and s4 as
two separate descriptions of “chemical splashing”,
where we can use the rhetorical relation of Joint
to combine the two facts to reach the conclusion.
Moreover, in cases involving the if-then reasoning
type, the fact s5 plays the role of a common log-
ical premise, with the fact s6 acting as a specific
instance to reach the intermediate conclusion i3.
In this case, s5 assumes a rhetorical Background
role. These examples underscore the profound
correlation between reasoning types and rhetorical
relations, prompting us to integrate such knowl-
edge into our TER system.

To construct a suitable training dataset for rhetor-
ical relations, we extract sub-trees from the vanilla
RST-DT corpus (Carlson et al., 2002), yielding a
total of 4,629 instances for training, 491 for vali-
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Example Reasoning Rhetorical
s1: the mass of a planet causes the pull of gravity on that planet.
s2: earth is a kind of planet.
i1: the mass of earth causes the pull of gravity on earth.

s1&s2
Subs.����! i1 s1

Elab.����! ���� s2

s3: chemical splashing can cause harm to humans/to the eyes.
s4:chemical splashing sometimes occurs during experiments.
i2:chemical splashing during experiments can cause harm to eyes.

s3&s4
Conj.����! i2 s3

Joint����! ���� s4

s5: if something requires something else then that something else is
important to that something.
s6: nuclear fusion is required for star formation.

i3: nuclear fusion is important to star formation.
s5&s6

If�then������! i3 s5
Back.����! ���� s6

Table 1: Correlation between the three entailment reasoning types and the rhetorical discourse relations.

dation, and 604 for testing.2 Each instance com-
prises three components: the left-node text, the
right-node text, and the rhetorical relation between
the two nodes. Subsequently, we calculate the
relation prediction score as below.

Grhe = `(Wrhe ⇥ (onode_L � onode_R))

where ` denotes the log-softmax function, � signi-
fies vector concatenation, and onode_L and onode_R
means the representation of the two textual tree
nodes obtained from the pre-trained XLNet (Yang
et al., 2019). Then the rhetorical relation classi-
fier is trained by minimizing the NLL loss of pre-
dicting the correct rhetorical relations. In order
to incorporate such rhetorical knowledge into the
entailment parser, when combining two premises
through a bottom-up deductive step, we have the
pre-trained rhetorical classifier as the teacher to
generate the rhetorical relation (er) between the two
premises. Then, we have the TER system to imi-
tate such knowledge by training it to predict as the
pre-trained classifier.

`(FNNimt(Hsi, Hsj)) ⇠ er

where Hsi and Hsj denote the representation of
the tree nodes to combine (see Subsection 4.1).

4.3. LLM-driven Intermediate Conclusion

Generation

Recent years have seen the impressive perfor-
mance of LLMs (Brown et al., 2020; Chung et al.,
2022; OpenAI, 2023) in NLP tasks including ex-
planation generation (Li et al., 2022). Although
previous work has shown the remarkable ability of

2The vanilla RST trees contain 55.6 leaves on aver-
age, and the entailment trees contain 4.4 on average.
Therefore, we only consider the RST sub-trees with a
depth of less than 4 in this research. We consider tree
nodes associated with relations such as Elaboration,
Joint, and Background, as they are most closely
aligned with the reasoning types in TER. The textual
representation of each internal node is achieved by con-
catenating the leaves within the node map.

LLMs on natural language reasoning in a chain-
of-thought style (Wei et al., 2022), the reasoning
within an entailment tree framework remains an
ongoing area of research. It is worth mentioning
that our investigation on gpt-3.5-turbo shows
two noteworthy tendencies when LLMs are tasked
with one-shot learning in the context of TER. On
one hand, LLMs, given their substantial knowledge
base, often expedite the process of reaching the
hypothesis based on the provided facts. Conse-
quently, they tend to generate relatively shallow
and wide entailment trees. On the other hand, the
premises within each entailment tree are usually
organized level by level from basic inferences to
complicated ones, but LLMs usually do not follow
such an easy-to-hard rule. Since they are trained
as perfect text sequence generators, they prefer
explaining relations within facts using a more co-
herent and flexible text sequence instead. Nev-
ertheless, the impressive generation capability of
current LLMs is definitely an opportunity for inter-
mediate conclusion generation in TER.

