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Abstract

Domain adaption has been widely adapted for cross-domain sentiment analysis to transfer knowledge from the
source domain to the target domain. Whereas, most methods are proposed under the assumption that the target
(test) domain is known, making them fail to generalize well on unknown test data that is not always available in
practice. In this paper, we focus on the problem of domain generalization for cross-domain sentiment analysis.
Specifically, we propose a backdoor adjustment-based causal model to disentangle the domain-specific and
domain-invariant representations that play essential roles in tackling domain shift. First, we rethink the cross-domain
sentiment analysis task in a causal view to model the causal-and-effect relationships among different variables.
Then, to learn an invariant feature representation, we remove the effect of domain confounders (e.g., domain
knowledge) using the backdoor adjustment. A series of experiments over many homologous and diverse datasets
show the great performance and robustness of our model by comparing it with the state-of-the-art domain gener-
alization baselines. The codes of our model and baselines are available at https://github.com/sinwang20/DeepDG4nip.

Keywords: Domain generalization, causal adjustment, cross-domain sentiment analysis

1. Introduction

In the field of cross-domain sentiment analysis
(Zhou et al., 2020; Du et al., 2020), domain adapta-
tion (DA) has been extensively studied to transfer
the sentiment knowledge from a source (label-rich)
domain to a target domain. However, most existing
methods in this area assume that the target domain
is known during the training phase, which limits
their generalization performance when applied to
unknown test domain, a scenario commonly en-
countered in practical applications. In reality it is
often, such as in Amazon’s products, collecting
unlabeled data and fine-tuning (like domain adap-
tation) is expensive and extravagant, prohibitively
impossible. To address this problem, we focus on
Domain Generalization (DG) in the field of cross-
domain sentiment analysis, which sets a more strict
situation, the test domain is unseen (Figure 1).

Recently, domain generalization (Wang et al.,
2021b) has attracted increasing interest in the field
of computer vision, which aims to learn a model
that can generalize to an unseen target domain
from some different but related source domains.

The existing methods mainly focus on learning
general invariant representations from multiple do-
mains by data manipulation (Adila and Kang, 2021;
Volpi et al., 2018), adversarial training (Ganin et al.,
2016; Arjovsky et al., 2019), and meta-learning
(Chen et al., 2020).

However, there are two significant challenges
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Figure 1: Difference between domain adaptation
and domain generalization.

with current domain generalization methods for
cross-domain sentiment analysis. One major chal-
lenge (C1) is the existence of spurious correlations
in domain invariance. It is hard to guarantee that
the learned representation is the true cause of the
sentiment polarity. For example, the term "hot" indi-
cates popularity in book domain (e.g., “hot-selling
books") and delicacy in kitchen domain (e.g., “hot
pizza"), leading to the invariant behavior across
domains. This spurious correlation fails to hold
in other domains, such as “hot CPU," where the
sentiment may differ. Such false invariances can
degrade the performance of sentiment analysis
models in the presence of domain shift.
Furthermore, another challenge (C2) is that many
existing models focus solely on capturing domain-
invariant information, such as general sentiment
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words (e.g., good, bad), while disregarding crucial
domain-specific knowledge. This approach results
in the loss of valuable domain-specific features that
are essential for accurate sentiment analysis. For
the previous example, if a model learns that “hot"
represents a successful book sale in the book do-
main and “hot" represents terrible in electronics
domain, it can understand that “hot DVD" is posi-
tive, while "hot DVD device" is negative, leveraging
the domain-specific information.

To address these challenges, we first rethink the
task of cross-domain sentiment analysis from a
causal perspective, aiming to model the causal re-
lationships among different variables. Then, we
propose a causal adjustment-based framework for
domain generalization, which learns the general-
ized representation by disentangling the domain-
invariant and domain-specific information. Our
model shows great performance over both homol-
ogous and diverse datasets. We also explore the
robustness of our model on 13 unseen homolo-
gous datasets and do ablation studies to verify
the effectiveness of components consisting of our
model. Representation visualization shows that our
model learns a better domain-invariant representa-
tion than the baseline.

Our key contributions are summarized as follows.

