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Abstract
We explore a strategy to handle controversial topics in LLM-based chatbots based on Wikipedia’s Neutral Point of
View (NPOV) principle: acknowledge the absence of a single true answer and surface multiple perspectives. We
frame this as retrieval augmented generation, where perspectives are retrieved from a knowledge base and the LLM
is tasked with generating a fluent and faithful response from the given perspectives. As a starting point, we use a
deterministic retrieval system and then focus on common LLM failure modes that arise during this approach to text
generation, namely hallucination and coverage errors. We propose and evaluate three methods to detect such errors
based on (1) word-overlap, (2) salience, and (3) LLM-based classifiers. Our results demonstrate that LLM-based
classifiers, even when trained only on synthetic errors, achieve high error detection performance, with ROC AUC
scores of 95.3% for hallucination and 90.5% for coverage error detection on unambiguous error cases. We show that
when no training data is available, our other methods still yield good results on hallucination (84.0%) and coverage
error (85.2%) detection.

Keywords: conversational systems, natural language generation, evaluation methodologies

1. Introduction

Large Language Models (LLMs) have achieved
state-of-the-art performance on a wide range of
tasks, and a growing audience of users is engag-
ing with LLM-driven chatbots.1 While these chat-
bots are highly flexible and generalizable, they
are known to struggle with factuality and bias
(Sheng et al., 2019; Shuster et al., 2021; Chang
and Bergen, 2024). In many real world scenarios,
model developers require more precise control over
LLM-based chatbot responses.
In this paper, we investigate how LLMs can be

used with retrieval augmented generation for con-
troversial topics, and we propose methods to de-
tect errors in the tuned LLM responses. In retrieval
augmented generation, factual information is re-
trieved and provided as additional context to an
LLM (Lewis et al., 2020; Li et al., 2022; Azure, 2023;
Iyer and Thallam, 2023). Through curated retrieval
sources, retrieval augmented generation enables
fine-grained control over LLM responses. However,
in the case of controversial topics, users often seek
information for which there are not agreed-upon
factual answers. These topics range from the in-

*Joint first authorship.
♦Research group leadership.

1Among others: https://openai.com/blog/chatgpt;
https://bard.google.com; https://www.anthropic.com/
index/introducing-claude.

consequential (e.g. “the superiority of the Yankees
vs. the Red Sox”) to the fundamental (“What reli-
gious faith should I adhere to?”). Building useful
LLMs requires the ability to ensure that LLM re-
sponses adhere to desired levels of neutrality and
nuance in such cases.
Thus, we introduce the NPOV Response Task:

given a query about a controversial topic, the model
retrieves arguments for multiple perspectives and is
tasked to generate a multi-perspective response, in-
spired by Wikipedia’s Neutral Point of View (NPOV)
principle. We use a deterministic argument retrieval
system, and we focus on the challenge of faith-
ful response generation from provided arguments.
We adapt a conversational LLM to this task and
examine two common error types that violate faith-
fulness to inputs: (1) hallucinations (generating
unprovided arguments), and (2) coverage errors
(omitting provided arguments).

We build a dataset of model query-response
pairs, conditioned on arguments from Britannica’s
ProCon (ProCon.org, 2022). Using expert anno-
tators, we identify instances of hallucination and
coverage errors. We then propose methods for de-
tecting such hallucination and coverage errors, both
with and without access to human-labeled data.

Our main results demonstrate that with access
to error-free examples and examples containing
only synthetic errors, LLM-based classifiers can
achieve ROC AUCs of 95.3% and 90.5% in de-

https://openai.com/blog/chatgpt
https://bard.google.com
https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
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Should abortion be legal?

This is a controversial topic and people hold different
perspectives on it. Let me show a few…
People in support of abortion  claim  that  abortion
bans deny bodily autonomy, which has wide-ranging
repercussions. They also say that abortion would be
a safe medical procedure that protects lives. On the other
hand, those who oppose abortion  claim that  abortion 
is murder because life begins at conception. Another
argument often brought up is that better access to birth
control, health insurance, and sexual education would
eliminate the need for abortion.

KB

Abortion is a safe medical procedure that protects 
lives.

Abortion bans deny bodily autonomy, creating 
wide-ranging repercussions.

… Increased access to birth control, health insurance,
and sexual education would make abortion
unnecessary.

Life begins at conception, making abortion murder.

…

User
query

Response
intro

Response
main

Figure 1: Example NPOV response to a user query on a senstive topic (left) based on pro and con
perspectives with two arguments each, as obtained from a knowledge base (right). Arguments taken from
ProCon.org (2022). Our error detection methods focus on the NPOV main response.

tecting organic hallucinations and coverage errors
respectively on our task. Even without access to
annotated data, we can leverage salience and word
overlap techniques to achieve ROC AUCs of 84.0%
for hallucinations and 85.2% for coverage errors.
While we focus on NPOV response generation, our
approaches can be appliedmore generally to detect
hallucination and coverage errors in retrieval aug-
mented generation, facilitating finer-grained control
over LLM responses.

2. Handling Controversial Topics

Our work is centered around how LLMs can be con-
trolled to respond to queries about controversial
topics for which there is no single correct answer.
For example, in response to “Should abortion be
legal?”, an LLM without direction might produce a
highly opinionated or offensive response. To ad-
dress such concerns, “guardrails” are often added
to LLMs, either completely preventing the genera-
tion of responses to such topics or responding with
canned answers (“I am just a language model and
cannot answer this question...”). Such approaches
can lead to erasure harm and reduce the useful-
ness of the system on potentially important topics.
Another approach is to personalize responses to
align with a user’s position; however, this can rein-
force harmful biases and popular misconceptions,
and act as a chatbot echo chamber.
As an alternative strategy, we propose to ac-

knowledge the lack of agreement and surface main
viewpoints instead. This approach is inspired by
Wikipedia’s Neutral Point of View (NPOV) princi-
ple, which requires that content is written such that
it represents “fairly, proportionately, and, as far as
possible, without editorial bias, all the significant
views that have been published by reliable sources
on a topic.”2 Figure 1 (left) gives an example of an
NPOV response on a highly controversial topic. We

2From https://en.wikipedia.org/wiki/Wikipedia:Neutral
_point_of_view, last accessed 2023/10/20.

explore whether such responses can be generated
by an LLM using retrieval augmented generation,
and we detect common failure modes such as hal-
lucination and coverage errors.

