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Abstract
In Reinforcement Learning from Human Feedback (RLHF), explicit human feedback, such as rankings, is employed to
align Natural Language Processing (NLP) models with human preferences. In contrast, the potential of implicit human
feedback, encompassing cognitive processing signals like eye-tracking and brain activity, remains underexplored.
These signals capture unconscious human responses but are often marred by noise and redundancy, complicating
their application to specific tasks. To address this issue, we introduce the Cognitive Information Bottleneck (CIB),
a method that extracts only the task-relevant information from cognitive processing signals. Grounded in the
principles of the information bottleneck, CIB aims to learn representations that maximize the mutual information
between the representations and targets while minimizing the mutual information between inputs and representations.
By employing CIB to filter out redundant information from cognitive processing signals, our goal is to provide
representations that are both minimal and sufficient. This approach enables more efficient fitting of models to
inputs. Our results show that the proposed method outperforms existing methods in efficiently compressing various
cognitive processing signals and significantly enhances performance on downstream tasks. Evaluated on public
datasets, our model surpasses contemporary state-of-the-art models. Furthermore, by analyzing these compressed
representations, we offer insights into how cognitive processing signals can be leveraged to improve performance.

Keywords: Information Bottleneck, Cognitive Language Processing Signals

1. Introduction

The success of explicit human feedback in the form
of ranking within Reinforcement Learning from Hu-
man Feedback (RLHF) (Ouyang et al., 2022), un-
derscores the importance of aligning human prefer-
ences with the Natural Language Processing (NLP)
model. While explicitly ranking preferences is an
effective method, humans read text without being
aware of each stage of the cognitive process. Un-
conscious cognitive processing signals, such as
eye tracking and brain activity, may reflect more nu-
anced human responses. Toward leveraging cogni-
tive processing signals as implicit human feedback,
NLP research inspired by cognitive neuroscience
provides the foundation. Research integrating cog-
nitive processing signals into neural NLP models
has shown improvements in model performance
across various tasks, POS analysis (Murphy et al.,
2022), dependency parsing (Strzyz et al., 2019),
sentiment analysis (Barrett et al., 2018), Named
Entity Recognition (Hollenstein and Zhang, 2019;
Ren and Xiong, 2021), and relation extraction (Hol-
lenstein et al., 2019). These findings indicate that
the recording of human cognitive processes can be
beneficial regardless of the task. However, previ-
ous works have encountered issues in utilizing cog-
nitive process signals, which have hindered their
integration into NLP models. We aim to solve the
following three problems in the use of cognitive
language processing signals.

Non-task-specificity Cognitive signals contain
information about various types of processing for
stimuli (Kutas and Federmeier, 2000). Not all of
the signals may be useful for the target task, and
redundant information may be noise to the target
task. Distinct feature extractions may need to be
performed for different target tasks, but previous
work has primarily relied on heuristic-based feature
engineering.

High dimensionality In particular, brain activity
recordings are very high-dimensional and require
appropriate dimensional reduction methods. Pre-
vious work averages features to a few dimensions
for concatenation with word embeddings, but this
may result in loss of valuable information.

Limited availability Due to the constraints of tak-
ing data on humans with expensive equipment, it is
difficult to prepare data as large as required by gen-
eral machine learning. Eye tracking, in particular, is
expected to improve in the future, as it has become
inexpensive to acquire in recent years, but current
cognitive features are still considered low-resource.

Previous work has avoided these problems by av-
eraging EEG data to reduce noise and dimension,
but averaging methods lose a lot of information.
Other fields have proposed feature extraction meth-
ods with deep neural networks, and it is necessary
to develop a model suitable for NLP. In this pa-
per, we propose a Cognitive Information Bottleneck
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Figure 1: Overview of the Cognitive Information Bottleneck Method. The task example is NER, but can
be applied to any task. Cognitive embeddings compressed by the information bottleneck method are
concatted to word embeddings to make them inputs for the model.