* We focus on domain generalization for cross-
domain sentiment analysis with the assumption
that test domains are unseen. Moreover, we re-
think this task in a causal view to analyze causal-
and-effect relationships among various variables.

» We propose a causal adjustment method to disen-
tangle the domain-invariant and domain-specific
representation.

» Extensive experimental results on more than
20 homologous and diverse datasets indicate
that our model can remove the influence of con-
founders to learn a generalized representation.

2. Preliminaries

2.1.

We define cross-domain sentiment analysis as fol-
lows. In the training phase, we have datasets
Drroin — {(gd yd)\Na g e {1,2,..€}, where z¢ de-
notes the ith input text(training sample) from the dth
source domain, y¢ is the corresponding sentiment
label, and N? is the number of training samples
in domain d. The goal of domain generalization is
that given a sample = from an unseen domain, we
aim to predict its output 7 through generalizable
representation ®(z).

Unlike traditional domain adaptation methods
that align representations between source and
target domains or other methods that focus

Formulation

on finding invariant representations ®(x;,,), we
propose a novel approach that considers both
domain-invariant and domain-specific representa-
tions based on causal mechanisms and achieve a
better generalizable representation ®(x).

2.2. Structural Causal Model

Structural Causal Models (SCMs) (Pearl et al.,
2000) are widely used to represent causal rela-
tionships, such as the causal relationship between
the text X and sentiment Y. They are depicted as
directed acyclic graphs (DAGs) G = {V, E}, where
V represents the set of variables (e.g., text X, sen-
timent Y, domain D) and E represents the direct
causal connections.

In our work, we utilize SCMs to model the relation-
ships among variables in cross-domain sentiment
analysis by specifying how the value of a variable is
determined given its parents. These relationships
are known as Causal Mechanisms (Peters et al.,
2017). Specifically, in our model, the sentiment Y
is influenced by its parental variables, which con-
sist of the domain-invariant factor X;T(Jy) and the
domain-specific factor X;;’fy). We represent this
relationship as follows:

Definition 1 (Causal Mechanisms)

YV fr(Xpalvy Xpavy ) Xpa(yy AL ey

Here, pa(Y) refers to the set of parental variables
for sentiment Y. The parental set includes both the
domain-invariant factor X ¢, and domain-specific
factor X;f:fy) of sentiment Y. ¢y represents the
errors due to omitted factors.

In simpler terms, our model captures the causal
relationships between the variables. The sentiment
Y is influenced by both the domain-invariant as-
pects of the text X and the domain-specific charac-
teristics. By considering these causal relationships,
we can better understand and analyze the senti-
ment in cross-domain scenarios.

2.3. Backdoor Adjustment

We first consider a simplified setting with only text
(X), sentiment labels (Y') and confounders (D). In
sentiment analysis, where the goal is to predict
sentiment labels (Y) based on text inputs (X), it is
important to consider potential confounders that
may introduce biases and shortcuts in the causal
relationships. One such confounder is the pres-
ence of domains (D), which can influence both the
text inputs and the sentiment labels.

To tackle the potential confounders existing in
the causal inference, one of the regular meth-
ods is backdoor adjustment (Pearl et al., 2000)
(Definition 2). This approach identifies the pure
causal effect P(Y | do(X)) from the total effect
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P(Y | X) by eliminating the supurios correlation of
potential backdoor paths, i.e. X + D — Y.
Definition 2 (Backdoor Adjustment Formula)

P(Y |do(X))=>_P(Y | X,D)P(D)
D

Through this adjustment, we can get the pure
relationship between X and Y, X — Y without the
backdoor path, X «+ D — Y.

The backdoor adjustment formulation cannot be
used arbitrarily, the adjustment variable D should
satisfy the backdoor criterion relative to X and Y if:

e No node in D is a descendant of Y.

e Every path between X and Y that contains an
arrow pointing to X is blocked by D.

In our SCM, we consider the adjustment between
M;n, and Y, and the adjustment varivable is the
domain D. Fortunately, the domain D satisfies the
backdoor criterion: (1) sentiment label D obviously
cannot be the factor of domain and therefore is not
the descendant of Y. (2) "path between M, and
Y that contains an arrow pointing to M,,,," is the
backdoor path between M;,,,, and Y. The two back-
door path in our SCM, i.e. M;,, «+ D — Y and
Miny < D <« M, — Y both can be blocked by
D. It means that when condition on D as the back-
door adjustment formula, D elimate the correlation
between M;,,, and Y.

