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Abstract

This paper focuses on dealing with data scarcity in spoken question answering (QA) using automatic question-answer
generation and a carefully selected fine-tuning strategy that leverages limited annotated data (paragraphs and
question-answer pairs). Spoken QA is a challenging task due to using spoken documents, i.e., erroneous automatic
speech recognition (ASR) transcriptions, and the scarcity of spoken QA data. We propose a framework for utilizing
limited annotated data effectively to improve spoken QA performance. To deal with data scarcity, we train a
question-answer generation model with annotated data and then produce large amounts of question-answer pairs
from unannotated data (paragraphs). Our experiments demonstrate that incorporating limited annotated data and
the automatically generated data through a carefully selected fine-tuning strategy leads to 5.5% relative F1 gain
over the model trained only with annotated data. Moreover, the proposed framework is also effective in high ASR errors.

Keywords: spoken question answering, question generation

1. Introduction

Spoken QA is the task of finding relevant answers to
questions from spoken documents. In spoken QA,
cascade and end-to-end models have been investi-
gated. Cascade models first utilize ASR to obtain
transcriptions of spoken documents, and then per-
form QA on those documents (Tseng et al., 2016;
Unli et al., 2019; Lee et al., 2019b; Unlii and Arisoy,
2021; Li et al., 2018; You et al., 2021). End-to-end
models leverage acoustic and text data together to
optimize QA performance (Chuang et al., 2019; Lin
et al., 2022). Despite remarkable progress in text-
based QA, spoken QA models face a distinct set
of challenges that hinder their performance. These
challenges arise from using spoken language, i.e.,
erroneous ASR transcriptions, as well as lack of
large amounts of spoken annotated data resulting
in data scarcity in spoken QA. As a result, spoken
QA models often struggle to achieve comparable
levels of accuracy and effectiveness observed in
text-based QA models.

In this paper, we focus on dealing with data
scarcity in spoken QA. We utilize automatic ques-
tion generation (QG) to increase QA training data.
QG automatically generates question-answer pairs
from unannotated data that contain only short pas-
sages. Since QG may also generate inaccurate
pairs, we propose a fine-tuning strategy to effec-
tively incorporate the noisy data coming from QG
into QA training. The proposed fine-tuning strategy
leverages the limited annotated data and the auto-
matically generated data, and improves the spoken
QA performance in various limited annotated data
settings and noisy acoustic conditions.

The contributions of this paper are as follows: (i)

To the best of our knowledge, the effect of limited
annotated data on spoken QA performance with
a comprehensive set of experiments is presented
for the first time. (ii) Automatic question generation
is used to deal with the data scarcity problem in
spoken QA. Even though question generation has
been investigated for text-based QA, to the best of
our knowledge, it has not been explored for spoken
QA before. (iii) A fine-tuning strategy is proposed
to effectively incorporate the automatically gener-
ated question-answer pairs into QA training. Our
experiments yield significant improvements in lim-
ited data spoken QA, showing the effectiveness of
our proposed approach, and reveal the importance
of dealing with data scarcity in spoken QA.

2. Related Work

Spoken QA is a more challenging task than text-
based QA due to using acoustic data, i.e., noisy
ASR transcriptions in cascade spoken QA systems,
and due to lack of spoken QA datasets. Several
studies have shown the negative impact of ASR
errors on spoken QA models (Unlii et al., 2019;
Li et al., 2018; Unli and Arisoy, 2021; Lee et al.,
2019a). Various techniques have been developed
to address this challenge in cascade models, includ-
ing domain adaptation (Lee et al., 2019a), integrat-
ing confidence scores (Unli and Arisoy, 2021), and
knowledge distillation (You et al., 2021). However,
these methods are limited by the availability of an-
notated data, which is often scarce for spoken QA.
Collecting data for spoken QA is time-consuming
and expensive, as it requires large amounts of
audio data annotated with question-answer pairs.
As a result, text-to-speech (TTS) has been used
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to artificially generate audio data from textual QA
datasets, e.g., Spoken-SQuAD (Li et al., 2018).
While TTS-based approaches have shown poten-
tial in facilitating data collection for spoken QA, they
rely on a substantial amount of human-generated
question-answer pairs.