(CIB) method to tackle these three issues: non-task-
specificity, high dimension, and limited availability.
Our CIB method is inspired by the information bot-
tleneck principle (Tishby et al., 1999) and targets
cognitive processing signals. The information bot-
tleneck principle aims to minimize the mutual in-
formation between the input and its representation
while extracting relevant information about the tar-
get from the input. By filtering out redundant infor-
mation from the input, this approach generates the
minimally sufficient representation that is optimal
for the prediction task while ensuring task specificity.
The information bottleneck method is a nonlinear
feature extraction method that is robust to regular-
ization in low-resource settings (Mahabadi et al.,
2021) and has recently been employed in natural
language processing. The CIB method can learn
to complement pre-trained word embeddings with
cognitive processing signals to generate stronger
input representations. This method can be applied
to any task. It integrates cognitive features more
seamlessly into the NLP model to provide a robust
interface between human responses and the neural
network. In this paper, we evaluate our proposed
method using a public dataset and compare it with
existing feature extraction methods. The cogni-
tive processing signals, compressed into an appro-
priate dimension by CIB, enhanced the model’s

performance in downstream tasks when used in
conjunction with pretrained word embeddings. This
indicates that proper feature extraction can poten-
tially improve model performance.

In this work, we make the following main contri-
butions:

• We propose the Cognitive Information Bottle-
neck (CIB), a novel method designed for ef-
ficient integration of cognitive processing sig-
nals into NLP models. CIB is very fast to train
on a single GPU and improves pre-trained lan-
guage models without fine-tuning.

• We evaluate the potential of CIB on public
datasets, showing it compresses cognitive fea-
tures more efficiently than existing methods,
and improves the performance of downstream
tasks, outperforming state-of-the-art models.

• We conducted a probing task for analysis. We
showed that cognitive features have useful in-
formation for NLP and that their integration
with pre-trained language models improves
performance. Why and how cognitive features
are useful is under-explored, and this analysis
provides new insights.
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ZuCo
Sentiment Reading Task Normal Reading Task

number of sentences 400 300
domain movie reviews Wikipedia articles

task rating the quality of the movie natural reading

Table 1: Overview of the dataset used in this paper, in which subjects’ cognitive language processing
signals in two different domains were recorded for NER.

2. Related Works

2.1. Cognitive Processing Signals for
NLP

In work integrating cognitive processing signals into
the NLP model, two main types of cognitive process
recordings have been used.

The first is eye tracking data. Eye movement
data recording has been used in a variety of fields,
including NLP and computer vision. Eye trackers
can record very accurately, down to the millisecond,
the point and time a human was looking while read-
ing text. In recent years, eye tracking technology
using mobile devices has improved significantly. It
is expected that in the future it will be possible to
obtain accurate data even in environments where
special equipment is not available. Before its use in
NLP, eye tracking was an important data for under-
standing human language processing. Humans do
not pay attention to every word when reading, but
take into account many linguistic factors (Demberg
and Keller, 2008). This has been supported by ob-
serving the number of fixations and fixation times.
For example, word length and frequency (Rayner,
1977) and predictability from context (Juhasz and
Rayner, 2003) have been found to be related to
fixation. Due to the relative ease of obtaining data,
attempts to integrate cognitive processing signals
into NLP models began with eye tracking. Early
research used it for tasks such as part-of-speech
tagging (Barrett et al., 2016) and prediction of mul-
tiword expressions (Rohanian et al., 2017). Later,
neural models used eye tracking for sentiment anal-
ysis (Barrett et al., 2018) and NER (Hollenstein and
Zhang, 2019; Ren and Xiong, 2021). Recently,
ScanTextGAN (Khurana et al., 2023) has also been
proposed to generate eye tracking in situations
where gaze data is not available. Many works have
discovered the advantages of using eye tracking
data.

Second, EEG data. Although the use of EEG
data in NLP tasks has not been explored as much
as eye-tracking data, there are advantages to uti-
lizing this source for NLP tasks. For example,
Dambacher and Kliegl (2007) found that the ampli-
tude of N400 increases with fixation time, indicat-
ing that EEG can complement eye-tracking data
with each other. It has also been observed to con-

tain other information about language processing,
such as differences in processing verbs and nouns,
concrete and abstract nouns, common and proper
nouns (Weiss and Mueller, 2003), and decoding
of POS information (Murphy et al., 2022). It is ex-
pected that EEG encodes a wealth of information
that eye tracking does not. However, it is therefore
difficult to integrate EEG data into NLP tasks. For
the first time, Hollenstein et al. (2019) investigated
the effectiveness of using EEG data in multiple
tasks, including named entity recognition, relation
extraction, and sentiment analysis. While Hollen-
stein et al. (2019) directly concatenated EEG fea-
tures for word embedding, Ren and Xiong (2021)
proposed CogAlign to account for the difference
between the two modalities, textual and cognitive.
However, in these previous works, they averaged
the values obtained from 105 electrodes for normal-
ization. Although the averaging method reduces
the dimension of the EEG features, it has the prob-
lem of losing various information that the EEG has.
In other fields, deep neural networks have been em-
ployed for feature extraction from EEG in machine
learning (Zhang et al., 2021; Dai et al., 2020), and
methods suitable for NLP need to be developed.