So the causal effect between M;,,,, and Y is iden-
tifiable and can be formulated as,

P(Y | do(Miny)) =Y _ P(Y | Miny, D)P(D)
D

From the adjustment above, The pure causal effect
P(Y | do(M;,,)) is extracted from the total effect
P(Y | M;,,) by removing the spurious correlation
caused by backdoor path.

3. Our Approach

We propose a backdoor adjustment-based causal
model for cross-domain sentiment analysis. We
first rethink this task in a causal view (Section 3.1).
Then, we introduce the overview of our model (Sec-
tion 3.2) and integrate backdoor adjustment to learn
a better invariant representation (Section 3.3).

3.1. Causal View of Cross-Domain
Sentiment Analysis

Despite achieving great performance under the i.i.d
condition, the model will fail when encountering the
problem of domain shift. That's because the train-
ing goal is to minimize E,, ). prrain(x v){(f(7),y),
where f represents the model, and the objective

Domain

Sentiment

Mediator

Figure 2: Structural Causal Model of Cross-domain
Sentiment analysis

is to minimize the loss | between the model’s
predictions and the true labels on the training
data. But the empirical distribution of training data
Ptrain( XY is not identical to the test data distribu-
tion P**st(XY). Asthe P(X,Y) = P(Y|X)P(X),
P(X) is the marginal distribution of X. The period
work under the assumption that P(Y|X) remains
stable, expected to align the P'rin(X) to P'*st(X),
like many domain adaption methods to align the
representation using unlabeled test domain data
to achieve the better cross-domain performance
(Ganin et al., 2016; Du et al., 2020). Different
from DA, the test data is unseen in the DG set-
ting, which makes the prior distribution of target
domain P**s*(X) cannot be accessed.

The key challenge for domain generalization is to
learn a generalizable representation ®(X) without
the test domain distribution, which performs well
over all domains. Fortunately, the causal mecha-
nisms, P(Y|®(X)) has the ability to generalize to
the unseen target domain (Scholkopf et al., 2021).

We then construct the Structural Causal Models
of cross-domain sentiment analysis in Figure 2 to
illustrate the causal relationship with the variables
we used. Along with the causal mechanism in sec-
tion 2.2, we disentangle the text input into domain-
invariant and -specific features to model the causal
mechanism between text and sentiment. These two
features both will cause the sentiment, denoted as
the path M;,, — Y and Mg, — Y. Note that we
also consider the relationship M, — Y which is
different from the generalization in image classifica-
tion, because the domain-specific information like
the word “hot" in different domains will also affect
the sentiment. For domain generalization, another
critical variable is the Domain variable D, which
represents the domain of the text. Obviously, the
domain-specific feature is the cause of the domain.
Additionally, the domain variable serves as a con-
founder that affects the prediction of sentiment Y’
as well as text. An inexhaustive disentanglement of
domain-invariant and -specific may cause the M,
to suffer from the effect of the domain variable.
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Figure 3: The framework of our model.

3.2. Overview of Proposed Model

We introduce the structure of our causal model for
cross-domain sentiment analysis (Figure 3). We
use a BERT M model to obtain the representation
of text = using the “[CLS]" representation.

h = M(z) (1)

where h is the text representation. Then, to ex-
tract the domain-invariant and domain-specific fea-
tures, we set two independent encoders ¢ (invari-
ant encoder and specific encoder), a three-layer
multi-layer perception (MLP) with ReLU activation,
Miny = ¢inv(h)a Mspe = d)spc(h)-

To help learn the domain-specific information in
multiple domains, we constrain its learning with the
domain classification loss.

Especiﬁc = CE(fspeciﬁc (mspc)a d) (2)

where d denotes the domain of mg..

