
LREC-COLING 2024, pages 4634–4640
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

4634

Denoising Table-Text Retrieval
for Open-Domain Question Answering

Deokhyung Kang1, Baikjin Jung2, Yunsu Kim3, Gary Geunbae Lee1,2

1Graduate School of Artificial Intelligence, POSTECH, Republic of Korea,
2Department of Computer Science and Engineering, POSTECH, Republic of Korea

3aiXplain, Inc. Los Gatos, CA, USA,
{deokhk, bjjung, gblee}@postech.ac.kr, yunsu.kim@aixplain.com

Abstract
In table-text open-domain question answering, a retriever system retrieves relevant evidence from tables and text to
answer questions. Previous studies in table-text open-domain question answering have two common challenges:
firstly, their retrievers can be affected by false-positive labels in training datasets; secondly, they may struggle to
provide appropriate evidence for questions that require reasoning across the table. To address these issues, we
propose Denoised Table-Text Retriever (DoTTeR). Our approach involves utilizing a denoised training dataset with
fewer false positive labels by discarding instances with lower question-relevance scores measured through a false
positive detection model. Subsequently, we integrate table-level ranking information into the retriever to assist in
finding evidence for questions that demand reasoning across the table. To encode this ranking information, we
fine-tune a rank-aware column encoder to identify minimum and maximum values within a column. Experimental
results demonstrate that DoTTeR significantly outperforms strong baselines on both retrieval recall and downstream
QA tasks. Our code is available at https://github.com/deokhk/DoTTeR.

Keywords: Open-domain Question Answering, open QA over both tabular and textual data, OTT-QA, Infor-
mation Retrieval (IR)

1. Introduction

In open-domain question answering (ODQA), a
retriever is a system that brings evidence support-
ing potential answers to the given question from
an information source. These pieces of evidence
are then used by a reader system, which answers
the question in effect. Typically, one would expect
the evidence to consist solely of text, but in prac-
tice, it is highly likely that it also contains images
or tables, necessitating ODQA models to perform
multi-hop aggregation of different modalities of in-
formation. For example, the OTT-QA (Chen et al.,
2021) dataset sets up a situation where ODQA
models must use both tables and text to answer
the given question.

This setting presents practical challenges for con-
ventional retrievers (Karpukhin et al., 2020; Qu
et al., 2021), as assessing the relevance to the
question solely based on a single modality often re-
sults in incomplete measurement. At the same time,
the size of the table frequently surpasses the token
limit of standard pretrained language models (De-
vlin et al., 2019; Liu et al., 2019). To address these
challenges, fusion retrieval is presented (Chen
et al., 2021). They first pre-align a row in a table to
their related passages using entity linking, forming
a "fused block". Then, the retriever identifies rele-
vant fused blocks, and the reader model extracts
the answer from the concatenated fused blocks.

While fusion retrieval successfully addresses the

Q) The 1995 Tooheys 1000 driver who was second-to-last
in the Tooheys Top 10 was born where?

A) Sydney

1995 Toohyes 1000 – Tooheys Top 10

Pos Team Driver Car TT10

Pole Holden Racing Team Craig Lowndes Holden VR Commodore 2:11.5540

2 Winfield Racing [1] Mark Skaife Holden VR Commodore 2:11.9504

… … … … …

9 Castrol Longhurst Ford Tony Longhurst [2] Ford EF Falcon 2:13.8883

10 Holden Racing Team Peter Brock Holden VR Commodore DNF

[2]: Tony Longhurst (born 1 October 1957 in Sydney) is an 
Australian … 

[1]: ... Fred Gibson’s automotive business in Sydney ...

Figure 1: An example of a question and related
table in OTT-QA. Two fused blocks contain the an-
swer "Sydney" to the question, but only the blue-
bordered block satisfies the conditions required by
the question.

aforementioned challenges, it still has two limita-
tions.

1) False positive instances for retriever. When
training the retriever, the fusion retrieval treats all
fused blocks containing answers relevant to the
question, as block-level supervision is unavailable
in OTT-QA. This leads to false-positive instances,
introducing noise during training. Figure 1 depicts
two fused blocks. One is bordered in gray, and the
other is bordered in blue. Both blocks contain the
answer (Sydney) to the question, but only the block
bordered in blue is relevant, as this block contains

https://github.com/deokhk/DoTTeR
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the second-to-last row in the Tooheys Top 10.
2) Neglect to utilize table-level information.

