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Abstract
Curriculum Learning (CL) has been emerged as an effective technique for improving the performances and reducing
the cost of pre-training Large Language Models (LLMs). The efficacy of CL demonstrated in different scenarios
is in the training LLMs by organizing examples from the simplest to the most complex. Although improvements
have been shown extensively, this approach was used for pre-training, leaving novel fine-tuning approaches
such as instruction-tuning unexplored. In this paper, we propose a novel complexity measure to empower the
instruction-tuning method using the CL paradigm. To complement previous works, we propose cognitively motivated
measures to determine the complexity of training demonstrations used in the instruction-tuning paradigm. Hence,
we experiment with the proposed heuristics first in English and then in other languages. The downstream results
show that delivering training examples by complexity ranking is also effective for instruction tuning, as it improves
downstream performance while reducing costs. Furthermore, the technique can be easily transferred to lan-
guages other than English, e.g., ltalian and French, without any adaptation, maintaining functionality and effectiveness.
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1. Introduction

The evolution of the Large Language Models
(LLMs) ecosystem is intrinsically related to the de-
velopment of effective refinement methods that
promote access and improve empathy from main-
stream audiences. The introduction of cutting-edge
techniques involving humans in refinement pro-
cesses (Ouyang et al., 2022; Rafailov et al., 2023)
attracts attention due to its outstanding effective-
ness and versatility. The keystone lies in the powers
of LLMs to grasp and act upon human instructions,
where this alignment is attributed to the additional
tuning process (Gupta et al., 2022; Wei et al., 2022).
This paradigm is giving rise to numerous studies
proposing instruction-tuning methods to elicit mod-
els to follow more complex instructions, improv-
ing performance in various tasks (Honovich et al.,
2023).

Ranaldi and Freitas (2024) demonstrated that
producing demonstrations that deliver step-by-step
reasoning improves instruction-tuning performance
and stimulates LLMs’ reasoning ability. Wang et al.
(2023); Zhou et al. (2023) observed significant
benefits related to the quantity and quality of in-
struction data that Chen et al. (2024); Muennighoff
et al. (2023); Ranaldi et al. (2023a); Tanwar et al.
(2023) transferred in multi-lingual scenarios. Al-
though earlier works have offered important in-
sights for maximizing the effective operation of the
instruction-tuning paradigm, these focus on engi-
neering demonstrations by naively leaving for train-
ing using batches of demonstrations randomly sam-
pled from training corpora.

Since the emergent refinement techniques aim
to emulate human-like cognitive learning pro-
cesses, the incremental organization training ex-
amples, known as Curriculum Learning (CL) (Ben-
gio et al., 2009), could constitute a logically coher-
ent and methodologically robust learning strategy
for instruction-tuned language models. Several
works have leveraged CL in pre-training (Nagat-
suka et al., 2021; Cui et al., 2022) and fine-tuning
(Zhou et al., 2020; Xu et al., 2020; Spitkovsky et al.,
2010; Zhang et al., 2021) phases, proposing com-
plexity measures leveraging the structure of the
language (Ranaldi et al., 2023b) to achieve better
performance and computational efficiency results.
However, the nature of demonstrations underlying
the instruction-tuning technique makes applying
complexity metrics proposed by previous works
challenging.

In this paper, in order to bring the instruction-
tuning method to the human learning process, we
propose a complexity measure to deliver training
demonstrations in a logically motivated manner.
By getting inspiration from the Curriculum Learn-
ing approach, we propose an instruction-tuning
methodology starting from simpler demonstrations
and gradually increasing complexity. Besides pre-
vious works, we aim to emulate human learning by
quantifying the cognitive abilities required to solve
problems because since text structure enough is
limiting as a heuristic measure of complexity. There-
fore, during the instruction-tuning phase, we deliver
the demonstrations following Bloom’s taxonomy
(Adams, 2015), as shown in Figure 1.
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Figure 1: Our Curriculum Learning heuristic based on Bloom’s Taxonomy. In particular, the basic pipeline
for instruction tuning is shown on the left, and the right is the policy, which is the strategic part of our work.