As both the domain-invariant and -specific fea-
tures are the causal factors of the output (polarity),
the joint representation (1m;,.¢) is formed through
element-wise addition of the domain-invariant fea-
ture (m;y,) and the domain-specific feature (mp).
To ensure accurate polarity prediction, we employ
a cross-entropy loss function, which facilitates the
alignment between the joint representation and the
target sentiment label (y) .

Ljoint = CE(fjoint (minv + mspc)a y) (3)

where “+" means add by elements.

For a domain-invariant representation, we design
the invariant 0SS Linyarians from the standpoint of
causality and will elaborate on it in Section 3.3.

Overall, our loss function is as follows,

Eall = ['joint + ['invariant + Lspeciﬁc (4)

3.3. Invariant Representation Learning
via Backdoor Adjustment

Theoretical Analysis From a causal perspec-
tive, if the invariant representation wrongly contains
some specific information as the inadequate disen-
tanglement, a path D — M;,, emerges that should
not exist. Which means that the domain variable af-
fects the wrong invariant representation and leads
to the spurious correlation between M;,, and Y,
denoted as M;,, < D — Y.

For example, model may wrongly think “hot” is
an invariant sentiment word, but the relationship
between “hot” and sentiment is caused by the spu-
rious correlation by domain. We are more likely to
describe the heating capacity of kitchen applica-
tion with “hot" instead of “warm" (a common word
in the clothes domain), like “hot enough to boiling
water”, (D — My, ). Furthermore, in the electron-
ics domain, "hot" is more likely to be associated
with negative polarity, such as "a very hot CPU,"
indicating a relationship between the invariant rep-
resentation and sentiment, i.e., M, + D — Y.

To address the issue of spurious correlations, we
can adjust them using the Backdoor Adjustment
Formula (Definition 2) and identify the backdoor
path involving D conventionally. Given the test
domain is unknown, we propose incorporating a
constraint condition during the training phase to
achieve a purer invariant representation instead of
adjusting the correlations during inference.

In our specific task, we consider that if
the learned invariant features are truly domain-
invariant, then the domain should have no effect
on these features (i.e., M, is independent of D).
Therefore, the prediction probabilities, with and
without backdoor adjustment, should be identical,
referred to as "Backdoor Condition" we proposed.

Proposition of Backdoor Condition If a learned
representation M is an invariant representation,
then the backdoor adjustment is invalid for it, i.e.
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P(Y |do(M =m))=P(Y | M =m).

Proof of Backdoor Condition The invariant rep-
resentation obviously should be independent of
the domain variable, denoted as M 1. D. Ac-
cording to the backdoor adjustment formula, P(Y" |
do(M = m) = > ,P(Y | X,D)P(D). And the
conditional distribution of Y given X can be written
as, P Y | M =m)=>,PY | X,D)P(D | M).
Asthe M 1l D,sothe P(Y | do(M =m) = P(Y |
M =m).

By incorporating the Backdoor Condition into the
training phase, we aim to facilitate effective disen-
tanglement between domain-invariant and -specific
features. This approach disentangles the backdoor
and causal paths during training rather than during
inference, as the target domain is unknown.

Loss Design In practice, we design an adjust-
ment loss to achieve the Backdoor Condition to ap-
proximate invariant representation. First, we design
the after-adjustment distribution of M;,, according
to the backdoor adjustment (section 2.3), and set
the corresponding loss to help the construction.

»Cbackdoor — CE(Z fbackdoor (minv © ed) : P(d)v y)
deD

where e is set as the learnable embedding of do-
main d and @ means concatenation. We simplify
P(d) to the proportion of the domain d in the input
data, i.e. P(d) = 5.

The P(Y | My, ) is modeled by the classification
loss,

‘Cclassiﬁcation = CE(fClassiﬁcation(minv)7 y) (5)
Adjustment loss aligns the P(Y | M;,,) and
P(Y | do(Miyny)) to achieve the invariant represen-
tation under the backdoor condition.
Eadjustment = | Eclassiﬁcation - Lbackdoor |2

C C
=D _wilog(yi™) = > i log(yy™™))?
1=1 i=1

inv

C
Yi
= [Z Yi IOg( yback )]
=1 72

The above derivation shows that such a loss
setting makes the P(Y | M,,) equals to P(Y |
do(Miny)).