Certain questions in OTT-QA require information
beyond the scope of a fused block to answer. For
instance, to answer the question in Figure 1, the
fusion retriever should identify the fused block con-
taining the second-to-last row in the Tooheys Top
10. For this purpose, the retriever should process
table-level ranking information across fused blocks.
However, the fusion retriever lacks access to such
information since the fused block is confined to
row-level information. Lack of table-level informa-
tion leads to the retriever training with incomplete
features, causing additional noise in the training
process.

In this paper, we propose the Denoised Table-
Text Retriever (DoTTeR), built upon the state-of-
the-art fusion retrieval model OTTeR (Huang et al.,
2022), to address the above problems. Our ap-
proach comprises two main components: (1) De-
noising OTT-QA. We train a false positive detec-
tion model that measures question-fused block rel-
evance scores to de-noise the training dataset. We
use this model to eliminate potential false positive
instances for the retriever by only keeping the block
with the highest relevance score for each question.
(2) Rank-Aware Table Encoding (RATE). RATE
involves a rank-aware encoder that is fine-tuned for
locating the minimum and maximum values in nu-
meric columns of a given table. We use the encoder
to provide OTTeR with a dense representation of
a given table and expect the retriever to replenish
such information beyond the scope of a block as
a result. Experimental results on OTT-QA show
that DoTTeR significantly improves performance in
both table-text retrieval and downstream question-
answering tasks.

2. Methods

Although a typical ODQA retriever aims to identify
fused blocks related to the given question, table-
text QA datasets (Chen et al., 2020, 2021) including
OTT-QA do not pair questions with their correspond-
ing fused blocks as annotating the answer row in a
table is costly. Previous studies (Chen et al., 2021;
Zhong et al., 2022; Huang et al., 2022) address this
issue by considering all fused blocks containing the
answer entity as relevant to the question. However,
this supposition is susceptible to noisy labeling in
that there can be false-positive blocks if the an-
swer is a ‘common’ entity appearing in several table
rows.

In addition, those previous studies use two en-
coders for dense retrieval, where a question q and
a fused block b are separately encoded into d-
dimensional vectors by the question encoder EQ

and the block encoder EB , respectively. Here, the

similarity between the question and the fused block

s(q, b) = EQ(q)
T · EB(b)

is their dot product.
However, EB(b) contains only the information of

a single fused block b, not capturing ‘table-level’
information beyond the block’s scope. Specifically,
our interest is the rank of numerical values belong-
ing to the same column because table–text reason-
ing often involves the superlative operation over a
column, e.g., "the earliest Olympic event" (Chen
et al., 2020).

2.1. Denoising OTT-QA

Inspired by (Lei et al., 2023; Kumar et al., 2023),
we address the problem of false-positive training
instances for the retriever by employing a false-
positive detection model. This model is designed
to identify false-positive blocks by taking a question
concatenated with a single fused block as input and
outputs a question-block relevance score s. We im-
plement this model by training a BERT (Devlin et al.,
2019) model with a single linear layer on a binary
classification task. As we need noiseless relevant
and irrelevant fused blocks for given questions to
train this model, we divide the OTT-QA dataset,
denoted as D, into two partitions. D comprises in-
stances represented as < q, a, t, B >, where q is a
question, a is an answer, t is a corresponding table,
and B is a set of corresponding fused blocks to t.
We partition D into two categories: D1 and D2+.
D1 comprises instances without noise, featuring
only one fused block (b+) from B contains a (exact
match on text) , while D2+ includes instances with
multiple fused blocks from B contain a. We use
D1

1 to train the false-positive detection model.
During training, the model treats <q, b+> as a

positive instance and < q, b− > as a negative in-
stance, where b− is a fused block with the highest
BM25 (Robertson et al., 2009) score to q among
the blocks in the subset of B without containing a.
The training process involves minimizing the binary
cross-entropy (BCE) loss as follows:

Lossbce = BCE(s, y)

where y ∈ {0, 1} is the label of the fused block in-
dicating whether the block is relevant to the given
question or not. Then, we remove potentially false-
positive fused blocks from D2+ by only retaining
a fused block with the highest question-block rele-
vance score for each question.