To observe the effects of cognitively moti-
vated instruction-oriented supervised fine-tuning
(instruction-tuning), we employ Llama2-7b (Tou-
vron et al., 2023) as our baseline model, and Al-
paca (Li et al., 2023) as the demonstration corpus.
Hence, we conduct the baseline instruction-tuning
as proposed in (Li et al., 2023) by providing demon-
strations without accounting for their sequence and
adhering to our human-inspired approach. We
evaluate the functionality of our approach using
tasks involving both mathematical reasoning Multi-
lingual Grade School Match (MGSM) and natural
language understanding MultiLingual Question An-
swering (MLQA). Furthermore, we apply the same
pipeline to additional languages to investigate if our
approach could be transferred to them, adapting
two multi-task benchmarks to the specific settings.
The final results show that cognitively motivated
instruction-tuning brings benefits in English and ad-
ditional languages by improving LLMs’ abilities to
solve different types of tasks.

2. Method

Instruction-tuning is critical to Large Language Mod-
els (LLMs) for achieving better instruction following
and task adaptation capabilities. Although previous
works studied the impacts on the downstream per-
formances related to data quality from a human-like
perspective, they left the training phase unexplored.
Following the Curriculum Learning (CL) strategy,
where training algorithms can achieve better results
when training data are presented according to the
model’s current skills (Bengio et al., 2009), we pro-
pose an additional pre-tuning phase, as shown in
Figure 1. In particular, using the original instruction-
tuning approach described in Section 2.1, we in-
troduce an annotation phase that estimates the
complexities of demonstrations used during the
instruction-tuning via cognitively motivated heuris-
tics introduced in Section 2.2.

2.1. The Instruction-tuning Paradigm

Ouyang et al. (2022); Wei et al. (2022) fine-tuned
LLMs using the instruction-tuning method based
on demonstrations, which are instruction-response
corpora, to make LLMs more scalable and improve
zero-shot performance. In this way, the LLMs back-
bone are fed with a set of demonstrations structured
as (i,z,y), where i is an instruction describing the
task’s requirements, z is the input, which can be
optional, and y is the output for the given task. The
goal of this method is to minimize the function f(y):

f(y) = argminlogpy(y | i, ) (1)

where 6 are model learnable parameters.

Many studies have shown the elasticity of this
paradigm by proposing customized instruction in
multi and cross-lingual settings (Ranaldi et al.,
2023a; Ranaldi and Pucci, 2023a; Chen et al,,
2024). However, in this work, we use the original
Alpaca (Li et al., 2023) that is synthetic-generated
instructions in English. The demonstrations cover
different tasks, which can be grouped by category
as reported in Figure 2.

2.2. Curriculum Learning

Since the instruction-tuning demonstrations aim to
instruct LLMs to solve general tasks by following
instructions emulating human learning, delivering
examples in order of complexity can improve per-
formance. Curriculum Learning (CL) (Bengio et al.,
2009) is a training method based on the idea that
training algorithms can achieve better results when
training data are presented in accordance with the
model’s current abilities. Although CL-based solu-
tions have shown effective improvements in pre-
training and fine-tuning time, using the structure
as a complexity metric is definitely limited for the
purpose of this paradigm. Hence, we propose a
logically motivated metric leveraging Bloom’s tax-
onomy (Adams, 2015) as the connection metric.
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Complexity Metric Bloom’s taxonomy is a cog-
nitive psychology instrument that classifies edu-
cational objectives. This taxonomy identifies six
levels of cognitive learning, from the simplest to the
most complex: remembering, understanding, ap-
plying, analyzing, evaluating, and creating. By con-
struction, it can be a strategic measure for bringing
the instruction-tuning method closer to the human
learning process by quantifying the complexity of
demonstrations by taking a human-like perspective.