2.2. Information Bottleneck

The Information Bottleneck (IB) principle (Tishby
et al., 2000) originated in information theory and
was proposed for signal processing. IB aims to find
a compressed representation of a signal while pre-
serving the maximum information of the signal. Re-
cently, the variational information bottleneck (VIB)
method (Alemi et al., 2016) was proposed; VIB
enables the application of IB principles to deep
learning by approximating IB constraints. VIB has
been employed in a variety of fields, including com-
puter vision (Peng et al., 2018) and reinforcement
learning (Goyal et al., 2019). In NLP, VIB can im-
prove model performance by using compressed
embeddings rather than original word embeddings
(Li and Eisner, 2019). Finding a minimal yet suf-
ficient representation for the target task is useful
both for improving performance and for making the
model more interpretable. This paper optimizes
VIB for multiple types of cognitive features. The
model solves the NLP task using not only word
embeddings but also VIB-compressed representa-
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tions. Upon receiving a cognitive feature, the VIB
module learns to preserve information that the word
embedding does not have in order to maximize task
performance. Since our approach aims to integrate
multiple cognitive modalities, our work is similar to
the multimodal information bottleneck (MIB) (Mai
et al., 2022) in multimodal learning. Although the
motivation and architecture are different, our appli-
cation of the IB method is convincing in the context
of related research.

3. Cognitive Information Bottleneck

We define the cognitive feature corresponding to
the i-th word as xcog

i ∈ Xcog. These cognitive fea-
tures represent signals derived from human cogni-
tive processes, such as eye-tracking data and EEG
data. Next, to compress these cognitive features,
we introduce the Cognitive Information Bottleneck
(CIB). The CIB generates a compressed represen-
tation of the cognitive features, zcogi ∈ Z. This
compressed representation eliminates the redun-
dancy of the cognitive features and retains only the
information relevant to the task. We denote the
predicted label for the target task of the i-th word
as yi ∈ Y . The objective of the CIB is to maxi-
mize the mutual information I(Xcog, Z) between
the cognitive features and their compressed repre-
sentation, while minimizing the mutual information
I(Z, Y ) between the compressed representation
and the predicted labels. This is expressed by the
following equation:

LIB = βI(Xcog, Z)− I(Z, Y ) (1)

Here, β is a trade-off parameter that adjusts the
balance between mutual information and redun-
dancy. We apply this CIB within the framework of
the Variational Information Bottleneck (VIB). The
objective function of the VIB is as follows:

LCIB = Eq(z|x)[− log p(y|z)]
+ βDKL(q(z|x)||p(z))

(2)

Here, DKL represents the Kullback-Leibler di-
vergence, q(z|x) is the probability distribution that
generates the compressed representation z from
the input x, and p(y|z) is the probability distribu-
tion that generates the predicted label y from the
compressed representation z. Finally, we concate-
nate the compressed cognitive feature zcogi and
the word embedding xword

i ∈ Xword. We denote
this concatenated representation as xinput, which
serves as the input for the downstream tasks. This
provides the model with a representation that com-
bines cognitive features and semantic information
of words.

4. Experiments

4.1. Dataset
We evaluated the Cognitive Information Bottleneck
(CIB) model on the Zurich Cognitive Language Pro-
cessing Corpus (ZuCo)1(Hollenstein et al., 2018).
ZuCo is a unique dataset in which both eye-tracking
and EEG data were recorded. The full corpus con-
tains 1100 English sentences read by 12 adult na-
tive speakers, but it was 700 of these sentences
that were provided with the NER task, which was
used in the experiment.