Similar to many tree parsing tasks, the building
of entailment trees also suffers from the error prop-
agation issue. Specifically, in TER, the lower-level
low-quality intermediate conclusion of each tree
node built in the deductive mode will propagate
errors upward, while the upper-level low-quality
conclusions built in the abductive mode will prop-
agate errors downward. Since the quality of an
entailment tree highly depends on the intermediate
conclusions generated step by step, we speculate
that employing the interpretability of LLMs for inter-
mediate conclusion generation will help alleviate
the error propagation issue.

To this end, we propose an instruction-tuning
scheme that encompasses two distinct styles of
instruction-tuning data. First, we build the instruc-
tion prompt with the reasoning mode indicator
abductive mode, the hypothesis, and the gold
standard premises considered. We tune the model
to generate an intermediate conclusion that serves
as one of the child nodes within the newly built
sub-tree. Second, we form the instruction prompt
with the reasoning mode indicator deductive
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mode and the known premises considered, and
then instruct the model to generate an interme-
diate conclusion that assumes the root node of
the newly built sub-tree. Drawing from the train-
ing set of EntailmentBank, we construct a total of
15,719 tuning instances, partitioned into 13,741
for training and 1,978 for validation. Leveraging
this dataset, we fine-tune the foundation model
Flan_T5_XL(3B) (Chung et al., 2022) for three
epochs. Subsequently, the tuned model serves as
the reasoning module within our TER system.

5. Experimentation

Following previous research on TER, we conduct
experiments on EntailmentBank (Dalvi et al., 2021),
which is known as the pioneering corpus tailored
for science QA explanations in the form of entail-
ment trees. The corpus contains a total of 1,840
entailment trees, with 1,313 allocated for training,
187 for validation, and 340 for testing. Consistent
with Dalvi et al. (2021), we consider three tasks
with increasing difficulties: Task1 with only gold
standard facts, Task2 with gold facts and 15-20
distractors for retrieving, and Task3 with facts from
the full corpus for retrieving.

5.1. Experimental Settings

Evaluation metric. In line with prior evaluation
metrics (Dalvi et al., 2021; Hong et al., 2022), we
evaluate the quality of predicted entailment trees
post-alignment by examining three key aspects: (1)
The score for Leave facts detection, determined
by comparing the leaves of the predicted trees
with the gold standard. (2) The score for structural
Steps, gauged by if the child nodes of internal
nodes match the ground truth. (3) The score for
Intermediate conclusions, obtained by compar-
ing the aligned intermediate conclusions of pre-
dicted nodes with those of the gold standard.3

N-ary to binary tree conversion. To the best of
our knowledge, prior studies (Dalvi et al., 2021;
Hong et al., 2022) have provided insights into bi-
nary entailment trees, suggesting that “n-premise
steps (n>2) could be further decomposed into sev-
eral valid 2-premise steps”. Inspired by this, we
propose a straightforward left-branching scheme
aimed at converting non-binary trees into binary
structures, as depicted in Figure 4. In this scheme,
for root nodes with multiple children, we combine

3We report both F1 and AllCorrect (ALCC) scores as
performance. For leaves, steps, and intermediates, an
ALCC score of 1 signifies that all predicted leaves, steps,
or intermediate conclusions within an entailment tree are
correct. And the strict Overall ALCC metric is used to
assess whether all leaves, steps, and intermediates of
the entire tree are correct.

Fact1 Fact2

Fact3Int1: Fact1 & Fact2

Hypothesis

(b) 

Fact1 Fact2 Fact3

Hypothesis

(a)

Figure 4: Convert n-ary to binary entailment tree.

the leftmost two children into a new intermediate
node Int1. The newly created node then serves
as a child node of the root. This process continues
until all internal nodes contain only two children,
obtaining a binary entailment tree. Furthermore, to
avoid misleading the reasoning process and min-
imize the need for human annotation, we obtain
the conclusion for each newly built internal node
by combining the facts of its child nodes.
Rhetorical relation detection. As stated before,
this paper explores the effects of RST knowledge
on TER. We experiment on two pre-trained lan-
guage models, i.e., RoBERTa-large (Liu et al.,
2019) and XLNet (Yang et al., 2019), which have
been proven effective in RST discourse analy-
sis (Kobayashi et al., 2022). The performance of
the two systems on our built test corpus is 74.1%
for RoBERTa and 79.3% for XLNet on accuracy.
Finally, we employ the classifier trained on XLNet
to predict rhetorical relations for the TER system
to imitate.