Annotation Prompt

Given the following task described

in the triple Instruction, Input,
Output.
##Instruction: Given two words,

think of a sentence that is re-
lated to both words.

##Input: "Title and Dream"
##Output: '"Dream of a title."
Choose one of the following abili-
ties:

—remember

—understand

—apply

—analyse

—evaluate

—Create

Answer: [ability]

Table 1: Our prompting approach for choosing
Bloom’s taxonomy level.

Applying Complexity Heuristics Using Bloom’s
taxonomy, we systematically estimate the complex-
ity of the demonstrations by assigning them to one
of the six abilities mentioned previously. In order
to produce a robust evaluation, we systematically
prompt GPT-3 . 5-turbo using the prompt defined
in Table 1. Then, behind assigning each demon-
stration its cognitive level, we reorder the demon-
strations of the same level by length, that is, by
the number of tokens present. Finally, we perform
instruction-tuning as described in Section 2.1 by de-
livering the demonstrations during the tuning phase
according to the proposed heuristics.

3. Experimental Setup

In order to assess the performance of the complex-
ity measures proposed in Section 2, we introduce
several benchmarks (Section 3.1) on which we ap-
plied systematic tuning (Section 3.2) and evaluation
(Section 3.3) pipelines.

Figure 2: Typology of the demonstrations in the
Stanford Alpaca dataset. lllustration from (Santilli
and Rodola, 2023). In our work, we have dealt
eclectically with the topology of abilities in the inner
loop by restricting them to only the six proposed by
Bloom (Adams, 2015).

3.1. Benchmarks

In this work, it is proposed a comprehensive evalu-
ation of different languages, in particular are used
two multilingual (MGSM (Shi et al., 2022), MLQA
(Lewis et al., 2020)) and two multi-task (MMLU
(Hendrycks et al., 2021) and BBH (Suzgun et al.,
2022)) benchmarks. MGSM and MLQA focus on
mathematical reasoning and understanding ques-
tions and answers in different languages. MMLU
and BBH, being multi-task benchmarks, include
subtasks related to Boolean expressions and QA
on basic-level subjects (e.g., chemistry, physics).
However, we decided to introduce them to observe
whether our approach degrades performance in
these tasks. The first two datasets selected are ap-
propriately constructed for multi-language testing,
while the second two are available only in English.
Hence, we did a preliminary translation step as
outlined below.

Multilingual Grade School Match (MGSM) (Shi
et al., 2022) evaluates the problem-solving abilities
in multilingual scenarios. The original version, well
known as GSMB8K, is composed of English prob-
lems. Each example has the following structure: a
mathematical problem in natural language and a
target answer in Arabic number. Shi et al. (2022),
in their contribution, i.e., MGSM, selected the first
250 examples from the official list of examples in
GSMB8K and translated them manually into 11 dif-
ferent languages, maintaining the structure of the
input and output.
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Figure 3: Accuracies (%) on benchmarks presented in Section 3.1 using original Alpaca (Li et al., 2023)
pipeline and our Curriculum Learning pipeline introduced introduced in Section 2.2.

MultiLingual Question Answering (MLQA)
(Lewis et al., 2020) evaluates multilingual ques-
tion answering performance. The benchmark
comprises over 5K extractive QA instances in
several languages in the SQuAD (Rajpurkar
et al., 2016) format. MLQA is highly parallel, with
QA instances aligned across four languages on
average. Although comprising different languages,
some languages, such as ltalian, are not repre-
sented. To conduct the experiments uniformly, we
have translated the examples as also done in the
forthcoming MMLU and BBH.

Massive Multitask Language Understanding
(MMLU) (Hendrycks et al.,, 2021) measures
knowledge of the world and problem-solving prob-
lems in multiple subjects with 57 subjects across
STEM, humanities, social sciences, and other ar-
eas. The benchmark is native in English; however,
we translated it into five additional languages’.