Subjects performed several reading tasks, and
the corpus recorded cognitive processing signals
as they read different texts. The 400 sentences
were a Sentiment Reading task, in which sub-
jects read 400 movie review sentences extracted
from the Stanford Sentiment Treebank (Socher
et al., 2013) and were tasked with estimating movie
scores. 300 sentences were a Normal reading
task, in which subjects naturally read 300 sen-
tences about great historical people contained in
Wikipedia. Three types of entities were labeled
as PERSON, ORGANIZATION, and LOCATION,
and 1179 of the total 15237 tokens were Named
Entities. An overview of the information inside the
dataset is given in 1.

ZuCo also provides sentiment analysis and re-
lation extraction tasks, which are consistent with
the subject’s task in reading. To verify that the pro-
posed method can extract information independent
of the subject’s task, we tested on the NER task.

4.2. Cognitive Features
Gaze features ZuCo provides five features for
eye tracking: number of fixations (nFIX): total num-
ber of fixations landing on a word; first fixation du-
ration (FFD): first fixation duration on the current
word; total reading time (TRT): sum of all fixation
durations on the current word; gaze duration (GD):
in first-pass reading, the sum of all fixation times on
the current word before the gaze moves out of the
word; go-past time (GPT): the sum of all fixation
times before moving right from the current word
(including backward to the previous word, starting
from the current word). To increase the robustness
of the signal, eye-tracking features were averaged
across all subjects. We use these five features as
they are and handle them as 5-dimensional Gaze
features.

EEG features ZuCo provides word-level EEG fea-
tures because eye tracking and EEG are recorded
at the same time; that is, the EEG corresponding to
a given fixation duration can be identified. EEG is

1Data is available at: https://osf.io/q3zws/

https://osf.io/q3zws/
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Model Signals dim Performance
P(%) R(%) F(%) ∆ F(%)

Baseline
(Glove)

w/ CharEmb 85.00 81.45 83.10 -
w/o CharEmb 80.03 77.19 78.50 -4.6

Gaze

Raw 86.18 82.10 83.91 0.81
Noise 84.26 82.76 83.41 0.31
PCA 86.25 83.21 84.17 1.07
MLP 86.51 84.82 85.65 2.55
CIB 89.72 84.95 86.21 3.11

EEG

Raw 83.1 78.67 80.82 -2.28
Noise 78.7 74.62 76.51 -6.59
PCA 84.61 80.34 82.16 -0.94
MLP 86.88 84.32 85.58 2.48
CIB 86.93 84.56 85.83 2.73

Gaze+EEG

Raw 83.57 79.57 81.13 -1.97
Noise 79.53 72.29 75.77 -7.33
PCA 84.69 81.75 84.13 1.03
MLP 85.67 84.83 85.25 2.15
CIB 87.42 86.25 86.54 3.44

Table 2: Compression performance results for the cognitive bottleneck method. The best score for each
experimental setting is shown in bold. “Signals dim” means the dimension of a cognitive feature.

Model Embeddings dim Signals Performance
Glove Character P(%) R(%) F(%) ∆ F(%)

Hollenstein et al. (2019) 100 50

Baseline 84.52 81.66 82.92 -
Gaze 86.19 84.28 85.12 2.2
EEG 86.7 81.5 83.9 0.38
Gaze+EEG 85.1 83.2 84.0 0.39

CogAlign
(Ren and Xiong, 2021) 300 60

Baseline 89.34 78.60 83.48 -
Gaze 90.76 82.52 86.41 2.93
EEG 89.87 83.08 86.21 2.73
Gaze+EEG 91.28 83.02 86.79 3.31

CIB 100 50

Baseline 85.00 81.45 83.10 -
Gaze (Raw) 89.72 84.95 86.21 3.11∗

EEG (Raw) 86.93 84.56 85.83 2.73∗

Gaze+EEG (Raw) 87.42 86.25 86.54 3.44∗

Table 3: Performance comparison between the proposed method and previous work.“ Gaze” are manually
extracted features and “EEG” are features reduced in dimension by averaging. Significance is indicated
with the asterisks: * = p<0.01.

provided in 4 frequency bands, divided into Theta
(4 to 8 Hz), Alpha (8.5 to 13 Hz), Beta (13.5 to 30
Hz), gamma (30.5 to 49.5 Hz). Frequency bands
are said to reflect different functions of cognitive
processing in the brain(Meyer, 2018). EEG values
are recorded for 105 electrodes, so EEG features
have 420 dimensions.