2.1. NPOV Response Generator

We separate response generation from content
generation. For the scope of this paper, we as-
sume that there is a content retrieval process and
a knowledge base of curated arguments for differ-
ent perspectives. The knowledge base we use in
this paper consists of arguments from Britannica’s
ProCon website (§2.2).
The NPOV Response Task is then: given the

user query and retrieved perspectives (where per-
spectives consist of concatenated arguments), gen-
erate a response that consists of an introduc-
tion sentence, serving as a bridge from the user
query, and a verbalization of the given perspectives.
When generating the response, relevant aspects of
the given arguments must not be dropped (ensure
full coverage) and no other arguments should be
added (avoid hallucinations). This task formulation
gives model developers fine-grained control over
LLM responses. An example is shown in Figure 1.

We use soft prompt-tuning (Lester et al., 2021) to
adapt an LLM to generate NPOV responses given
pro and con arguments. Our base LLM is a 64B
decoder-only LaMDA model pre-trained on public
dialog data and web text (Cohen et al., 2022). We
use a soft prompt length of 5 tokens, and we train
for 20K steps with batch size 16 and learning rate
0.1. We typically reach maximum dev set perfor-
mance after 2-5K steps. Specific prompt format
and detailed hyperparameters are in Appendix B.
Our training set consists of 80 query-response

pairs covering 9 controversial topics from ProCon
(§2.2). ProCon question headers (e.g. “Should
abortion be legal?”) are used as user queries. For
each topic, we randomly sample one, two, or three
arguments from both the pro and con side in Pro-

https://en.wikipedia.org/wiki/Wikipedia:Neutral_point_of_view
https://en.wikipedia.org/wiki/Wikipedia:Neutral_point_of_view
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Con3 and then manually write several paraphrased
responses capturing these arguments. We observe
that after prompt-tuning, the NPOV Response Gen-
erator generalizes well beyond the topics and argu-
ments seen during training.

2.2. ProCon as a Knowledge Base
Britannica’s ProCon (ProCon.org, 2022) is a web-
site presenting pros and cons for commonly de-
bated topics. Pros and cons are researched and
compiled by ProCon research staff and editors, and
they aim to be nonpartisan.4 As of October 2022,
ProCon contains 72 active (i.e. “non-archived”) top-
ics. For both the pro and con perspective for each
topic, several arguments are given, each consist-
ing of a short argument phrase accompanied by
a longer explanation. The median number of ar-
guments per perspective per topic is 4, but some
topics contain many more arguments (e.g. Social
Media has 23 arguments per perspective). We ran-
domly sample ProCon arguments as inputs to the
NPOV Response Generator for each topic (§4.1).
Each topic is associated with a leading question in
ProCon (e.g. “Should abortion be legal?”), which
we treat as the user query asked to the LLM.

3. Methods to Detect Hallucinations
and Coverage Errors

We focus on hallucination and coverage error de-
tection, adopting the following definitions:
• If the generated response contains at least one
argument which was not provided, we call this
a hallucination.
• If one or more of the given arguments is com-

pletely dropped from the response, we call this
a coverage error.

We call these full errors, as they address the hal-
lucination or coverage of a full argument. On top
of these well-defined errors, we notice that the
NPOV Response Generator sometimes produces
other unfaithful changes to arguments, including:
(1) partial hallucinations (slight meaning change,
e.g.“consensus” becomes “unanimity”), (2) partial
coverage errors (only a part of the argument is
dropped), (3) repetitions (response contains the
same given argument multiple times), and (4) per-
spective confusions (response inverts the perspec-
tives, e.g. pro arguments are presented as cons).
We call all of these ambiguous errors.

3We always ensure the same number of pro and con
arguments.

4Of course, not all controversial topics can be framed
as pro versus con debates, and such a binary framing of
highly complex topics can omit important nuance (see
Ethical Considerations).

We propose three methods for detecting halluci-
nation and coverage errors in generated responses:
ROUGE, salience, and LLM-based classifiers.

3.1. ROUGE
As a baseline, we use ROUGE-1 (word-matching)
to compute hallucination and coverage error scores
(Lin, 2004). For a given response from the NPOV
Response Generator, ROUGE calculates the pro-
portion of response words that are matched in the
input arguments (ROUGE-1 precision) and the pro-
portion of input argument words that are matched
in the response (ROUGE-1 recall).5 Low precision
is indicative of hallucination, and low recall is in-
dicative of a coverage error. Because the NPOV
Response Task requires that both input perspec-
tives be covered, we compute ROUGE-1 recall sep-
arately for each input perspective and then com-
pute the minimum as our overall recall score. For
ROUGE, words are defined using whitespace and
punctuation separation, dropping stop words and
using word stemming from NLTK (Bird et al., 2009).

3.2. Salience
Aside from word matching, previous work has pro-
posed methods to attribute output subword tokens
to input tokens in LLMs using model gradients (De-
nil et al., 2014; Li et al., 2016; Bastings and Filip-
pova, 2020). These methods are computationally
costly, but they can often capture more nuance (e.g.
word synonyms and token interactions) than simple
word-matching. One popular approach is to com-
pute the logit (pre-softmax probability) gradient for
each output token with respect to each input token
embedding, producing a gradient vector for each
input-output token pair. The attribution from each
input to the output token is defined as the dot prod-
uct between the corresponding gradient vector and
the input token embedding (Denil et al., 2014).6
In the NPOV Response Generation scenario,

there are attribution values from each input token
(e.g. the given arguments per perspective and the
user query) and each previously generated token
to each output token. This produces a token-to-
token salience mapMtokens ∈ R(m+`)×`, where m
is the number of input tokens and ` is the num-
ber of model response tokens. Before any further
processing, we square the salience map and nor-
malize columns to sum to one (i.e. the attributions
to each output token sum to one).

5We also implemented a hallucination and coverage
error detection method that matched input and response
arguments with BERTScore (Zhang et al., 2020), but we
obtained similar results to ROUGE. We omit results due
to space limitations.