For data scarcity problem in text-based QA, few-
shot and zero-shot models have recently been pro-
posed (Ram et al., 2021; Kuo and Chen, 2022).
These models aim to improve QA performance in
limited or zero-resource scenarios by using a spe-
cific pre-training scheme tailored to the QA task or
by transferring cross-lingual knowledge from rich to
low resource languages. Unlike these works, our
approach addresses the data scarcity problem in
spoken QA and it is based on automatically gen-
erating question-answer pairs from unannotated
data. To the best of our knowledge, data scarcity
for spoken QA has not been explored before.

QG models that learn to produce question-
answer pairs from input passages have been pro-
posed for domain adaptation (Shakeri et al., 2020;
Luo et al., 2022) and data augmentation (Alberti
etal., 2019; Purietal., 2020; Lee et al., 2020) in text-
based QA, for zero-shot cross-lingual QA (Shakeri
etal., 2021), and for automatically generating a QA
dataset from scratch (Unlii Menevse et al., 2022).
These works focus on improving generation perfor-
mance by training QG models with large amounts of
annotated data. In contrast, our approach utilizes
limited annotated data both for QG and QA train-
ing, and this makes our approach a very realistic
scenario for low resource languages and domains.

3. Framework

In this paper, we use the framework shown in Fig. 1
to investigate the effect of automatically generated
QA data in limited resource spoken QA settings.
The framework consists of QG and QA systems.
Both systems are based on pre-trained models.
The QG model is fine-tuned using annotated data
(paragraphs + question-answer pairs). After fine-
tuning, the QG system takes unannotated data
(paragraphs only) as input and produces automat-
ically generated question-answer pairs for each
input paragraph. The data generated by the QG
system are used to fine-tune the spoken QA model
together with the annotated data.

The QA system predicts the answers to the ques-
tions related to the input paragraphs. We use a
cascade QA system (ASR + QA). While training
QA model, the generated question-answer pairs
are utilized in two different ways. We first use data
augmentation where manually annotated data and
automatically generated data are merged and shuf-
fled, and the pretrained QA model is fine-tuned
on the augmented data. Our preliminary experi-

ments show that this approach has the drawback
of relying mostly on the large amounts of gener-
ated data, which may contain inaccurate question-
answer pairs. Then we propose a two-step fine-
tuning approach which allows us to use the gener-
ated data effectively together with the limited an-
notated data. In this fine-tuning approach, the QA
model is first fine-tuned on the generated data and
then on the manually annotated data. This ap-
proach has the advantage of preventing the model
to learn from mostly the repetitive or incorrect ques-
tions and answers that could result from automati-
cally generated data.

In the framework, we assume that the annotated
QA data are limited and there are large amounts of
unannotated data. Therefore, the limited annotated
data are used to fine-tune both QG and QA models.
The pre-trained QG and QA models are multilingual,
so this framework can be extended to many low
resource languages if there are limited QA data.

4. Experimental Setup

4.1. Question Answering Data

We used SQuUAD (Rajpurkar et al., 2016) and
Spoken-SQuAD (Li et al., 2018) datasets in the
experiments. SQuUAD contains 100,000+ question-
answer pairs on 536 articles and 23.2K paragraphs
totally for train, development and test partitions.
Spoken-SQuUAD contains ASR transcriptions of the
paragraphs in SQUAD and their question-answer
pairs. Spoken-SQUAD has a subset of SQUAD
question-answer pairs (approximately 37K for train
and 5.3K for development partitions) since the pairs
were removed from the dataset if the answer to a
question did not exist in ASR transcriptions. The
development partition of Spoken SQUAD is avail-
able in three versions with different levels of added
noise: No Noise, Noise V1, Noise V2. Word error
rates (WERs) for these sets are 22.73%, 44.22%,
and 54.82%, respectively.