4.3. Baseline
We compared our results to several baselines to
test the effectiveness of the cognitive features and
the proposed model.2

2The source code is available at: https://github.
com/osekilab/CIB

Cognitive Features Noise is the baseline for ex-
amining the effect of inputting cognitive features
into the model. We used random noise with the
same dimension as the cognitive features.

Dimensional Reduction Algorithm PCA is sim-
ply a baseline that uses Principal Component Anal-
ysis to reduce dimension. This is not task-specific.
MLP is another baseline that uses a simple multi-
layer perceptron to reduce dimension in a nonlinear
fashion. The size of the model is aligned with the
CIB module.

NER Performance We compare our model to
previous methods on ZuCo dataset. We show how

https://github.com/osekilab/CIB
https://github.com/osekilab/CIB
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it differs from their settings. Hollenstein et al. (2019)
is the first baseline. They process Raw-Gaze fea-
tures (5 dimensions) into 17-Gaze features (17 di-
mensions) that can account for contextual influ-
ences. They also transformed the 17-Gaze fea-
tures to 24 quantiles to normalize them. For our
Raw-Gaze features, we do not perform these pre-
processing steps and let the CIB module do all
the feature extraction. They also averaged all the
values for 4 frequency bands, whereas the Raw-
EEG features had 420 dimensions. We do not
perform such preprocessing to avoid missing infor-
mation due to drastic averaging. Ren and Xiong
(2021) is the next baseline, a strong state-of-the-
art model. They follow Hollenstein et al. (2019)
and use the same Gaze and EEG features. How-
ever, they improved performance by applying the
CogAlign method to those cognitive features. Most
of the experimental settings are also common to
Hollenstein et al. (2019), but the dimension of the
word embeddings is different.

4.4. Settings
In our experiments, we adhere to the following set-
tings, which are consistent with previous work: We
use precision, recall, and F1 score as evaluation
metrics for Named Entity Recognition (NER). Our
base model is the BiLSTM-CRF model proposed
by Lample et al. (2016), which employs a single
layer for both the forward and backward LSTM.
We utilize 100-dimensional pre-trained Glove em-
beddings (Pennington et al., 2014). For character-
based embeddings, a bidirectional LSTM is set to
25 dimensions and trained on the ZuCo corpus.
We conduct our experiments using 10-fold cross-
validation and train with a dropout rate of 0.5. We
set the number of hidden LSTM units in the BiLSTM-
CRF model to 100.

We also experimented with pre-trained BERT
(Devlin et al., 2018). Contextual Transoformer-
based word embedding has not been employed
in previous work, and we will investigate whether
it can be improved with cognitive features against
stronger baselines. For the CIB module, we set the
compression ratio beta to 0.0001 and the learning
rate to 0.01. Regarding the compression dimen-
sions, Gaze features are compressed from 5 di-
mensions to 3, while EEG features are compressed
from 420 dimensions to 10, 20, 30, 50, 100, 200
dimensions.

5. Results

5.1. Exploring the Dimension
The figure2 shows the results of the search for
the dimension of feature extraction with CIB. Since

Figure 2: Exploring the dimension of feature extrac-
tion with CIB.

Model Signals Performance
F(%) ∆ F(%)

Baseline
(Glove) - 83.10 -2.14

Baseline
(BERT) - 85.24 -

Gaze

Raw 85.02 -0.22
Noise 85.70 0.36
PCA 86.05 0.81
CIB 86.60 1.36

EEG

Raw 83.61 -1.63
Noise 79.87 -5.37
PCA 84.30 -0.94
CIB 86.09 0.85

Gaze + EEG

Raw 83.39 -1.85
Noise 80.35 -4.89
PCA 85.69 0.45
CIB 87.01 1.77

Table 4: Results of experiments using BERT, a
contextual embedding. The results for the best per-
forming cognitive features in terms of compressed
dimension are included.

the compression ratio is fixed, changing the num-
ber of dimensions determines the optimal compres-
sion. EEG performs best when compressing from
420 to 10 dimensions, and EEG+Gaze performs
best when compressing from 425 to 30 dimensions.
EEG+Gaze also performs better with optimal com-
pression. It seems that Gaze and EEG can be im-
proved more when used together than separately.
This supports the results of previous work (Hollen-
stein et al., 2019; Ren and Xiong, 2021).