5.2. Experimental Results

We draw upon results from two closely related pa-
pers to our research for performance comparison.

• EntailmentWriter (Dalvi et al., 2021). The first
sequence-to-sequence entailment tree gener-
ator in TER directly produces linearized trees
using an encoder-decoder framework, based on
the hypothesis, QA pair, and candidate facts.

• Baseline (Hong et al., 2022). A module-based
entailment reasoner that splits the once-for-all
sequence-to-sequence reasoning process into
a multi-step reasoning process. Notably, it is the
first system to consider entailment reasoning in
both bottom-up and top-down directions, and
it serves as our primary baseline system for
performance comparison.

Table 2 reports the primary results. In each task,
the first two rows show the performance of previ-
ous systems under similar settings4. Meanwhile,

4Both the baseline systems and ours employ the
same T5-large transformer for reasoning and use the
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Method
Leaves Steps Intermediates Overall

F1 ALCC F1 ALCC F1 ALCC ALCC

Task1

EntailmentWriter (Dalvi et al., 2021) 98.4 84.1 50.0 38.5 67.0 35.9 34.4
Baseline (Hong et al., 2022) 100 100 57.7 41.9 70.8 39.2 36.5
Baseline + Rhetorical 100 100 56.9 42.1 68.8 37.1 34.7
Baseline + Rhetorical � 100 100 57.6 42.9 70.8 40.0 36.8

Task2

EntailmentWriter (Dalvi et al., 2021) 83.2 35.0 39.5 24.7 62.2 28.2 23.2
Baseline (Hong et al., 2022) 82.7 46.1 41.3 29.6 61.4 32.4 27.7
Baseline + Retrieving 83.4 47.9 42.2 29.4 62.5 32.6 27.4
Baseline + Rhetorical 83.3 49.7 42.1 30.3 61.0 31.8 28.2

Baseline + Both 83.5 48.8 40.5 28.8 62.4 30.9 26.2
Baseline + Both � 84.8 49.4 42.9 30.9 62.9 32.1 27.1

Task3

EntailmentWriter (Dalvi et al., 2021) 30.9 1.2 4.4 1.2 28.8 5.6 1.2
Baseline (Hong et al., 2022) 34.8 8.7 9.8 8.6 36.6 20.4 8.6
Baseline + Retrieving 36.4 10.0 11.7 10.0 36.5 20.3 10.0

Baseline + Rhetorical 36.8 8.5 10.6 8.5 37.7 20.3 8.5
Baseline + Both 36.9 10.0 11.6 10.0 37.1 20.3 10.0

Baseline + Both � 36.8 10.0 11.6 10.0 37.0 20.3 10.0

Table 2: Main TER results of the proposed approaches. Underline denotes the score outperforms the
baseline system, the scores in bold yield the best among all. Sign � denotes the LLM-based system.

the remaining rows (“Baseline+X”) present a se-
ries of ablation studies. Note that since Task 1
already incorporates gold standard facts as inputs,
applying our retrieval enhancement method would
be meaningless. Thus we only augment the TER
model’s retrieval ability for Tasks 2 and 3. We draw
the following observations and conclusions.
Enhancement by fact retrieval. A comparison
between “Baseline + Retrieving” and “Baseline”
reveals significant improvements in fact retrieval
performance. Specifically, the designed scheme
of training the TER model to distinguish between
good and bad facts and selecting the best fact
at each reasoning step substantially improves the
results on Leaves. Besides, the improvements
in fact retrieval are observed to cascade into the
enhancements in Steps, Intermediates, and
Overall performance to different extents.
Enhancement by rhetorical perception. The re-
sults in Task 1 show that enhancing the controller
model with rhetorical relation detection capabilities
results in a notable reduction in Intermediates
and Overall. However, in Tasks 2 and 3, where
noisy facts are introduced into the reasoning pro-
cess, our method’s advantage emerges clearly,
even when both retrieval and rhetorical enhance-
ments are applied. These findings suggest that
infusing rhetorical discourse knowledge into TER
enhances its adaptability to real-world scenarios
with noisy facts. Additionally, we observe that si-
multaneously applying both retrieval and rhetorical
enhancements does not consistently yield the best
results. We speculate that the two types of infor-

same prefixed setting for the controller module. As
detailed in (Hong et al., 2022), the prefixed setting
employs the minor model parameters to adapt to the
cases with different reasoning types and directions.