4.2. Question-Answer Generation

In our experiments, we first shuffled the articles in
the train partition of the QA dataset and then set
apart 10% of the articles as our development set
to tune the hyperparameters of the models. The
remaining articles were split into two equal size dis-
joint partitions. These partitions are called Part-|
and Part-l, respectively. We used the paragraphs
and question-answer pairs in Part-l as the anno-
tated data to fine-tune the QG and QA models. To
investigate QG and QA performance with limited
amounts of annotated data, we further split down
the articles in the Part-1 partition into 6 varying size
subsets. These subsets contain approximately 5%,
10%, 20%, 30%, 40%, and 50% of the articles
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Figure 1: Proposed framework. The dashed lines show the data used in fine-tuning the models. The solid

lines show the inputs and outputs.

in the train partition. Note that the larger subsets
contain the smaller ones and the largest subset,
50%, corresponds to the whole Part-l data. We
treat Part-1l as an unannotated partition, and we
used only the paragraphs, not the question-answer
pairs, in QG to automatically generate question-
answer pairs. We trained 6 different QG models,
one for each subset coming from Part-l. Then, au-
tomatically generated question-answer pairs were
produced for the paragraphs in Part-ll using these
QG models.

For the experiments, we investigated two dif-
ferent setups for QG. In the first setup, we used
the SQUAD dataset to produce the automatically
generated question-answer pairs. For the gener-
ated data, first the SQuUAD paragraphs in Part-1l
partition were replaced with their corresponding
ASR transcriptions and these transcriptions were
utilized together with the automatically generated
question-answer pairs. Then the question-answer
pairs where the answer to a question did not ex-
ist in the transcriptions were eliminated. A simi-
lar approach was utilized while generating Spoken
SQuAD from the SQUAD dataset. This setup is
referred to as "Eliminated SQUAD" in QG experi-
ments. In the second setup, we used the Spoken-
SQuAD dataset to produce the automatically gen-
erated question-answer pairs. For the generated
data, these pairs were utilized together with the
Spoken-SQuUAD paragraphs (ASR transcriptions).
In this setup, Part-1 partition and its subsets have
fewer data than those obtained from SQUAD due
to using the Spoken-SQUAD dataset. Since Part-I|
partition only contains the Spoken-SQuAD para-
graphs, not the question-answer pairs, it has the
same amount of data with the first setup. This
setup is referred to as "Only Spoken-SQuAD" in
QG experiments.

The QG system is based on mT5 (Xue et al.,
2021), an encoder-decoder based transformer net-
work pretrained with multilingual data. The QG
system was implemented in Python using the Hug-

gingFace library (Wolf et al., 2020) with the pre-
trained mT5-Small model. In QG experiments, we
used a batch size of 8 with gradient accumulation
steps of 32 to achieve an effective batch size of
256. Based on our preliminary experiments on our
set apart development set, the learning rate was
chosen as 1e-3 and all QG models were fine-tuned
for 10 epochs.

4.3. Spoken Question Answering

We performed spoken QA experiments using the
Spoken-SQuAD dataset. Similar to QG, we investi-
gated QA performance with limited amount of an-
notated data. We used the varying sized Spoken-
SQUAD data subsets (5%, 10%, 20%, 30%, 40%,
and 50%) from Part-1 and trained baseline QA mod-
els, one for each data subset. The limited anno-
tated data used in QA experiments are the same
with the ones used in Part-1 partition of the "Only
Spoken-SQuUAD" setup in the QG experiments. As
explained in Section 3, two different fine-tuning
strategies, augmentation and 2-step fine-tuning,
were employed to integrate the automatically gen-
erated data into the QA model. As QA models,
we used BERT (Devlin et al., 2019) and ELEC-
TRA (Clark et al., 2020). The Bert model was En-
glish BERT-base-uncased. The QA system was
implemented in Python using the HuggingFace li-
brary (Wolf et al., 2020). While fine-tuning the QA
models, the batch size was set to 12 and the learn-
ing rate was set to 3e-5. The number of epochs
were determined by evaluating the F1 performance
of the models on our set apart development set.