BIG-Bench Hard (BBH) (Suzgun et al., 2022) is
a subset of challenging tasks related to navigation,
logical deduction, and fallacy detection. Again, the
benchmark is native English, and we have trans-
lated it into five languages’.

3.2. Models Instruction-tuning

All models are tuned following the official Alpaca
repository. The translated versions available (open-
source Alpaca) have been used for each specific
language. We used the alpaca_LoRA (Hu et al.,
2021) code, adopting the same hyperparameters

"We performed translations using the Google transla-
tor API from English to Chinese (zh), Italian (it), Arabic
(ar), Spanish (es), German (de). Resources available
here

to align the results with the state-of-the-art mod-
els. We performed the fine-tuning with a single
epoch and a batch-size of 128 examples, running
our experiments on a workstation equipped with
two Nvidia RTX A6000 with 48 GB of VRAM.

3.3. Evaluation

We then divide the evaluation criteria into two parts:
1) MGSM and MLQA are evaluated using a zero-
shot prompting approach and estimating accuracy
by measuring exact match values in the zero-shot
setting; 2) MMLU and BBH are evaluated using the
open-source framework InstructEval®. For each
model, the parts of benchmarks related to the spe-
cific language are used (e.g., for zh that is zh-
Alpaca data from MLQA, XQUAD, MMLU, and BBH
in Chinese are used).

4. Results

The instruction-tuning process inspired by cognitive
learning brings consistent benefits, as shown in Fig-
ure 3. In particular, as shown in Table 2, the models
tuned following the complexity heuristics proposed
in Section 2 outperform the original settings by 2.2
points on average. However, as discussed in Sec-
tion 4.1, there is an average difference between
the languages. Furthermore, the proposed method
shows sensible improvements as the demonstra-
tions decrease, as described in Section 4.2.

Finally, cognitively motivated instruction-tuning
benefits further open-source Large Language Mod-
els (LLMs). In fact, as discussed in Section 4.3,
scaling the pipeline on further models reveals that
the order affects the final performance.

2https://github.com/declare-lab/instruct-eval
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Figure 4: Evaluation of proposed benchmarks using standard Alpaca-like settings and ordering demon-
strations using the heuristics proposed in Section 2. In contrast to the experiment proposed in Figure 3,
here we systematically describe the demonstrations used to perform instruction-tuning.

4.1. The Language Matter

Although the LLMs refined via cognitively motivated
order demonstrations have more significant results
than the baselines, the proposed method has lim-
itations. In fact, as shown in Figure 3, not all
languages benefit from this method; in particular,
low-resource languages such as Hindi and Swahili
seem to achieve the same results. On the other
side of the coin, high-resource languages such as
English, ltalian and Chinese seem to have robust
benefits. We estimate languages using Common-
Crawl (Common Crawl, 2021) as a benchmark, as
shown in Table 3.

However, although the method we proposed
achieved poor results in low-resource languages,
the starting baselines are very low. Therefore, in
Section 4.2, to observe the impact of the type of
demonstrations from a macroscopic point of view,
we study whether decreasing the number of demon-
strations equally provided following our order pro-
duces the desired effects.

4.2. The Power of the Demonstrations

Curriculum-based instruction-tuning is more effi-
cient as the number of demonstrations decreases.
Figure 4 shows the average performance of the
models evaluated on the benchmarks introduced in
Section 3. In particular, it can be observed that in
both the MGSM arithmetic task and the MLQA un-
derstanding task, models instructed with cognitively

avg avg
Task Alpaca Curriculum 1)

MGSM 31.5 32.8 +1.3
MLQA 33.0 35.6 +2.6
MMLU 26.1 29.4 +3.3
BBH 247 26.4 +1.7

Table 2: Averages of the results on proposed bench-
marks. The column ¢ indicates the difference be-
tween avg-Curriculum and avg-Alpaca in custom
language Learning (Alpaca).