Method Leaves Steps Int. Overall
Ta

sk
1 LLaMa 100 52.3 47.2 23.2

Alpaca 100 53.5 53.0 26.2
FLT-XL 100 57.6 70.8 36.8

Ta
sk

2 LLaMa 75.3 35.5 43.4 19.7
Alpaca 76.7 35.5 48.6 20.6
FLT-XL 84.8 42.9 62.9 27.1

Ta
sk

3 LLaMa 36.6 11.2 36.6 9.8
Alpaca 36.8 11.2 36.8 10.0

FLT-XL 36.8 11.6 37.0 10.0

Table 3: TER results (F1) on different LLMs.

mation sometimes complement each other while in
other cases be incompatible, leading to significant
variations in results when applied together.
Enhancement by LLM integration. When apply-
ing the tuned LLM (�) to our system for intermedi-
ate conclusion generation, we observe substantial
improvements in Steps and Intermediates for
Tasks 1 and 2. It indicates that leveraging LLM can
enhance the generation of accurate intermediate
conclusions and improve entailment tree construc-
tion. However, the effects of LLM in Task 3 appear
to be limited. An examination of the predicted trees
reveals that most trees in Task 3 consist of no
more than three leaves, requiring fewer intermedi-
ate conclusions compared to the other two tasks,
which reduces LLM’s impact. Notably, fact retrieval
remains a prominent challenge in TER.

5.3. Comparison of Foundation Models

Table 3 presents the performance across differ-
ent foundation models. It shows that employing
LLaMa(7B) yields the worst performance. How-
ever, when we initially tune LLaMa using the 52K
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Data
Leaves Steps Intermediates Overall

F1 ALCC F1 ALCC F1 ALCC ALCC

Task1 Multifurcating Tree 100 100 57.6 42.9 70.8 40.0 36.8
Binary Tree 100 100 60.0 45.9 68.3 37.6 37.6

Task2 Multifurcating Tree 84.8 49.4 42.9 30.9 62.9 32.1 27.1
Binary Tree 84.8 49.4 44.5 31.8 59.3 28.8 27.1

Task3 Multifurcating Tree 36.8 10.0 11.6 10.0 37.0 20.3 10.0
Binary Tree 36.8 10.0 11.6 10.0 34.1 18.5 10.0

Table 4: Our results on the multifurcating and binary entailment trees.

alpaca data5 and subsequently fine-tune it with our
data, a significant performance improvement is ob-
served. It indicates that exposure to various tasks
and our instruction-tuning data can aid LLaMa in
better understanding the TER task. Moreover, the
overall results show that Flan_T5_XL(3B) (abbr.,
FLT-XL) consistently outperforms the others. To
delve deeper into these findings, we conduct a thor-
ough review of system outputs and observe that
the conclusions generated by FLT-XL are concise
and exhibit a similar style to those produced by hu-
mans. In contrast, LLaMa tends to generate overly
verbose conclusions, resulting in a significant per-
formance decline for style mismatches. Similar to
the results in Table 2, the impact of different LLMs
on Task 3 remains indiscernible, which is primarily
due to the formidable challenge of fact retrieval.

5.4. Results on Binary Entailment Trees

Here we report the performance of our system
on binary entailment trees, as shown in Table 4.
In the first two tasks, where the fact retrieval
is less challenging and more internal nodes are
built, the scores on Steps go up, and that on
Intermediates go down for all three tasks.
Since our system is trained to generate a binary
structure at each step, which is more compatible
with the binary data, making the scores on the
structural Steps higher. Besides, as stated be-
fore, when converting the n-ary trees, we get the
intermediate conclusions of new nodes by combin-
ing its leaf nodes’ facts, which is inconsistent with
the composition principle of conclusions in Entail-
mentBank, resulting in performance degradation
on Intermediates.

In general, we argue the left-branch binarization
scheme may have two benefits: On one hand, tak-
ing "node merging" as a special reasoning type to
build the binary structure without losing informa-
tion can reduce the complexity of the vanilla n-ary
trees. On the other hand, this paper promotes the
research on binary entailment trees, aiming to pro-
vide ideas for subsequent LLM-based TER, that
is, using “binary tree” to restrict foundation mod-
els to reason under the easy-to-hard rule, thereby

5github.com/tatsu-lab/stanford_alpaca
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Figure 5: Intermediate conclusion generation ac-
curacy of tree nodes with different heights.

generating a linearized binary entailment tree.