Finally, we set the o and 3 to adjust the weight
of the backdoor classifier and adjustment. The
complete invariant loss is as follows,

['invariant = ﬁclassiﬁcation +a- [’backdoor

2
+6 : | Einvariant - ﬁbackdoor ‘

(6)

4. Experimental Setups

4.1. Datasets and Metrics

Homologous Datasets We use the multi-domain
Amazon reviews dataset (Blitzer et al., 2007), a
widely-used standard benchmark datasets for do-
main adaptation. It contains reviews on four do-
mains: Books (B), DVDs (D), Electronics (E), and
Kitchen appliances (K). For domain generalization,
We follow the experiment settings proposed by
(Ziser and Reichart, 2017). Each domain also has
2,000 labeled examples (1,000 positive and 1,000
negative). To further evaluate our model’s perfor-
mance and robustness, we adopt dozens of unseen
datasets of Amazon reviews dataset (Blitzer et al.,
2007), with 13 types of products.

Diverse Datasets To consider a more challeng-
ing setup we experiment with a large gap domain
generalization. We randomly sample the 2,000
labeled examples (1,000 positive and 1,000 nega-
tive) from four sentiment analysis datasets, includ-
ing products domain from Amazon reviews (Blitzer
et al., 2007), restaurant domain from Yelp reviews
(Zhang et al., 2015), airline domain from airline re-
views ', movie domain from IMDb reviews (Maas
et al., 2011). In contrast to Homologous Datasets,
Diverse Datasets are extracted from different writ-
ing platforms and therefore are more diverse in
terms of the writing type, navigator, etc.

4.2. Baselines

As most of the past research in cross-domain senti-
ment analysis concentrates on domain adaptation,
which requires the target domain data, we mainly
compare our proposed model with several popu-
lar and strong domain generalization methods. (1)
MoE, MoEA (Guo et al., 2018) model the domain
relationship with a mixture-of-experts (MoE) ap-
proach in non-adversarial and adversarial settings.
(2) BERT-base (ERM) is a basic BERT model with
a binary classification layer at the output and mini-
mizes empirical risk. (3) DANN (Ganin et al., 2016)
utilizes an adversarial approach to learn features
to be domain indiscriminate. (4) Mixup (Zhang
et al.,, 2018; Sun et al., 2020) adopts pairs of exam-
ples from random domains along with interpolated
labels to perform ERM. (5) GroupDRO (Sagawa
et al., 2019) explicitly minimizes the loss in the
worst training environment to tackle the problem
that the distribution minority lacks sufficient training.
(6) IRM (Arjovsky et al., 2019) seeks data repre-
sentations where the optimal classifier on top of
those representations matches across randomly

'https://github.com/quankiquanki/skytrax-reviews-
dataset
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DEK-B EKB-D KBD-E BDE-K Avg

MoE 87.55 87.85 89.20 90.45 88.76
MoE-A 87.85 87.65 89.50 90.45 88.86
Bert-base 88.10 89.65 90.00 90.35 89.53
DANN 88.80 89.75 89.80 89.95 89.58
Mixup 87.40 89.20 89.00 89.95 88.89
GroupDRO 89.65 89.65 89.20 89.75 89.56
IRM 88.55 90.05 88.80 91.00 89.60
VREXx 88.40 89.80 90.30 90.35 89.71
EQRM 88.55 89.80 90.40 90.85 89.90
Ours 90.20 90.15 90.95 91.95 90.81

Table 1: The results over Homologous datasets.

partitioned environments. (7) VREx (Krueger et al.,
2021) reduces the variance of risks in test environ-
ments by minimizing the risk variances in training
environments. (8) EQRM (Eastwood et al., 2022)
leverages invariant risk like VREX, but learns pre-
dictors that perform well with high probability rather
than on-average or in the worst case.

4.3.

In accordance with the commonly used leave-one-
domain-out protocol (Li et al., 2017a), one domain
will be set aside for testing and the remaining do-
mains will be used for training. The data in each
training domain is randomly divided into a training
set (80 %) and a validation set (20 %). During train-
ing, the learning rate is set as 1e-5 and the batch
size is set as 16. Adam optimizer (Kingma and Ba,
2014) is used to update all the parameters. For
our Linvariant, @ and g are searched in [0.1, 100].
For the representation visualization, both settings
are identical except for the input variations, with
n_components=2 and perplexity=100.