5.2. Effectiveness of CIB compression
The results of the CIB compression performance
evaluation are summarized in Table 2, where the
Baseline model inputs Glove and Character Em-
bedding into BiLSTM-CRF. All hidden units of the
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LSTM in Table 2 are fixed at 100, which means
that all settings are the same as in Hollenstein et al.
(2019). “EEG” compresses to 10 dimensions, and
“EEG +Gaze” compresses to 30 dimensions.

First, we see that the Raw setting does not im-
prove the baseline much or rather worsens it for all
cognitive features. The deterioration is marked for
EEG and EEG+Gaze. This may be because EEG
features with high signal-to-noise ratios have 420
large dimensions, which prevent the model from
learning.

For the Noise setting, we used random noise of
the same size as the cognitive features in the Raw
setting. Random noise produced larger deteriora-
tion, indicating that the Raw setting worked better
than the random noise.

In the PCA setting, principal component analy-
sis compresses cognitive features. PCA slightly
improves the Raw setting for all cognitive features,
indicating the effectiveness of dimensional reduc-
tion while considering principal components.

In the MLP setting, the model compresses cog-
nitive features nonlinearly, improving task perfor-
mance. It achieves almost the same performance
as the CIB model, indicating that the deep learning
model is particularly effective in extracting features
from the EEG.

In the CIB setting, the proposed method com-
presses cognitive features. It significantly improves
the PCA setting for all cognitive features, achiev-
ing the best scores in all four settings. EEG alone
scores lower than Gaze alone, but by combining
EEG and Gaze and then compressing them in the
CIB setting, the performance is further improved.
The improvement is comparable to that achieved
using character embedding, and the effect is as
good as that of general learning techniques in NER.

5.3. Comparison with previous works
Table 3 compares the performance of the CIB with
previous works. Baseline shows the results of train-
ing the model without cognitive features in each
paper. Note that Hollenstein et al. (2019) and this
paper have all the same Baseline setup, but Ren
and Xiong (2021) is somewhat different. They use
a strong baseline with 300 Glove embedding di-
mensions and 60 character embedding dimensions,
which may result in slightly higher scores overall.

Our CIB model achieved greater improvement
than the state-of-the-art model in the Gaze and
Gaze+EEG settings. This indicates that CIB ex-
tracts useful information from cognitive features.
The main difference from previous works is that
we use raw cognitive features. For example, for
Gaze, CIB automatically retrieves important rep-
resentations from the 5-dimension raw features
without manual selection as in previous works. For
EEG, CIB automatically filters out noise from 420

5-words Single-word

Figure 3: Results of classification task using
EEG data and word embedding.“ Random” means
chance level, which is a random input feature with
the same dimension as the EEG.

dimensions and extracts only task-specific repre-
sentations, without drastically averaging the dimen-
sions as in previous works.Our method seems to
be particularly effective in the Gaze+EEG setting,
suggesting that Gaze can assist in finding richer
representations from EEG.

5.4. Evaluation with a powerful baseline

Although previous works have only focused on
static embeddings such as Glove, it has not been
investigated whether contextual embeddings can
also be improved with cognitive features. Cognitive
features may not be effective for richer embeddings.
We performed a similar NER task using 768 dimen-
sional pre-trained BERT embeddings (Devlin et al.,
2018) averaged across layers.

The results for the BERT Baseline with 150 LSTM
hidden units are shown in Table 4. Baseline im-
proved the F-score by 2.14 compared to Glove. At
this powerful baseline, the improvement is modest,
but CIB consistently shows improvement. The F-
score of the CIB model in the Gaze+EEG setting
achieves SoTA for this dataset. The BERT embed-
ding also appears to be less affected by noise due
to its 768 dimensions and size.
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6. Further Analysis

Our CIB method extracts only useful task-specific
information from noisy EEG data to improve per-
formance in downstream tasks. What information
did the EEG contain and how did it contribute to
the NLP task? Did CIB integrate EEG with word
embedding, resulting in richer representations for
NLP? We conducted a Probing task and decoded
the information that the original EEG and the inte-
grated representations contained.