6We obtain similar results using gradient L2 norms.
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Figure 2: Top: salience map from input argument content words (rows) to model response content words
(columns). Bottom: individual word scores for contribution (input words; left) and attribution (response
words; right). The purple highlighted words are hallucinated in the model response.

Because we are primarily concerned with hallu-
cination and coverage errors for content words, we
convert the subword token-to-token salience map
to a word-to-word salience mapMwords. We define
words by concatenating consecutive LLM tokens
that are not separated by punctuation or whites-
pace; we then drop stop words, as defined in NLTK
(Bird et al., 2009). We define the attribution from
an input word w0 to an output word w1 as the maxi-
mum attribution from any subword token in w0 to
any subword token in w1. We restrict our salience
maps to the input argument words (rows) and the
output NPOV response words (columns). A sample
word-to-word salience map for a query-response
pair is shown in Figure 2.
Qualitatively, we observe that covered words

tend to have a high contribution to a single cor-
responding word in the response. Thus, we define
the contribution score of an input argument word
as its maximum contribution to any response word
(i.e. maximum for each row ofMwords). We define
the attribution score of a response word as its max-
imum attribution from any input argument word (i.e.
maximum for each column ofMwords). Contribution
and attribution scores for input words and response
words respectively are shown in Figure 2.

To compute an example-level contribution score
for a query-response pair, we compute the mean
contribution score over words in each of the two
input perspectives. As with ROUGE, we take the
minimum of the two perspective contributions as a

final contribution score. To compute an example-
level attribution score, we compute the mean at-
tribution score over all response words. Finally,
hallucination and coverage error scores in [0, 1]
are computed by subtracting the attribution and
contribution scores respectively from 1.0. Formal
equations are in Appendix C.

3.3. LLM-Based Classifiers

The two previous methods for detecting hallucina-
tion and coverage errors are data-free, not requir-
ing labeled model responses for training. For the
non-data-free scenario, we explore how well LLM-
based classifiers perform on these tasks, relying
on a small set of human annotations of model re-
sponses (∼500 examples; §5.2). Our classifiers
are built on FLAN-PaLMChilla, a 62B decoder-
only LLM (Chowdhery et al., 2023) which has
been instruction-tuned on a large number of tasks
(Chung et al., 2022). We use soft prompt-tuning to
adapt this LLM into classifiers for hallucination and
coverage error detection. The classifiers have as
input: (1) the user query, (2) the generated NPOV
response, and (3) the given arguments per per-
spective. We train the LLM to predict the label
“NO” if there is a full error and “YES” otherwise.
Prompt-tuning hyperparameters are the same as
§2.1; specific prompt formats are in Appendix B.
We tune the classifiers separately for the two error
types.



4733

For inference, we generate error classification
scores in [0, 1] by obtaining the LLM’s log perplexity
scores for the tokens corresponding to the two out-
put class labels (“YES” and “NO”), apply softmax,
and take the score of the negative class (“NO”).7

4. Dataset

To train and evaluate the hallucination and cover-
age error detection methods above on the NPOV
Response Task, we construct datasets of organic
(i.e. naturally occurring) and synthetic errors, with
and without paraphrasing.

4.1. Annotation Procedure
For each of the 72 controversial topics from Pro-
Con, we generate a unique query and up to 18
query-response pairs by first randomly sampling
combinations of pro and con arguments, with ei-
ther 1, 2, or 3 arguments per side, and then using
the NPOV Response Generator to generate a re-
sponse. We annotate these query-response pairs
(also called examples) in three stages to (1) iden-
tify error-free examples, (2) identify examples with
errors, and (3) generate paraphrased examples:
1. For the first three examples per topic, we sample

two generator responses, with sampling tem-
peratures 0.0 and 0.7. We annotate whether
responses contain hallucinations or coverage
errors, annotating examples with a mix of the
two temperatures. We annotate the token spans
in the response that cover each input argument,
along with any hallucinated response spans and
uncovered input argument spans.

2. Because examples with hallucination and cov-
erage errors are less frequent than error-free
examples even for high temperatures (20.0%
errors in 0.7 temperature responses), we sam-
ple a single 0.7 temperature response for each
of the remaining (up to) 15 examples per topic.8
We annotate for hallucination and coverage er-
rors, including full and ambiguous errors (§3).

3. Hallucination and coverage error detection
methods should capture whether meaning is
retained between input arguments and gener-
ated responses, even if the arguments are not
copied verbatim. We therefore generate exam-
ples with enforced paraphrasing between the
input arguments and the response. To do so,

7For single-token labels, this score equals the proba-
bility of “NO” conditioned on either “YES” or “NO” output.
We obtain similar results training the models with flipped
labels, i.e. “YES” for errors and “NO” otherwise.

8Preliminary experiments with the NPOV Response
Generator suggest that temperatures above 1.0 tend to
produce overly long and irrelevant responses.

we paraphrase the input arguments for all error-
free examples generated in Step 1. For each
argument, we use an off-the-shelf paraphrasing
tool and manually verify that the paraphrasing
does not induce substantial meaning change.9

In total, we identify 160 examples with no errors
and 326 examples with at least one error, and we
generate 152 paraphrased examples with no errors.

4.1.1. Inter-Annotator Agreement

To validate the viability and coherence of our an-
notation task, we hired a team of 10 external an-
notators to re-identify both hallucination and cover-
age errors in our dataset. Our annotation provider
was paid 49 USD per hour for a total of 25 hours
of work (Appendix D). Annotators were presented
with 188 of the query-response pairs annotated in
annotation Step 1 (§4.1) and 86 pairs from Step 2.
Given the user query, the provided arguments, and
the response from the NPOV Response Generator,
annotators were asked to mark whether each re-
sponse had a hallucination or coverage error. Each
query-response pair was annotated by 5 annota-
tors. We compare the annotator majority vote to
our annotated labels, finding 90% agreement for
hallucinations and 94% for coverage errors. To
measure inter-annotator agreement, we compute
Krippendorff’s alpha for hallucinations (α = 0.60)
and coverage errors (α = 0.73) across the 10 anno-
tators. These values are in line with or above similar
text classification tasks (Wulczyn et al., 2017).