Implementation Details

5. Experimental Analysis

In this section, we first evaluate the performance
(Section 5.1) and robustness (Section 5.2) of our
model by comparing it with baselines. Then, we
conduct experiments on diverse domains to further
verify the model’s effectiveness (Section 5.3). Fi-
nally, we report more analysis on ablation studies,
representation visualization and comparison with
Large Language Models (Section 5.4).

5.1.

Compared with the current methods, our method
outperforms in all settings. Through a comparative
analysis of existing methods, we further illustrate
the reasons why our approach shows significant
advantages (Table 1).

Adversarial training like DANN may fail in some
cases, which coincides with the results by (Wright
and Augenstein, 2020) in the domain adaptation.

Main Results

[ Bert-base
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I EQRM
= Ours
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Figure 4: Results on 13 Homologous datasets.

Although DANN adversarially trains a domain clas-
sifier to make features indistinguishable, the do-
main confounders may well also remain and the
feature suffers from the spurious correlation. Our
method of invariant representation via backdoor
adjustment well tackles this issue.

Data augmentation method like Mixup fails in
most cases, as the gain in random augmentation
does not cover distribution difference triggered by
domain shift. Augmented data more closely to the
target domain (Yu et al., 2021; Calderon et al.,
2022) may be more effective than the universal
method, but this is not possible when the target
domain is not accessible.

Other methods focusing on learning invariant pre-
diction (like GroupDRO, VREx, EQRM) fall behind
ours because they don’t consider domain-specific
information. It also demonstrates the sufficiency of
our consideration of domain-specific information.

5.2. Robustness

To further evaluate the robustness of our model, we
conduct experimental results on more homologous
datasets of Amazon (Figure 4). Specifically, we
train our model on four domains (i.e., Books, DVDs,
Electronics, and Kitchen appliances) and test on 13
other unseen domains. It is evident from the results
that our method improves the performance of Bert-
base in generalizing to multiple unseen domains.
Specifically, our model outperforms the Bert-base
model over all 13 domains. These denote that our
model has a wider generalization capability as it has
the causal ability to reason both domain-invariant
and domain-specific features.

5.3. Performance on Diverse Domain

Considering the major research in cross-domain
sentiment analysis base on the amazon benchmark
and only transfer across the products. We consider
a more challenging setting on Diverse Dataset,
where the distribution gap between the source do-
main and target domain is much bigger, like the
restaurant domain to the airline domain rather than
DVDs to Electronics. We maintain the same train-
ing setting of homologous datasets, three domain
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DEK-B EKB-D KBD-E BDE-K

Airline Amazon Imdb Yelp Avg
Bert-base 82.02 87.70 88.05 94.85 88.16
DANN 82.62 87.90 88.45 93.80 88.19
Mixup 82.67 87.85 89.65 94.65 88.71
GroupDRO 83.17 88.65 87.95 94.15 88.48
IRM 83.32 88.60 89.35 92.75 88.51
VREx 83.37 88.75 88.05 94.20 88.59
EQRM 83.47 87.75 89.20 94.35 88.69
Ours 85.81 89.10 90.00 95.20 90.03

Improvement +2.34 +1.35 +0.80 +0.85 +1.34

Table 2: The performance over diverse datasets.

data for training and validation, and one domain for
testing (Table 2). For example, Airline in Table 2
means training on Amazon, IMDb, and Yelp, and
testing on Airline.

In contrast to the homologous scenario, the per-
formance of different test domains shows rela-
tively large differences, reflecting the difference
between the fields as well. Due to growing differ-
ences between domains and smaller common fea-
tures, the gain from the original method decreases
(like VREx). Owing to our capability to causally
model both invariant and specific information, our
approach is still able to maintain good performance
in the diverse scenario.