1We found that approximately 63.3% of the training
instances belong to D1, while the remaining 37.7% of
the training instances belong to D2+.
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Rank-aware 
column encoder

[C_SEP] Country is Korea. 
[C_SEP]
-C_SEP]

Rank-aware 
column encoder

[C_SEP] Amount is 1M. 
Amount is 2M. Amount is 
5M.....

Block Encoder

Input Embedding

𝒃𝒃: [TB] Funding is 14.7%. 
Amount is 5M...[PSG] 
France is a country whose 
territory consists of 
metropolitan ..

Rank Embedding

Rank-aware 
column encoder

[C_SEP] Funding is 19.2%. 
[C_SEP] Funding is 15.62%. 
[C_SEP] Funding is 14.7%...

𝐸𝐸𝐵𝐵(𝑏𝑏)

Funding Amount Country

19.2% 1M Korea

15.62% 1.5M Japan

14.7% 5M France[1]

[1] France is a country whose territ
ory consists of metropolitan...

𝒃𝒃

Figure 2: An overview of the encoding process for a fused block b with RATE. The fused block b belongs
to the table on the left and is encoded into EB(b) from the concatenation of the rank embedding, extracted
from the rank-aware column encoder, and the input embedding.

2.2. Rank-Aware Table Encoding (RATE)
To provide ranking information to the block encoder,
we propose RATE (Rank-Aware Table Encoding),
which leverages a rank-aware column encoder R
to incorporate ranking information while encoding
fused blocks.

Training the rank-aware column encoder. Con-
sider a list of values [19.2%, 15.62%, 14.7%] under
the ’Funding’ column header in Figure 2. These val-
ues are linearized into text format as ’[C_SEP] Fund-
ing is 19.2% [C_SEP] Funding is 15.62% [C_SEP]
Funding is 14.7%’, where [C_SEP] is a special to-
ken representing the rank information of the nearest
column value.

We train the rank-aware column encoder R to
embed ranking information into these token rep-
resentations. This involves adding two linear lay-
ers—max and min—on top of R during training.
These layers assign probabilities to each token,
indicating whether it represents the maximum or
minimum value among the inputs, respectively. To
train these layers with R, we set a label for each
token to 1 if the token’s index corresponds to the
[C_SEP] token associated with the max/min value;
otherwise, it is set to 0. The training process mini-
mizes the cross-entropy loss between the predicted
probabilities and the label. Once the training is
done, these layers are removed, allowing the RATE
module to output rank embeddings for each token.

Incorporating the ranking information. To in-
corporate ranking information for table values within
a fused block during encoding, we divide the orig-
inal table, to which the fused block belongs, into
columns. The rank-aware column encoder pro-

cesses a list of values from each column as input
and generates a list of rank embeddings. We take
rank embeddings corresponding to table values
within the fused block and feed it along with an
input embedding to the block encoder during en-
coding. Figure 2 illustrates such a process.

Training the retriever. We train the question
encoder and the block encoder to maximize the
similarity between the question and the relevant
block while keeping the rank-aware column encoder
frozen. Following Huang et al. (2022), we assign
a positive block b+ and m negative blocks {b−i }mi=1

for given question q and minimize the cross-entropy
loss L:

L(q, b+, b−1 , ..., b
−
m) = − log

es(q,b
+)

es(q,b+) +
∑m

i=1 e
s(q,b−i )

3. Experiments

3.1. Dataset and Evaluation Metrics
We evaluate our system on table-text retrieval and
downstream question-answering tasks using OTT-
QA (Chen et al., 2021), a large-scale English ODQA
dataset over tables and text. The dataset is the
sole benchmark within the domain of ODQA over
tables and text and has 42K / 2K / 2K questions
for the train/dev/test set, respectively. Additionally,
it offers a corpus consisting of over 410K tables
and 6.3M passages from Wikipedia. We utilize
preprocessed fused blocks from OTTeR (Huang
et al., 2022), where BLINK (Wu et al., 2020) was
employed as the entity linker. This results in 5.4M
fused blocks.
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Methods Block Recall Table Recall
R@1 R@10 R@15 R@20 R@1 R@10 R@15 R@20