4.2. Synthetic Errors Dataset
Due to the relative rarity of organic errors produced
by the NPOV Response Generator, we syntheti-
cally generate examples with errors by modifying
error-free query-response pairs. Specifically, we
modify the list of given arguments while keeping the
original response unchanged. For coverage errors,
we add one randomly sampled unused argument
for the given topic from ProCon and add it to the list
of given arguments. This creates a full coverage
error because the original response does not cover
this argument. For hallucinations, we randomly re-
move one of the given arguments. This creates
a hallucination because the original response still
addresses the removed argument. We apply syn-
thetic error generation to both paraphrased and
unparaphrased examples that were annotated as
error-free in §4.1 (312 examples), generating 667
new examples with synthetic hallucinations, syn-
thetic coverage errors, or both.

9We use https://quillbot.com/ for paraphrasing. We
find it more efficient to paraphrase the input arguments
than to paraphrase the whole response.

https://quillbot.com/
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Hallucinations Coverage Errors
Test set error type ROUGE Salience Classifier ROUGE Salience Classifier
Full organic 0.840 0.808 0.953 0.795 0.852 0.905
Unparaphrased synthetic 0.772 0.736 0.998 0.890 0.875 0.986
Paraphrased synthetic 0.680 0.708 0.977 0.746 0.831 0.993
Ambiguous organic 0.814 0.772 0.851 0.834 0.755 0.756

Table 1: ROC AUCs for example-level hallucination and coverage error detection on four test sets (§4.3).

4.3. Test Sets with Different Error Types
Taking the annotations and synthetic errors gen-
erated above, we split the 72 ProCon topics into
a train set (9 topics), development set (28 topics),
and test set (35 topics). We intentionally make our
development and test sets substantially larger than
our train set because our work focuses on evalua-
tion (rather than training) of the NPOV Response
Generator. Our dataset contains two types of query-
response pairs (paraphrased and unparaphrased)
and three types of errors (synthetic full, organic full,
and organic ambiguous). We evaluate the perfor-
mance of our error detection methods on different
slices of the test set to better understand where dif-
ferent approaches have strengths or weaknesses.
Hence, each table in the results section states the
specific test set slices evaluated:

• Full organic: unparaphrased error-free exam-
ples vs. organic full errors.
• Unparaphrased synthetic: unparaphrased
error-free examples vs. corresponding exam-
ples with synthetically-generated errors.
• Paraphrased synthetic: paraphrased error-

free examples vs. corresponding examples with
synthetically-generated errors.
• Ambiguous organic: unparaphrased error-
free examples vs. ambiguous organic errors,
including partial errors, repetition, and perspec-
tive confusion (§3).

5. Results

5.1. Example-Level Error Detection
First, we evaluate the three error detection methods
(ROUGE, salience, and classifiers) at the example-
level, i.e. detecting whether a query-response pair
contains an error. The classifiers shown here are
trained only on query-response pairs which are
either error-free or contain synthetic errors, includ-
ing both paraphrased and unparaphrased versions
(503 examples total); we explore the impact of train-
ing data on classifier performance in §5.2.
Table 1 shows ROC AUC scores on the differ-

ent test sets (§4.3) for all three methods.10 While

10The area under the receiver operating characteristic

the full organic set (organic error-free examples
vs. organic full errors) is the most realistic, our
synthetic sets allow for more controlled evalua-
tions. For all four test sets and for both halluci-
nation and coverage errors, the ROC AUC differ-
ence when comparing the best performing method
to either other method is statistically significant
(p < 0.001), using the Wilcoxon statistic (Hanley
and McNeil, 1983) and Bonferroni correction for
multiple comparisons (Bonferroni, 1936; Vander-
Weele and Mathur, 2019).

Classifiers consistently outperform the other two
methods by a large margin on all sets except am-
biguous coverage errors (discussed below), with
ROC AUCs above 90% for both hallucination and
coverage error detection, for all full error types
(organic and synthetic, paraphrased and unpara-
phrased). Comparing ROUGE and salience, re-
sults are mixed. On the full organic errors, ROUGE
performs better at detecting hallucinations (84.0%
AUC), whereas salience performs better at detect-
ing coverage errors (85.2% AUC).
For copy-like tasks with few expected word

changes, ROUGE outperforms salience on both
hallucination and coverage error detection (results
on the unparaphrased synthetic errors set). How-
ever, on the paraphrased synthetic errors, salience
appears to capture the underlying semantics better
than ROUGE, allowing it to more accurately detect
both hallucination and coverage errors.

Finally, we evaluate our methods on ambiguous
errors (including partial argument hallucination and
coverage errors, argument repetition, and perspec-
tive confusion; see §3). ROUGE performs well
here, likely due to minimal natural paraphrasing
from the NPOV Response Generator. Classifier
ROC AUC scores drop substantially on ambiguous
errors, likely because classifiers are trained only on
full errors. This discrepancy seems most problem-
atic for coverage error detection, where classifiers
perform even worse than ROUGE. Future work
should establish clearer definitions of ambiguous
errors, allowing larger sets of ambiguous errors to
be annotated and used to train classifiers.

curve (ROC AUC) quantifies classification performance
across classification thresholds by comparing the trade-
off between true positive rate and false positive rate.
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Hallucinations Coverage Errors
Error-free Error-free

Test set error type +Synth +Para +Dev +Org + Synth +Para +Dev +Org
Full organic 0.789 0.828 0.953 0.920 0.880 0.903 0.905 0.956
Ambiguous organic 0.807 0.820 0.851 0.862 0.702 0.529 0.756 0.640

Table 2: ROC AUC scores for classifiers trained on different amounts and types of data (§5.2), ordered
from smallest to largest training set size. Table 1 results use the classifiers trained on +Dev.

Hallucinations Coverage Errors
Test set error type ROUGE Salience ROUGE Salience
Full organic 0.673 0.724 0.669 0.799
Unparaphrased synthetic 0.697 0.710 0.693 0.808
Paraphrased synthetic 0.614 0.673 0.582 0.742
Ambiguous organic 0.542 0.542 0.738 0.740

Table 3: ROC AUC scores for word-level error detection using ROUGE and salience.

5.2. Classifier Training Data Ablations

We analyze the impact of different types and
amounts of training data on classifier performance,
considering the following four scenarios:

• Error-free +Synth: all error-free query-
response pairs, plus synthetic errors; training
split only (70 examples).

• +Para: previous, plus equivalent paraphrased
examples; training split only (138 examples).