5.4. Further Analysis

Ablation Studies To further analyze the effec-
tiveness of the key parts in our model, we provide
the ablation studies (Table 3). Specifically, we re-
move the backdoor loss and adjustment loss that
aims to learn a domain-invariant representation
(w/o Invariant), the specific loss and joint loss that
is designed to learn a domain-specific represen-
tation (w/o Specific), and both of them (w/o Both
(Bert-base)). From the results, we can obtain the
following findings. First, the backdoor adjustment
can help our model learn a better domain-invariant
representation, which improves the generalization
of our model (row 1 and 2). Second, both domain-
invariant and domain-specific representations are
important for cross-domain sentiment analysis (row
1-3). Removing one of them will reduce the perfor-
mance of all four datasets.

Representation Visualization To better under-
stand our model, we visualize the representation
of the text (Figure 5) over two homologous and di-
verse datasets. Particularly, we compare our model
with Bert-base model by obtaining the representa-
tions of samples in the test set. we use t-SNE to
translate the 768-dimension representation into a
2-dimension vector. We can observe that it is hard
for Bert-base to distinguish the samples with dif-
ferent sentiment polarities. In contrast, the gap
between our invariant representations of positive

ours 90.20 90.15 90.95 91.95
w/o Invariant 88.30 90.00 88.30 89.85
w/o Specific 89.75 89.65 90.05 89.15
w/o Both (Bert-base) 88.10 89.65 90.00 90.35

Table 3: The ablation results of our model.

B M T
ERM (Bert-base) 88.10 91.59 87.76
ChatGPT (zero-shot) 91.89 89.64 86.73
ChatGPT (3-shot) 93.86 92.88 91.84
Ours 90.20 93.20 93.88

Table 4: Performance Comparison with LLM
(ChatGPT)- (B) Book, (M) Musical Instruments, (T)
Tools & Hardware

and negative samples is clear. These observations
indicate that our backdoor adjustment helps our
model learn good generalized representations.

Comparison with Large Language Models
(LLMs) To comprehensively assess the implica-
tions of our research, we have undertaken a perfor-
mance evaluation comparing our model with Chat-
GPT, a well-established Large Language Model
(LLM) (Table 4). The experiments involved eval-
uating both models using zero-shot and few-shot
techniques across three diverse datasets: books,
musical instruments, and tools & hardware. We
gauged the effectiveness of our model in compari-
son to ChatGPT under various scenarios, shedding
light on the relative strengths and weaknesses of
our approach against this established LLM.

While ChatGPT exhibits superior performance
in the book domain, attributable to its pre-training
on extensive datasets encompassing common do-
mains (e.g., books), our model demonstrates com-
petitive efficacy. Notably, our model outperforms
ChatGPT in categories such as musical instru-
ments and tools & hardware. This suggests that,
although LLMs excel in specific domains due to
their pre-training on large-scale datasets, they may
encounter challenges in generalizing beyond those
domains. The observed differences highlight the
intricate nature of language models, underscoring
the critical importance of addressing and resolving
the fundamental challenge of domain generaliza-
tion, even for large-scale models.

6. Related Work
6.1.

Cross-domain sentiment analysis aims to general-
ize a classifier that is trained on a source domain,
for which typically plenty of labeled data is available,
to a target domain, for which labeled data is scarce

Cross-Domain Sentiment Analysis
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Figure 5: Representation visualization.

(Blitzer et al., 2007; Du et al., 2020). In single-
source domain adaptation, one line of work em-
ploys pivot features to bridge the gap between a
source domain and a target domain (Blitzer et al.,
2007; Yu and Jiang, 2016; Ziser and Reichart, 2018;
Peng et al., 2018; Ben-David et al., 2020). Another
branch expects to learn invariant representation,
by adversarial training (Ganin et al., 2016; Li et al.,
2017b; Du et al., 2020), contrastive learning (Long
et al., 2022). Motivated by the success of masked
pre-trained language models, some other recent
studies base on data augmentation (Calderon et al.,
2022; Wang and Wan, 2022), prompt tuning (Wu
and Shi, 2022).

There is also a little research on multi-source
domain adaptation, which uses multiple domains
as sources and adapts to one target domain. In this
setting, limited works mainly focus on adversarial
training (Zhao et al., 2018; Chen and Cardie, 2018;
Wu and Guo, 2020) and mixture of expert (Guo
et al., 2018). However, most domain adaptation
models assume access to unlabeled data from the
target domain in-hand during training. For a more
reasonable generalization setting, we consider a
more challenging and realistic setting, domain gen-
eralization, where only source domain data can
be used during training.