5.5. Analysis on Error Propagation

In NLP tasks that involve constituency tree con-
struction, the quality of upper-layer nodes signifi-
cantly impacts the lower-layer nodes in the bottom-
up TER process, and vice versa in the top-down
process. To these dependencies, we argue that
the misprediction of intermediate conclusions could
lead to substantial error propagation issues within
TER. In this work, error propagation issues can
manifest in two scenarios: error propagation from
bottom to up in the deductive mode and error prop-
agation from top to down in the abductive mode.
Figure 5 illustrates the accuracy of intermediate
conclusion generation with respect to entailment
tree nodes with different heights. It shows that the
TER results on low- and high-level entailment tree
nodes tend to yield higher scores, this trend is more
obvious when using the tuned FLT-XL for experi-
mentation. It indicates that the intermediate conclu-
sion generation for low- and high-layer tree nodes
is less susceptible to the error propagation issue
in this bidirectional TER system, while mid-height
nodes are more affected. Besides, FLT-XL’s su-
perior performance on low- and top-level nodes
reduces errors to a certain extent, enhancing its
mid-height conclusion generation.

6. Conclusion

This paper focuses on tree-structured entailment
reasoning for science QA with three critical aspects.
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Firstly, we strengthen the fact-retrieving capabil-
ity of the TER model through dynamic reasoning
training. Secondly, we explore the correlation be-
tween reasoning types and rhetorical relations, har-
nessing RST knowledge to augment the system’s
adaptability. Finally, we design task-specific tun-
ing data, coupled with the LLM integration, which
further bolsters the system’s TER performance. Ex-
perimental results on the EntailmentBank corpus
demonstrate the effectiveness of our proposed ap-
proaches. Codes and the binarized Entailment tree
data will be available upon email request.

As described in the paper, we encountered per-
formance bottlenecks in this research primarily due
to insufficient fact retrieval quality, so investigat-
ing the potential of utilizing LLMs for fact retrieval
would be a focal point in our future research. Fur-
thermore, as outlined in the paper, this study con-
tributes the binarized Entailment data, aiming to
advance LLM-based Entailment Reasoning in fu-
ture work, specifically by constraining the founda-
tional models to engage in reasoning following the
easy-to-hard rule to generate linearized trees.

7. Limitations

We summarize the limitations of this paper for sub-
sequent researchers to refer to and boost the de-
velopment of TER. First, all the methods in our pa-
per were tested essentially using automatic proxy
metrics rather than manual evaluation. The auto-
matic evaluation method is far from perfect when
facing this novel and challenging TER task, and
the exploration of manual evaluation is urgently
needed. Secondly, this paper aims to introduce
novel and creative methodologies, but the perfor-
mance gains are moderate. Thirdly, the baseline
framework is innovative but already complex, and
our research further introduces the combination
of various techniques, making the experimental
settings complex and hard to follow and apply to
real scenarios. Moreover, the proposed method
enhances the model’s fact retrieval ability through
multi-step fact retrieving learning, but an applica-
tion for the inference stage remains challenging in
this complex baseline framework. We are commit-
ted to tackling the aforementioned challenges in
future work endeavors.
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10. Appendices

Appendix A. System Settings Following the base-
line system (METGEN) (Hong et al., 2022), we con-
ducted experiments on EntailmentBank, 1,313 for
training, 187 for validation, and 340 for testing. We
considered three tasks with increasing difficulties,
i.e., Task1 based on gold standard facts, Task2
with gold facts and 15-20 distractors for retriev-
ing, and Task3 with facts from the full corpus for
retrieving. To strengthen METGEN and retain its
advantages, based on their published code set, we
shape our model training process in a multi-round
fashion. Specifically, we first borrowed Hong et al.
(2022)’s model as the base model, then at each
round, we first tuned the controller to enhance its
ability in both fact retrieval and rhetorical relation
prediction for 10 epochs. Then we further tuned
the model as (Hong et al., 2022) for 10 epochs to
avoid parameter confusion. We trained the system
for 5 rounds to reach the final system. All sys-
tem settings are inherited from (Hong et al., 2022).
Notably, for the two parameters �1 and �2 in Sub-
section 4.1, we conducted ablation experiments
and found that the convergence speed of the two
terms has a weak impact on the performance, so
we set both to 0.5 to ensure uniform convergence
speed for both terms.
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