5. Results

5.1.

The QG model was evaluated on dev sets of
SQUAD and Spoken SQuAD using BLEU and
ROUGE metrics. Table 1 displays the evaluation
results of QG models along with the number of

Question-Answer Generation
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generated questions (Nbr Q) from each setup. For
Eliminated SQUAD the generated questions were
evaluated on SQUAD dev set, while in Only Spoken
SQUAD setup spoken SQUAD dev set was used.
Increasing the amount of annotated data during
training resulted in improvements in both metrics.
As expected, Eliminated SQUAD has the lowest
number of generated questions due to some exam-
ples being removed as a result of ASR errors.

Table 1: Evaluation results and number of question-
answer pairs generated from the QG models
Data

Setups Subsets ROUGE BLUE1 BLUE2 NbrQ
5%  0.305 0.284 0.112 8,537

Eliminated 10%  0.317 0.295 0.122 7,704
SQuAD 20%  0.330 0.307 0.133 8,192
30%  0.340 0.316 0.140 8,458

40%  0.342 0.320 0.142 7,989

50%  0.349 0.323 0.146 8,189

5%  0.242 0.222 0.075 24,163

Only 10%  0.298 0.276 0.108 39,127
Spoken 20%  0.310 0.288 0.117 39,024
SQuAD 30%  0.334 0.309 0.133 39,827
40%  0.342 0.315 0.139 39,794

50%  0.345 0.317 0.142 39,931

5.2. Spoken Question Answering

F1 and EM scores of Spoken QA models are given
in Fig. 2 (with BERT model) and Fig. 3 (with ELEC-
TRA model), where the horizontal axis shows the
amount of the annotated QA data and the vertical
axis shows F1 and EM scores. In the experiments,
we used the QG models trained with the "Only
Spoken-SQuUAD" setup and the performance was
evaluated on the No Noise dev set (22.73% WER).
QA performance of the baseline models trained
only on the annotated data are shown with black
circles which were then interpolated with a dashed
line to point out the general trend in the plots. The
scores of the baseline models illustrate that perfor-
mance improves with increasing annotated data.
The models trained only with the automatically gen-
erated data show the lowest performance, possibly
due to noise in the question-answer pairs. The
2-step fine-tuning approach outperforms both the
augmented data approach and the baseline mod-
els, showing the importance of the carefully chosen
fine-tuning strategy. In more realistic limited data
scenarios (i.e., 5%, 10%), performance improve-
ments are more pronounced. 5% subset yields
4.8% relative F1 improvement (from 55.91 to 58.59),
10% subset yields 5.5% relative F1 improvement
(from 60.79 to 64.16) with BERT model. With larger
data (i.e., 40%, 50%), on the other hand, the gap be-
tween the solid and dashed lines gets smaller. Sim-
ilar trend in performance is observed with ELEC-
TRA based QA models. Forinstance, 5% subset re-
sults in a 3.7% relative F1 improvement (from 66.57
to 69.09), 10% subset results in a 5.5% relative

Table 2: F1 scores of QA models on Spoken
SQUAD dev sets with different noise levels.