BM25 23.7 45.3 47.9 50.0 32.8 62.1 65.4 67.9
Bi-Encoder (Kostić et al., 2021) - - - - 46.2 70.9 - 76.0
Tri-Encoder (Kostić et al., 2021) - - - - 47.7 70.8 - 77.7
CARP (Zhong et al., 2022) 16.3 46.7 - - 49.0 74.0 - -
OTTeR* (Huang et al., 2022) 31.1 66.7 72.6 75.6 57.6 80.9 83.8 85.2
DoTTeR (ours) 37.6 70.4 74.1 76.6 57.3 83.6 85.8 87.5

w/o denosing OTT-QA 31.7 68.0 72.6 74.0 57.3 82.7 84.8 85.9
w/o RATE 34.9 68.1 72.4 75.3 55.0 82.1 83.8 86.7

Table 1: Retrieval results on OTT-QA dev set. Note that we directly copy the reported results from the
papers and leave the blanks if they were not reported. * denotes results reproduced by us.

We evaluate retrieval performance using table
recall@k and block recall@k metrics. Table re-
call@k measures the percentage of questions in
the evaluation set for which at least one of the top-k
retrieved fused blocks belongs to the ground truth
table. Block recall@k is a coarse-grained metric
that measures the percentage of questions in the
evaluation set for which at least one of the top-k
retrieved fused blocks belongs to the ground truth
table and contains the answer.

For question answering, we employ EM (Exact
Match) and F1 score metrics to evaluate perfor-
mance.

3.2. Implementation Details2

False-Positive Detection. We initialize the
model’s encoder with BERT-base-cased (Devlin
et al., 2019) and train it for 5 epochs with a batch
size of 32 and a learning rate of 2e-5. The training
process took 1 hour, utilizing two NVIDIA GeForce
RTX 3090 GPUs.

Rank-Aware Table–Text Retriever. We first train
the Rank-Aware Column Encoder. This involves
extracting 626,774 numerical columns with values
such as numbers or dates from the table corpus
provided by OTT-QA. After initializing the model
with RoBERTa-base (Liu et al., 2019), we then train
the model for 60,000 steps with a batch size of 32
and a learning rate of 5e-5. The training process
took 6 hours, utilizing four A100-80GB GPUs.

Then, we initialize both the question and block
encoder with the synthetic pretrained checkpoint
released from OTTeR (Huang et al., 2022). We train
both encoders for 20 epochs with a batch size of 64
and a learning rate of 2e-5. The training process
took 26 hours on four A100-40GB GPUs.

Cross-Block Reader (CBR). Following Huang
et al. (2022), We adopt the cross-block reader

2Unless otherwise specified, we utilize the OTT-QA
training split for model training.

(CBR) as our reader model. This model extracts
the best answer span from the concatenated top
15 retrieved fused blocks. We use Longformer-
base (Beltagy et al., 2020) as the backbone of the
reader. We train the reader for 5 epochs with a
batch size of 16 and a learning rate of 1e-5. The
training process took 30 hours on four A100-40GB
GPUs.

4. Results and Analysis

We evaluate DoTTeR by comparing it with various
retrieval methods, including the sparse retrieval
method BM25 (Robertson et al., 2009), dense re-
trieval method (Kostić et al., 2021), and fusion re-
trieval method (Zhong et al., 2022; Huang et al.,
2022) including OTTeR (Huang et al., 2022), the
state-of-the-art fusion retrieval model for table-text
retrieval.

Main results. Table 1 presents the retrieval re-
sults comparing DoTTeR with other baselines. The
results highlight that our method significantly out-
performs the baselines in block and table recall on
the OTT-QA development set, particularly when k
is small. Compared to OTTeR, DoTTeR notably en-
hances block recall, achieving a substantial 6.5%
gain in block recall@1. This demonstrates the ef-
ficacy of the proposed false-positive removal and
RATE in improving retrieval at a fine-grained level,
especially relevant for QA. This highlights the effec-
tiveness of DoTTeR as a retrieval model for table-
text Open-Domain Question Answering (ODQA).

Ablation studies. We conduct ablation studies to
investigate the effect of proposed methods on table-
text retrieval. Firstly, we investigate the effect of
denoising. For w/o denoising OTT-QA, we use the
original OTT-QA data for training. This leads to a
significant drop in retrieval recall, even falling below
OTTeR in block recall@20. This drop underscores
the importance of denoising OTT-QA and empha-
sizes its essential role as a preliminary step before
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integrating the ranking information. Subsequently,
we assess the effect of RATE. For w/o RATE, we do
not provide rank information to the block encoder
and use denoised OTT-QA data for training. This
also leads to a substantial drop in retrieval recall,
highlighting the effectiveness of RATE.