6.2. Domain Generalization

In recent years, domain generalization (DG) has re-
ceived much attention in ML, which can be divided
into three categories (Wang et al., 2021b): (1) Data
Manipulation. Data manipulation/augmentation
methods (Zhang et al., 2018; Sun et al., 2020) aim

to increase the diversity of existing training data
with operations including randomization, transfor-
mation, etc. (2) Invariant representation learn-
ing. A widely used method is adversarial training
(Ganin and Lempitsky, 2015; Li et al., 2018), which
adversarially trains the generator (to fool the dis-
criminator) and discriminator (to distinguish the do-
mains). In other works, learning invariant features
is approximated by enforcing some invariance con-
ditions across training domains by adding a regu-
larization term to the usual empirical risk minimiza-
tion (Arjovsky et al., 2019; Krueger et al., 2021).
Some group-based works (Sagawa et al., 2019;
Liu et al., 2021a) improve the worst group perfor-
mance. (3) Learning Strategy. This line of work
focuses on exploiting the general learning strategy
to promote the generalization capability, like meta-
learning (Chen et al., 2020), and ensemble learning
(Mancini et al., 2018; Guo et al., 2018).

There are also several works that consider ex-
tending DG to the NLP field, including rumor de-
tection and MNLI (Ben-David et al., 2022), SLU
(Shen et al., 2021), Text-to-SQL(Gan et al., 2021),
Semantic Parsing (Marzinotto et al., 2019; Wang
et al., 2021a), etc. In this work, we consider the
DG for cross-domain sentiment analysis. Following
the line of invariant representation learning, we pro-
pose the backdoor condition for invariant represen-
tation and balance the domain-specific features.

6.3. Causality for NLP

Recent years have witnessed the boom of causal-
ity, many research combines causal inference with
existing machine learning approaches to achieve
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good results (Feder et al., 2022). This method is
used in a wide range of fields, including spurious
correlation (Wang and Culotta, 2020; Veitch et al.,
2021; Wang et al., 2022), data augmentation (Zmi-
grod et al., 2019; Liu et al., 2021b), interpretability
(Vig et al., 2020; Elazar et al., 2020), etc. The
most related to our method is several works utiliz-
ing backdoor adjustment to debias in various NLP
application, including text classification (Landeiro
and Culotta, 2016), distantly supervised named en-
tity recognition (Zhang et al., 2021), court’s view
generation (Wu et al., 2020). Different from the cur-
rent method using backdoor adjustment only in the
inference period , we design the backdoor adjust-
ment as an invariant prediction condition and add
it into the training period to achieve the invariant
representation.

7. Conclusion

In this paper, we consider a more challenging sce-
nario, domain generalization for cross-domain sen-
timent analysis, where the target domain is unseen.
Therefore, we propose a framework that disentan-
gles domain-invariant and domain-specific features
and leverages both to predict. We rethink the cross-
domain sentiment analysis in a causal view and
uncover the potential confounders in so-called in-
variant representations. Taking inspiration from
the backdoor adjustment in causal intervention, we
propose the backdoor condition to achieve an in-
variant representation that is not confounded by
the domain. Extensive experimental results on
more than 20 homologous and diverse datasets
demonstrate the great generalization of our model
in cross-domain sentiment analysis.

Limitations

Experimental results show that our proposed in-
variant representation learning does alleviate the
problem of potential confounders triggered by do-
main. Despite giving some examples of domain
knowledge as the confounder, it remains impossible
for us to enumerate in detail all confounder cases
and how variations in performance improvement
vary with the differences in confounder between
domains. We expect more good interpretable ap-
proaches to unveil the potential confounders in
cross-domain sentiment analysis and explain the
validity of our proposed invariant learning satisfying
the backdoor condition.

Moreover, as with other DG studies, the hyper-
parameters need to be set manually, which limits
generalization to some extent. In the future, we
expect to eliminate this manual process through
self-learning, etc., so that the model is more gener-
alizable.
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