• +Dev: previous, plus equivalent examples from
the development split (503 examples).

• +Org: previous, plus examples with organic full
errors; training and development splits (573 ex-
amples).

Table 2 shows classifier performance on the full
organic and ambiguous organic test sets (§4.3).
For coverage error detection, performance strictly
improves on the full organic set as we add more
training data. However, adding the organic error
examples leads to a decline in performance on the
ambiguous organic set. For hallucination detection
as well, we see performance improvement when
adding more training data. Adding the organic er-
rors leads to a performance drop on the full organic
set, but not the ambiguous organic set.
Overall, adding more data, even consisting of

synthetic errors, leads to improvements on most
test sets for both hallucination and coverage error
detection. Surprisingly, adding organic errors on
top leads to mixed results, showing that organic
data is not necessarily always helpful or needed for
good classifier performance. The +Dev scenario
might already be large enough that the addition of
organic errors does not provide benefit.

5.3. Word-Level Error Detection

In practice, it may also be useful to locate specific
response words that are hallucinated, or specific in-
put words that are uncovered. Of the methods in §3,
ROUGE and salience both produce hallucination
and coverage error scores at the word level. Specif-
ically, the ROUGE coverage error score would be
0 if an input word is matched in the response (and
1 otherwise), and the ROUGE hallucination score
would be 0 if a response word is matched in the
input arguments (and 1 otherwise). For salience,
before example-level aggregation, scores are al-
ready computed per word (§3.2). Sample word-
level salience scores for hallucination and coverage
errors are shown in Figure 2.

We compare the word-level hallucination and cov-
erage error scores from salience and ROUGE with
the ground truth annotations of hallucinated and
uncovered words annotated in our test sets (§4.1).
Results are computed over all non-stop words in
each test set, defining words by merging LLM to-
kens (§3.2); we compute results over all response
words for hallucination word detection, and over all
input words for coverage error word detection. Re-
sults are reported in Table 3. Differences between
salience and ROUGE are statistically significant for
all test sets and error types (p < 0.001) except the
ambiguous organic error set, using the Wilcoxon
statistic corrected for multiple comparisons as in
§5.1. Salience performs equally to or better than
ROUGE for detecting both hallucinated words in
model responses and uncovered words in input ar-
guments on all test sets. On the test set with para-
phrased synthetic errors, salience has the largest
relative gains over ROUGE, likely due to its ability
to capture semantics even in cases of word mis-
match, similar to the trends for example-level error
detection.
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6. Discussion

Overall, LLM-based classifiers trained on relatively
small amounts of data perform surprisingly well,
outperforming all other methods detecting full errors
and obtaining promising ROC AUC scores between
90% and 99%. This is especially notable given
that the classifiers are trained only on synthetic
hallucination and coverage errors and yet perform
well on the organic test set.

While worse than the classifiers, the data-free
methods presented here still achieve strong results.
Our experiments show that ROUGE is a strong
data-free baseline for hallucination and coverage
error detection in tasks with minimal paraphrasing.
When more paraphrasing is expected, salience pro-
vides stronger results, appearing to better capture
semantics than simple word matching. Moreover,
salience is effective for word-level hallucination and
coverage error detection, allowing us to locate the
parts of a generated response that are problematic.

Our experiments also show the value of different
test set slices. While the synthetically constructed
datasets might diverge from the true data distri-
bution, they offer a way to analyze strengths and
weaknesses of different methods in an isolated
fashion, e.g. paraphrased examples demonstrating
the shortcomings of ROUGE.
Finally, all methods struggle on ambiguous or-

ganic errors, although these results are inconclu-
sive. Largely, this set is a “catch-all” for problem-
atic and low-agreement errors, possibly explaining
the poor performance of different error detection
approaches. Training classifiers on this subset is
important future work, but requires a larger dataset
of more clearly-defined ambiguous errors.

7. Related Work

Errors in controlled text generation. Our ap-
proach to NPOV Response Generation using pro-
vided input perspectives is an example of retrieval
augmented generation, where information (e.g. a
document or paragraph) is retrieved from a knowl-
edge source (e.g. a search engine) and used to
condition a model response (Li et al., 2022). Like
in our scenario, retrieval-augmented models some-
times exhibit hallucinations (Dziri et al., 2022) and
coverage errors (Krishna et al., 2021) relative to
the retrieved source. Our error detection methods
may be applied to these scenarios more generally.
Specifically, our task is closely related to table-

to-text generation, which aims to generate fluent
and faithful natural language descriptions of tabu-
lar data. Table-to-text generation has been studied
using a variety of datasets, including WikiBio (Le-
bret et al., 2016), ToTTo (Parikh et al., 2020), DART
(Nan et al., 2021), and WebNLG (Gardent et al.,

2017). Traditional metrics such as ROUGE, BLEU,
and METEOR compare model responses to a ref-
erence output, but metrics developed specifically
for table-to-text tasks (e.g. PARENT; Dhingra et al.,
2019) often consider both the table source and
reference output when scoring a model response,
to better preserve faithfulness to the source (Liu
et al., 2021; Thomson and Reiter, 2021). Our work
similarly compares model responses to the input
source; however, our input fields are perspectives
composed of several full sentences (arguments)
rather than short expressions (e.g. entities or num-
bers that allow minimal paraphrasing, as in most
table-to-text tasks). For this reason, pure matching-
based scoring approaches (e.g. ROUGE, BLEU,
and PARENT) are less effective for our task.
More broadly, hallucinations are a common ar-

tifact in natural language generation (NLG). At a
high level, they can be described as cases where
generated output is “unfaithful” to provided or de-
sired source content (Ji et al., 2023). Due to the
fluency of modern NLG systems, hallucinations can
remain undetected and mislead users. Tolerance
to such errors is particularly low in summarization
and table-to-text tasks, where a retrieved source is
provided. In the NPOV Response Task, we focus
on full errors, where a hallucinated or uncovered ar-
gument can be identified relatively unambiguously.

Prompt-tuning. Both the NPOV Response Gen-
erator (§2.1) and the classifiers (§3.3) use soft
prompt-tuning, a method where only a small num-
ber of parameters are tuned and the base LLM is
left unchanged (Lester et al., 2021). Mozes et al.
(2023) show that LLMs can be prompt-tuned even
on very small datasets to function as classifiers.
Open-source code to train such classifiers is avail-
able through the Gemma Responsible Generative
AI Toolkit (Google, 2024).