Q) The event, a part of ITTF World Tour in 2018, 
with the smallest prize is held at a venue located on which hill?   
A) Morrison Hill

2018 IITF World Tour - Schedule

Top-1 fused block retrieved by OTTeR

The City 
Municipal
ity of 
Bremen…

ÖVB Arena is the 
largest indoor arena 
in Bremen, Germany 
…

No ... Location Venue Prize (USD)

3 ... Bremen [1] ÖVB Arena [2] 235,000

Prize 
(USD)

1,001,000

...

235,000

...

145,000

No ... Location Venue Prize (USD)

4 ... Hong Kong [1] Queen Elizabeth 
Stadium [2]

145,000

2018 IITF World Tour - Schedule

Top-1 fused block retrieved by DoTTeR

Hong 
Kong, 
officia
lly...

The Queen Elizabeth 
Stadium … is an indoor 
sport facility on the 
Morrison Hill in …

Figure 3: Top-1 fused blocks retrieved by OTTeR
and DoTTeR, respectively.

Case study. To demonstrate the DoTTeR’s effec-
tive utilization of ranking information, we provide
an example of a top-1 fused block retrieved by both
DoTTeR and OTTeR. To answer the question in Fig-
ure 3, the retriever model should retrieve the fused
block with the lowest rank for the prize field from
the relevant table. As depicted in Figure 3, DoT-
TeR accomplishes this task, retrieving the relevant
fused block with the lowest rank. However, OTTeR
retrieves the fused block associated with the rele-
vant table but fails to obtain the fused block with the
lowest rank. This result demonstrates that RATE
facilitates the retrieval of evidence for questions
requiring ranking information.

Methods Dev Test
EM F1 EM F1

BM25 + HYBRIDER (Chen et al., 2020) 10.3 13.0 9.7 12.8
BM25 + DUREPA (Li et al., 2021) 15.8 - - -
Iterative-Retrieval + CBR (Chen et al., 2021) 14.4 18.5 16.9 20.9
Fusion-Retrieval + CBR (Chen et al., 2021) 28.1 32.5 27.2 31.5
OTTeR + CBR* (Huang et al., 2022) 35.8 41.5 34.8 40.7
DoTTeR + CBR (ours) 37.8 43.9 35.9 42.0

w/o denoising OTT-QA + CBR 37.1 43.0 35.5 41.5
w/o RATE + CBR 35.8 41.8 35.1 41.0

Table 2: QA results on OTT-QA dev and blind test
set. * denotes results reproduced by us.

Question Answering results. We implement an
open-domain QA system using DoTTeR as a re-
triever and CBR as a reader. We compare the
system with other baselines consisting of retriever
and reader. Table 2 shows that our method outper-
forms existing openQA systems, with notable EM
and F1 gains. These results demonstrate that im-
proved table-text retrieval of the proposed method
leads to improvements in downstream QA.

5. Related Work

Previous studies on table-text ODQA can be clas-
sified into two primary approaches. Chen et al.
(2021) proposed the early-fusion approach (fusion
retrieval), wherein they pre-align the table seg-
ments to their related passages, forming fused
blocks. Subsequently, they retrieved the top K
fused blocks and fed them into the reader model, a
long-range transformer model (Ainslie et al., 2020).
Several studies (Zhong et al., 2022; Huang et al.,
2022; Park et al., 2023) follow this approach. On the
other hand, (Ma et al., 2022, 2023) employed a late-
fusion approach. They linked the table segments
and relevant passages after retrieval. Our work fol-
lows the early-fusion strategy, which is lightweight
and practical. We extend this approach by tackling
the limitations of the fusion retrieval models.

6. Conclusion

In this paper, we proposed Denoised Table-Text
Retriever (DoTTeR) to address issues of false-
positive training instances for retrievers and ne-
glecting table-level information in previous table-
text retrieval systems. To mitigate these issues, we
train the false-positive detection model with noise-
less instances from OTT-QA and utilize this model
to denoise the dataset. Additionally, we incorpo-
rate table-level ranking information into the retriever
through rank-aware table encoding (RATE). Exper-
imental results demonstrate that our approach sig-
nificantly improves retrieval recall and downstream
question-answering performance.
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