No Noise Noise V1 Noise V2

Generated Data 51.43 41.35 30.77
Annotated Data 60.79 45.58 34.46
2-Step 64.16 48.01 36.42

F1 improvement (from 70.62 to 74.55). Note that
fine-tuning the QA model with the entire Spoken-
SQUAD training dataset (100%) results in F1/EM
scores of 74.20/64.02 with BERT and 80.69/72.01
with ELECTRA. When using 5% and 50% anno-
tated data subsets for the BERT model, the F1/EM
scores are 55.91/43.86 and 70.16/59.11, respec-
tively. For the ELECTRA model, the corresponding
F1/EM scores are 66.57/55.88 and 77.39/67.95.

Assessing the impact of noisy question-answer
pairs generated by QG on QA model performance
directly is a challenging task. Determining the
degree of noise within the generated data ne-
cessitates manual evaluation, which is resource-
intensive. Therefore, our evaluation primarily re-
lied on extrinsic measures, where the noisy data
were evaluated within the context of downstream
QA tasks. Our findings indicate that augmenting
annotated data for QG training enhances QA per-
formance (refer to Fig.2 and Fig.3). Notably, this
improvement extends to models trained solely on
automatically generated data, possibly due to the
reduction in noisy pairs with annotated data utiliza-
tion during QG training.

We also compared the F1 performance of spoken
QA models trained with annotated data (baseline)
and 2-step fine-tuning approach using the question-
answer pairs obtained with the "Eliminated SQUAD"
setup. We observed a similar trend in both models
trained with the 2-step fine-tuning approach, re-
sulting in better performances than the baseline
model. Generating question-answer pairs from
noisy ASR transcriptions ("Only Spoken-SQuAD")
is still competitive with using clean data during
question-answer generation ("Eliminated SQuUAD")
as there is no significant performance difference
between two settings.

We conducted additional experiments with BERT
QA model using noisy Spoken SQUAD dev sets.
Based on the best improvement over the baseline
from the previous experiments, we utilized the QA
model fine-tuned on 10% subset of Spoken SQUAD.
Table 2 presents the performance of these models
on No Noise (22.73% WER), Noise V1 (44.22%
WER), and Noise V2 (54.82% WER) dev sets.
The No Noise results match those of the Spoken-
SQUAD results in Fig. 2. The models tested on
the Noise V2 dev set had the lowest scores due
to the high noise level. The results indicate that
incorporating automatically generated data using a
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Figure 3: F1 and EM results with ELECTRA trained with Spoken SQuUAD 5-50% settings

2-step fine-tuning approach improves performance
across all sets. The relative gains in F1 score are
consistent across all models, at around 5% (from
60.79 to 64.16 for No Noise, from 45.58 to 48.01
for Noise V1, and from 34.46 to 36.42 for Noise
V2).

6. Conclusion

In this paper, we addressed the problem of data
scarcity in spoken QA and proposed a framework
to improve the performance of spoken QA models.
Our framework is based on careful selection of fine-
tuning strategy for QA and uses limited annotated
data for question generation (QG) and spoken QA
training. Spoken QA may suffer more from data
scarcity than textual QA due to the high cost of
data collection. To the best of our knowledge, data
scarcity for spoken QA has not been explored be-
fore. Unlike previous works on Spoken QA that
use large amounts of annotated data for training,
our approach leverages limited annotated data for
both QG and spoken QA training, which is a more

realistic scenario for low-resource languages and
domains. We showed that the proposed framework
is effective for limited data spoken QA.

7. Ethical statement

The data utilized in this research is randomly
sourced from publicly available SQUAD and Spo-
ken SQUAD datasets to fine-tune the publicly avail-
able pretrained QG and QA models. Both datasets
do not contain any details or identifiers that could
be used to personally identify individuals, includ-
ing information such as names, addresses, phone
numbers, email addresses, social security num-
bers, or any other data. With the assumption of the
impartiality of pretrained models, we do not expect
a potential bias from the QG and QA models. The
randomization of the subsets used to finetune ques-
tion generation models aimed to include a diverse
dataset while mitigating bias towards any particular
topic. To facilitate reproducibility, we plan to pub-
licly release the generated dataset alongside the
implementation details.
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