Salience. Previous work has identified hallucina-
tions in machine translation using proportions of
source contributions to output tokens (Dale et al.,
2023; Voita et al., 2021), using aggregated lay-
erwise token attribution (Ferrando et al., 2022).
Our salience-based method for error detection is
similar, but attributions are based on loss gradi-
ents (Bastings and Filippova, 2020). We focus on
dot products between gradients and inputs, which
are often used to roughly quantify model attribu-
tions from input tokens (Ding and Koehn, 2021;
Boggust et al., 2023; Zhao et al., 2022).11 Previous
work has applied gradient-based salience methods
to fine-tuned encoder-decoder and encoder-only
classification models (Tenney et al., 2020). We ex-
tend this to decoder-only models, prompt-tuned on
sequence-to-sequence tasks.

11We obtain similar results using gradient L2 norms.
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8. Limitations

Our work has several limitations. The NPOV Re-
sponse Generator is trained and evaluated only in
English, and our NPOV Response Task does not
address how to create the content in the perspec-
tives and their arguments. The arguments used
in our work are pulled from ProCon, which limits
both our set of controversial topics and our sets
of perspectives (i.e. only pro and con; see Ethical
Considerations); future work might consider more
nuanced methods of perspective identification, se-
lection, and/or generation.
Our work also does not focus on biases in LLM

hallucinated or omitted content. For example, the
NPOV Response Generator may be more likely to
hallucinate or omit arguments for specific topics or
perspectives, e.g. based on the frequency of top-
ics and perspectives in the LLM pre-training corpus
(Durmus et al., 2023). Even when focusing just on
error detection rather than error content, we focus
primarily on errors that are easy to identify and have
high levels of inter-annotator agreement. Based on
our own annotations, inter-annotator agreement on
ambiguous errors is much lower than for full errors.
The majority of ambiguous errors that we observed
can be classified as partial errors, repetition, or ar-
gument confusion (§3), but an important branch
of future work is to establish more thorough tax-
onomies and annotation schemes for hallucination
and coverage error types.
Finally, in future work we hope to evaluate

whether our findings on LLM-based classifier per-
formance generalize to other (ideally publicly avail-
able) LLMs. Many significant results involving
LLMs have generalized to other LLMs (e.g. in-
context learning, chain-of-thought reasoning, and
parameter-efficient tuning methods; Brown et al.,
2020; Wei et al., 2022; Lester et al., 2021), but our
results should be verified for other LLMs.

9. Conclusion

In this paper, we introduce the NPOV Response
Task as an approach to retrieval augmented genera-
tion for controversial topics. We focus on response
generation, after pro and con arguments are pro-
vided to an LLM.We propose and evaluatemethods
for detecting hallucination and coverage errors in
LLM-generated responses, and we demonstrate
a synthetic error generation strategy that can be
used to train and evaluate our proposed methods.
We find that prompt-tuned LLM classifiers trained
only on synthetic errors achieve high error detec-
tion performance on organic examples. Our other
methods, while performing worse than our classi-
fiers, still achieve strong results without the need
for training data.

Ethical Considerations

With the rise of LLM-based chatbots and broader
societal concerns about echo chambers, filter bub-
bles, and polarization, the ability of LLMs to pro-
vide neutral, factual, and nuanced responses to
controversial topics is an important avenue of work.
However, having LLMs respond to queries about
controversial topics is inherently challenging: who
decides what is controversial, neutral, and factual,
and how this is encoded in an LLM is a hard and
nebulous problem. Moreover, as LLMs and chat-
bot technologies become increasingly easy to cre-
ate, maliciously engineered andmaliciously applied
models are likely to become more prevalent. Re-
trieval augmented generation is a way to control
LLM responses in a maximally transparent way.
In this paper, we assume the existence of

a database with NPOV-expressed perspectives.
However, such a database is not an easy artifact
to create, and the contents will often be hotly con-
tested. The dataset we use is derived from Britan-
nica’s ProCon website (ProCon.org, 2022). How-
ever, this still reduces arguments to pro and con
perspectives, which can reinforce a binary vision
of the world. Our work also does not address how
to best arrive at and reflect consensus on specific
arguments. For example, when should the model
express “many experts” vs. “a few experts” as a
qualification for an argument? Failure here can
serve to elevate fringe arguments. Even deciding
whether a topic is controversial is already culturally
charged. For instance, the subject of gun control
might be a non-issue for some European countries
yet remain polarizing in the United States. Similarly,
omitting topics or arguments that are relevant for
minorities or non-Western countries risks reinforc-
ing systemic erasure and promoting socio-cultural
biases. To address and mitigate these biases in a
perspectives database, processes are necessary
to ensure that the group of experts providing per-
spectives is diverse and multicultural.

Themore basic question of when to apply an LLM
in practical scenarios needs careful consideration.
In some domains (e.g. medical information), even
very low error rates may not be acceptable, while
other domains (e.g. creative writing) have very
different risk profiles. Proper evaluations, policies,
and guardrails should be put in place before LLMs
are applied in practice to new domains.

Finally, the computational footprints of the NPOV
Response Generator and the LLM-based error clas-
sifiers are large, with each model built upon a
60B+ parameter LLM. Similarly, computing salience
maps for error detection requires computing gra-
dients from the NPOV Response Generator itself,
thus inducing a large computational cost. Of the
error detection methods evaluated in our work,
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ROUGE is by far the most computationally efficient.
Future work may consider more computationally
efficient approaches, such as evaluating smaller
models as error detection classifiers.
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Appendices

A. ProCon Dataset Details

We use the perspectives and arguments for the
different topics listed on Britannica’s ProCon web-
site as of October 2022 (ProCon.org, 2022). We
randomly split the 72 ProCon topics into train, dev,
and test, as shown in Table 4, ensuring no over-
lap in topics across these splits. In line with Pro-
Con’s usage guidelines, all arguments are used
verbatim as stated on the specific topic website
under the section “Pro & Con Arguments”. We
scrape the subtitles of the pro and con columns
as our arguments. The median number of argu-
ments per pro and con perspective per topic is 4,
with a maximum of 23 and a minimum of 2. The
ProCon data is publicly available through their web-
site, containing no personally-identifying informa-
tion about individuals. We follow the guidelines
specified by ProCon on “How to Use” their data
(https://www.procon.org/faqs/#II).