6.1. Probing Tasks
We conducted a Decoding task inspired by Murphy
et al. (2022), in which three different tasks illustrate
the representation. Reading Materials is a binary
classification of which document the subject was
reading during the EEG recording. As mentioned
in Section 4, the dataset consists of two types of
materials: movie reviews and Wikipedia. While
not obvious, distinguishing between them may be
useful for the NER task. For example, the movie
reviews are all PER labels. Named Entity is also a
binary classification of whether or not it is a Named
Entity for a given noun. This is not sequential label-
ing, but a simple task to measure understanding of
Named Entity. Part-of-Specch is a three-valued
classification of nouns, verbs, and prepositions, a
frequent POS. Syntactic understanding is critical to
the model in order to extract entire noun phrases
as Named entities in a sentence.

Following Murphy et al. (2022), a small Trans-
former performs the classification task. Almost all
parameters are the same as in their model, but
since the dataset size is different, we set the en-
coder layers to 2, mlp size to 128, and qkv size
to 64. The Decoding model is trained, validated
and tested on the same data as the NER model.
Note that the chance level for binary classification
is therefore not 50%. In Single-Word, only one
word is used as input, while in 5-Words, five words
of the same class are used as input in sequence.

To distinguish between CIB integration and mere
concat effects, multiple conditions are implemented.
In EEG (Raw), the 420 dimensions of the word are
taken as input; in EEG (averaging), the 420 dimen-
sions are averaged and reduced to 8 dimensions,
the same way as in Hollenstein et al. (2019). Glove+
EEG (Raw) simply concatenates the Glove vector
and the 420 dimensional EEG, and Glove+EEG
(averaging) simply concatenates the Glove vector
and the 8 dimensional averaged EEG. Glove+EEG
(CIB) reduces the EEG to 10 dimensions using the
CIB method. It is expected that EEG (CIB) is a
minimal and sufficient representation to comple-
ment Glove. We ran 10 experiments with different
seed and evaluated the results by averaging the
accuracies.

6.2. Evaluation
The figure3 shows the results of the probing task.
First, we find that the EEG data outperform the
overall chance level (Random) and have extensive
information about NLP and subjects. In particular,
Reaing Materials shows almost no loss of accuracy
even in the Single word condition. On the contrary,
it seems to be poor at decoding NLP information.
In the other two tasks, it is surprising that the aver-
aged EEG performs better than the original data.
Averaging is a simple but effective strategy and
confirms the results of previous work.

Glove embedding is generally more accurate.
Reading Materials as information about the sub-
ject is comparable to EEG, while Named Entity and
POS perform much better than EEG. In Glove+EEG
(Raw) and Glove+EEG (averaging), simple concat
is not working very well. However, in Reading Ma-
terials, simple concatenation with EEG performs
the best, which may be due to the fact that EEG is
superior to Glove in this task. In other tasks, EEG
has a rather negative influence on Glove, which
can be prevented to some extent by averaging.

In Glove+EEG (CIB), the integration of EEG and
Glove seems to work well: for two tasks, the integra-
tion with EEG successfully improves performance.
Reading Materials does not show such an improve-
ment, and it may not have been necessary to sup-
plement the EEG data for the NER task. These
results suggest that CIB can extract only the infor-
mation necessary for a task from EEG data with
various information and complement existing word
embedding. Conversely, Glove + EEG (CIB) has
the best performance for Named Entity and POS
decoding. It outperforms simply averaged EEG re-
sults, indicating that the CIB module preserves the
respective information from the EEG data well.

7. Conclusion

We proposed the Cognitive Information Bottleneck
method for extracting task-specific representations
from cognitive language processing signals such as
eye tracking and EEG data, and evaluated it on pub-
lic datasets. The proposed method compresses in-
formation more efficiently than the existing method,
and achieves an improvement over state-of-the-
art models in downstream tasks using cognitive
processing signals; experiments with BERT, a con-
textual embedding, confirm its effectiveness, and
the results achieve a new state-of-the-art. This ap-
proach can be used for any task other than NER. It
facilitates the retrieval of information for specific pur-
poses from cognitive processing signals and pro-
motes the integration of human responses into NLP
models. Future work should improve the architec-
ture for efficient training when used in conjunction
with pre-trained large-scale language models.
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Ethical considerations

This study uses an existing dataset, ZuCo (Hol-
lenstein et al., 2018), which has been sufficiently
designed to ensure that there are no ethical con-
cerns. The main uses of these data are for training
in machine learning and natural language process-
ing, and for analyzing the human reading process.
Our objectives are consistent with these.
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