Language Percentage
English (en) 46.3%
Russian (ru) 6.0%
German (de) 5.4%
Chinese (zh) 5.3%
French (fr) 4.4%
Japanese (ja) 4.3%
Spanish (es) 4.2%
ltalian (it) 3.9%
Other 19.1%

Table 3: Language distribution of CommonCrawl
(Common Crawl, 2021).

motivated orders outperform models instructed with
randomly provided demonstrations. This result con-
firms that the proposed method does indeed work,
as although fewer demonstrations are present, they
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Figure 5: Average accuracies (%) on benchmarks presented in Section 3.1 using additional Large
Language Models instruction-tuned on original Alpaca (Li et al., 2023) pipeline and our Curriculum
Learning pipeline introduced introduced in Section 2.2.

make the models learn better if they are ordered.

Although these results appear to be stable for
Llama-7b, the experiments are not complete. In
Section 4.3, we propose the same experimental
pipeline by introducing additional LLMs from dif-
ferent families and then training them in different
ways.

4.3. Scaling Curriculum Learning to
other Models

Learning heuristics inspired by cognitive mecha-
nisms are easily scalable to different LLMs. Figure
5 shows the accuracies obtained from further com-
monly trained models using Alpaca and customized
versions for different languages.

In particular, we select Llama2-7b, Llama2-13b
(Touvron et al., 2023), Gemma-7b (Team et al.,
2024)%, and Mistral-7b (Jiang et al., 2023). The
choice was mainly dictated by the common use with
which the models were instructed to follow the in-
structions using ALpaca and the language-specific
derivatives. As can be seen from Figure 5, the
model that benefits the most is Gemma-7b, while
on Mistral-7b, there seems to be less effect. Fur-
thermore, comparing Llama2-7b and Llama2-13b
from the same family but with different numbers of
parameters, it can be observed that the model with
more parameters benefits less from this technique.

3Note that we have added Gemma-7b (it is supervised
fine-tuned as Alpaca-like manner) to our evaluation in
the camera-ready version.

We assume this is due firstly to the higher primary
performance and secondly to the relationship be-
tween the number of parameters and the pretty
poor data set. In future studies, we will continue to
investigate the strategic impact of the quality and
quantity of instructions that LLMs need to optimize
their instruction-tuning phases.

5. Limitations & Future Works

The cognitively motivated metrics used to provide
examples during instruction-tuning, as proposed
in Section 2, have shown multiple benefits on the
benchmarks introduced in Section 3. Detailed anal-
yses have been extensively discussed in Section
4, touching on strengths and weaknesses. Among
the strengths are the versatility and scalability of
the approach across different models. On the other
hand, there needs to be more effectiveness in low-
resource languages and models with many param-
eters. In future developments, we intend to improve
this aspect by considering the introduction of struc-
tured ecosystems (Zanzotto et al., 2020; Ranaldi
and Pucci, 2023b) and multi- and cross-lingual ap-
proaches. Finally, we would like to investigate the
impact of previously seen demonstrations during
in-training and data contamination (Ranaldi et al.,
2023c, 2024), as well as the behaviors that Large
Language Models exhibit in interaction with users
(Ranaldi and Pucci, 2023c).
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6. Conclusion

In this work, inspired by Curriculum Learning, we
proposed a cognitively motivated instruction-tuning
technique. Using Bloom’s taxonomy as a complex-
ity metric, we organized instruction-tuning corpora
in different languages, which we then used to sea-
son the instruction-tuning phase. In order to pro-
duce a robust evaluation, we tested different mod-
els in various languages. From the final results,
we observed that this technique brings significant
benefits in reasoning tasks and question answer-
ing. Through this study, we aim to narrow the gap
between Large Language Models and instruction
inspired by human cognitive processes hoping that
this research-line could continue in this direction.
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