B. Prompt-Tuning Details

This section discusses implementation details of
(1) the NPOV Response Generator and (2) the
hallucination and coverage error classifiers, which
are both based on prompt-tuning an LLM. We use
the same prompt-tuning settings for both.

We deliberately refrain from resource-intense hy-
perparameter tuning and instead use configura-
tions previously shown to work well (Mozes et al.,
2023): we use soft prompt lengths of 5 tokens
initialized with a random sample of the model’s
5K most frequent token vocabulary embeddings
(Lester et al., 2021); we then train with a learning
rate of 0.1 with 500 warm-up steps and linear decay,
using small batch sizes of 16 for training and limit-
ing training to 20K steps. In most cases, we reach
the maximum development set performance after
2-5K steps. Prompt-tuning runs take a maximum
of 4 hours per run on 64 TPUv4 chips.
For the task representations, we utilize a “curly

braces format” to verbalize the task, consisting of
several key-value pairs in the input and target se-
quence for the LLM. This format is easily picked up
by modern LLMs, as they have typically been ex-
posed to code during pre-training. Figure 3 shows
how we format the task for the NPOV Response
Task (§2.1). Figure 4 shows how we format the
error classification tasks (§3.3).

B.1. Classifier Ablation:
Annotation-Free Scenario

As an additional experiment, we analyze whether
we can obtain good classifiers for hallucination and

coverage error detection by just re-utilizing the orig-
inal training data from the NPOV Response Task,
without the need to perform any of the manual anno-
tations described in §4.1. We turn the data used to
train the NPOV Response Generator into error clas-
sifier training data by (1) treating NPOV Response
Task training examples as no error-examples, and
(2) adding synthetic errors according to our proce-
dure in §4.2. We call this approach “annotation-free”
because we do not have to obtain any additional
human annotations for classifier training. The re-
sulting hallucination and coverage error classifiers
are trained on 50 error-free examples and 131 ex-
amples with synthetic errors.
Table 5 shows results on the organic test sets

for the “annotation-free” classifiers. Overall, these
results are significantly worse than results with
the non-annotation-free classifiers (compare to Ta-
ble 2), and often worse than other data-free ap-
proaches (compare to ROUGE and salience in Ta-
ble 1). This suggests that error classifier training
may require organic model responses, even if the
errors are synthetically generated.

C. Salience Formulas

In §3.2, we describe how we compute a word-to-
word salience mapMwords ∈ Rm×n, wherem is the
number of non-stop words in the input arguments
and n is the number of non-stop words in the gen-
erated NPOV response. Our salience maps are
based on gradient times input attribution scores,
but we obtain comparable results using gradient
L2 norms. Here, we include formal equations defin-
ing our hallucination and coverage error detection
metrics based onMwords.
Assume Ipro and Icon are the lists of non-stop

words in the input pro and con arguments respec-
tively. Assume Oresp is the list of non-stop words
in the generated NPOV main response. For each
input word wi ∈ Ipro ∪ Icon, we define its contribu-
tion score αi as its maximum contribution to any
response word (i.e. the maximum across the cor-
responding row ofMwords):

αi = max(Mwords[i, :]) (1)

Similarly, for each output word wj ∈ Oresp, we de-
fine its attribution score βj as its maximum attribu-
tion from any input argument word (i.e. the maxi-
mum across the corresponding column ofMwords):

βj = max(Mwords[:, j]) (2)
Sample contribution and attribution scores for input
words and response words respectively are shown
in Figure 2. For word-level error detection (§5.3),
these word-level scores can be converted into cov-
erage error scores 1.0−αi and hallucination scores
1.0− βj .

https://www.procon.org/faqs/#II
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Split # of topics Topics
Train 9 Animal Dissection; Concealed Handguns; Cuba Embargo; Filibuster; Free

College; GMOs (Genetically Modified Organisms); Net Neutrality; Obesity;
Vaping E-Cigarettes

Dev 28 Binge-Watching; Cancel Culture; Churches and Taxes; College Education;
Corporal Punishment; Daylight Saving Time; Dress Codes; Electoral Col-
lege; Employer Vaccine Mandates; Fighting in Hockey; Golf; Homework;
Kneeling during National Anthem; Marijuana (CBD) for Pets; Olympics;
Penny; Pit Bull Bans; Pokémon; School Vouchers; Space Colonization;
Standardized Tests; Student Loan Debt; Tablets vs. Textbooks; Teacher
Tenure; Uber & Lyft; US Supreme Court Packing; Video Games and
Violence; Zoos

Test 35 Abortion; American Socialism; Animal Testing; Artificial Intelligence;
Banned Books; Bottled Water Ban; Cell Phone Radiation; Climate Change;
Corporate Tax Rate; DACA & Dreamers; DC and Puerto Rico Statehood;
Defund the Police; Drone Strikes Overseas; Fracking; Gold Standard; Gun
Control; Historic Statue Removal; Mandatory National Service; Minimum
Wage; OTC Birth Control; Paying College Athletes; Police Body Cameras;
Prescription Drug Costs; Private Prisons; Recreational Marijuana Legal-
ization; Reparations for Slavery; Right to Health Care; Sanctuary Cities;
Saturday Halloween; School Uniforms; Social Media; Social Security Pri-
vatization; Universal Basic Income; Vaccines for Kids; Vegetarianism

Table 4: ProCon topics assigned to the different dataset splits.

Input Sequence:
User question: {Should abortion be legal?}
Topic: {abortion}
Perspective #1: {pro: Abortion bans deny bodily autonomy, creating wide-ranging repercussions. pro:
Abortion is a safe medical procedure that protects lives.}
Perspective #2: {con: Life begins at conception, making abortion murder. con: Increased access to birth
control, health insurance, and sexual education would make abortion unnecessary.}
Neutral response opening: {

Target Sequence:
This is a controversial topic and people hold different perspectives on it. Let me show a few…}
Neutral response core: {People in support of abortion claim that abortion bans deny bodily autonomy,
which has wide-ranging repercussions. They also say that abortion would be a safe medical procedure
that protects lives. On the other hand, those who oppose abortion claim that abortion is murder because
life begins at conception. Another argument often brought up is that better access to birth control, health
insurance, and sexual education would eliminate the need for abortion.}

Figure 3: Task format for the NPOV Response Task.

Test Set Hallucination Coverage
Full organic 0.739 0.896
Ambiguous org. 0.732 0.804

Table 5: Annotation-free classifer error detection
ROC AUC scores.

For example-level error detection (§5.1), we com-
pute an example-level coverage error score by (1)
taking the geometric mean of word-level contribu-
tion scores for each input perspective, (2) taking the
minimum of the two perspective scores (to reflect

the fact that both perspectives must contribute),
and (3) subtracting from 1.0 (lower contributions
are more likely to be coverage errors):

scov = 1.0−min
(
gmeanwi∈Ipro

(αi),

gmeanwi∈Icon(αi)
)

We compute an example-level hallucination score
by (1) taking the geometric mean of word-level attri-
bution scores in the NPOV main response, and (2)
subtracting from 1.0 (lower attributions are more
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Coverage Detection
Input Sequence
User question: {Should abortion be legal?}. 
Neutral response: {This is a controversial topic and people hold different
perspectives on it. Let me show a few… People in support of abortion claim that
abortion bans deny bodily autonomy, which has wide-ranging repercussions.
They also say that abortion would be a safe medical procedure that protects
lives. On the other hand, those who oppose abortion claim that abortion is
murder because life begins at conception. Another argument often brought up is
that better access to birth control, health insurance, and sexual education would
eliminate the need for abortion.}. 
Given pro arguments: {pro: Abortion is a safe medical procedure that protects
lives. pro: Abortion bans deny bodily autonomy, creating wide-ranging
repercussions.}. 
Given con arguments: {con: Increased access to birth control, health insurance,
and sexual education would make abortion unnecessary. con: Life begins at
conception, making abortion murder.}. 
All the given arguments are covered by the neutral response: {
Target Sequence
YES}

Hallucination Detection
Input Sequence
User question: {Should abortion be legal?}. 
Neutral response: {This is a controversial topic and people hold different
perspectives on it. Let me show a few… People in support of abortion claim that
abortion bans deny bodily autonomy, which has wide-ranging repercussions.
They also say that abortion would be a safe medical procedure that protects
lives. On the other hand, those who oppose abortion claim that abortion is
murder because life begins at conception. Another argument often brought up is
that better access to birth control, health insurance, and sexual education would
eliminate the need for abortion.}. 
Given pro arguments: {pro: Abortion is a safe medical procedure that protects
lives. pro: Abortion bans deny bodily autonomy, creating wide-ranging
repercussions.}. 
Given con arguments: {con: Increased access to birth control, health insurance,
and sexual education would make abortion unnecessary. con: Life begins at
conception, making abortion murder.}. 
Only given arguments are contained in the neutral response: {
Target Sequence
YES}

Figure 4: Task format for LLM-based error classifiers.

likely to be hallucinations):

shall = 1.0− gmeanwj∈Oresp
(βj)

Note that scov, shall ∈ [0, 1] because entries of
Mwords are in [0, 1]. We evaluate these hallucina-
tion and coverage error scores for example-level
error detection in §5.1.

C.1. Alternative Salience Aggregation
Methods

Above, we use the maximum function (in Equa-
tions 1 and 2) to aggregate a contribution score
for each input word and an attribution score for
each response word. This is based on the obser-
vation that covered input words tend to have a high
contribution to at least one response word, and non-
hallucinated response words tend to have a high
attribution from at least one input argument word.
In Table 6, we report ROC AUC results on the full
organic test set using different methods to aggre-
gate word contributions and attributions in Equa-
tions 1 and 2. Specifically, we consider (1) the sum
(i.e. the sum over all response contributions for
each input word to quantify coverage, and the sum
over all input attributions for each response word to
quantify non-hallucination), and (2) the (negative)
entropy. Lower entropies indicate less distributed
contributions/attributions, such as when most of
the contribution/attribution is to/from a single word
(a pattern which appears in the majority of covered
and non-hallucinated words).
We find that entropies perform worse than the

maximum and sum aggregation functions for both
hallucination and coverage error detection. The
sum performs best for hallucination detection (sum-
ming input attributions for each response word), but
the maximum performs best for coverage error de-
tection (taking the maximum response contribution
for each input word). We use the maximum in the

Aggregation Hallucination Coverage
Max 0.808 0.852
Sum 0.846 0.809
Negative entropy 0.786 0.664

Table 6: Example-level error detection ROC AUC
scores for salience using different methods to ag-
gregate a contribution score for each input word
(coverage) and an attribution score for each re-
sponse word (hallucination).

main results for consistency and to avoid overfitting
to the test set.

D. Human Annotation Details

For the human annotations in §4.1.1, our annota-
tion service provider was paid 49 USD per hour for
a total of 25 hours of work; they state that they en-
sure fair payment to annotators. The 10 annotators
were specialized workers in the United States con-
tracted by our annotation provider. Our annotation
provider reported self-disclosed genders and age
brackets of annotators, but this information was not
used in our analyses. Our annotations focused on
attributes of our NPOV Response Generator query-
response pairs, collecting annotation labels but no
other data generated by the annotators. To reduce
annotation bias, annotators were not told how the
labeled examples would be used, and they were
not told that the response was machine-generated.


	Introduction
	Handling Controversial Topics
	NPOV Response Generator
	ProCon as a Knowledge Base

	Methods to Detect Hallucinations and Coverage Errors
	ROUGE
	Salience
	LLM-Based Classifiers

	Dataset
	Annotation Procedure
	Inter-Annotator Agreement

	Synthetic Errors Dataset
	Test Sets with Different Error Types

	Results
	Example-Level Error Detection
	Classifier Training Data Ablations
	Word-Level Error Detection

	Discussion
	Related Work
	Limitations
	Conclusion
	Bibliographical References
	ProCon Dataset Details
	Prompt-Tuning Details
	Classifier Ablation: Annotation-Free Scenario

	Salience Formulas
	Alternative Salience Aggregation Methods

	Human Annotation Details

