Code Defect Detection using Pre-trained Language Models with
Encoder-Decoder via Line-Level Defect Localization

Jimin An'*, YunSeok Choi?**, Jee-Hyong Lee'f
1Sungkyunkwan University, Suwon, South Korea
2Hankuk University of Foreign Studies, Seoul, South Korea
als398@skku.edu, ys.choi@hufs.ac.kr, john@skku.edu

Abstract

Recently, code Pre-trained Language Models (PLMs) trained on large amounts of code and comment, have shown
great success in code defect detection tasks. However, most PLMs simply treated the code as a single sequence and
only used the encoder of PLMs to determine if there exist defects in the entire code. For a more analyzable and
explainable approach, it is crucial to identify which lines contain defects. In this paper, we propose a novel method for
code defect detection that integrates line-level defect localization into a unified training process. To identify code
defects at the line-level, we convert the code into a sequence separated by lines using a special token. Then, to
utilize the characteristic that both the encoder and decoder of PLMs process information differently, we leverage both
the encoder and decoder for line-level defect localization. By learning code defect detection and line-level defect
localization tasks in a unified manner, our proposed method promotes knowledge sharing between the two tasks. We
demonstrate that our proposed method significantly improves performance on four benchmark datasets for code
defect detection. Additionally, we show that our method can be easily integrated with ChatGPT.

Keywords: code defect detection, line-level defect localization, unified multi-task training

1. Introduction

Code defect detection is the process of identifying
errors, bugs, or potential issues in software code.
These defects can lead to functional errors in the
software, and result in software threats and vulner-
abilities. The purpose of code defect detection is to
discover these flaws in advance and correct them,
thereby enhancing the quality of the software.

Pre-trained Language Models (PLMs) for pro-
gramming language have achieved significant suc-
cess in code defect detection tasks (Feng et al.,
2020a; Ahmad et al., 2021; Wang et al., 20213g;
Guo et al., 2022). These models learned the con-
text and patterns of programming language from
large datasets of source code in pre-training stage.
Then, the encoder of PLMs is fine-tuned on labeled
datasets where code are tagged as either contain-
ing defects or being defect-free.

However, most PLMs for code defect detection
tasks focused solely on classifying whether code
has defects or not. They just treated the entire code
as a single sequence input and predicted the de-
fects based on the overall context of the code. It
fails to provide detailed information about where ex-
actly in the code the bugs or defects exist, and what
their causes might be. Simply classifying whether
the code has defects makes developers manually
find out which line in the code is vulnerable.

For code defect detection, it is important to know
where the defect is in the code. As shown in Fig-

*Equal contribution
fCorresponding author

def debug_or_dot(self, message):
if self.get('DEBUG',False):
print(message)
else:
print(€.’,end="\n")

[
([]

‘ This code has defect.
s Variable Misuse in Line 2,

def debug_or_dot(self, message):
if message.get('DEBUG',False)
print(message)
else:
print(¢.’,end="\n”)

o
@

Figure 1: An example of code defect detection. Find-
ing vulnerable lines in the code helps developers
quickly fix defective code.

ure 1, it helps developers to identify precise vulner-
able sections within the source code, facilitating
rapid resolution of security flaws. If a specific line is
predicted to be vulnerable in a software project, it
can prompt code reviews or modification efforts tar-
geted at that particular line. Line-level code defect
predictions enhance overall software reliability.

For a more analyzable and explainable approach
to code defect detection, it is crucial to identify
which lines contain defects. However, most PLMs
for programming language have simply used a
whole code sequence as input during the pre-
training stage. When given code and comments
as input, they are concatenated with special tokens.
[CLS] token is added at the beginning, [SEP] to-
ken is placed between the code and comment, and

3446

LREC-COLING 2024, pages 3446-3456
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

[END] token is placed at the end of the sequence.
Finally, during the fine-tuning stage, the input se-
quence is concatenated with [CLS] token at the
beginning of the code and is fed to the classifier.
The entire code sequence as a whole input makes
it challenging to focus on line-level details, which
are crucial for tasks like code defect detection.

To address these aspects of code defect detec-
tion, we treat the code line-by-line and detect de-
fective lines by classifying whether each line of
the code exists as a defect. In this paper, we pro-
pose a novel method for code defect detection that
integrates line-level defect localization into a uni-
fied training process. We utilize code PLMs with
an encoder-decoder architecture, which is capable
of understanding the context of programming lan-
guages. First, we insert [LINE] token at the end of
each line to process the code as sequences based
on each line. When the input is given to the PLMs,
the encoder of PLMs learns for two tasks. The first
task is a code defect detection task that identifies
code defects in the code based on the [CLS] to-
ken. The second task is a line-level defect localiza-
tion task that learns to identify which lines contain
defects based on all [LINE] tokens. Furthermore,
to utilize the characteristic that both the encoder
and decoder in PLMs process information differ-
ently, we leverage both the encoder and decoder
of the PLMs for line-level defect localization. The
decoder of PLMs is trained to generate lines with
defects. By employing a unified training method
for the three processes, our approach promotes
knowledge sharing between code defect detection
and line-level defect localization. We demonstrate
that our proposed method significantly improves
defect detection performance on four benchmark
datasets.

We summarize the contributions of this paper
in three aspects: (1) We introduce a method to
process the code as sequences based on each line
for line-level defect localization. (2) We utilize code
PLMs with an encoder-decoder architecture into a
unified training process for code defect detection
task. (3) We demonstrate that our proposed method
can be easily integrated with ChatGPT.

2. Related Work

Previous research for code defect detection can
be categorized into sequence-based approaches,
which extract vulnerability patterns from code se-
quences, and graph-based approaches, which
utilize the hierarchical structure of code. For
sequence-based approaches, Li et al. (2018) used
the Bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997) method and learned vulnerability pat-
terns extracted from code through APIs and li-
braries to detect defects. Li et al. (2022) extracted

sequential patterns using the flattened Abstract
Syntax Tree (AST) of the code using Bi-GRU
model (Cho et al., 2014). For a graph-based ap-
proach, Zhou et al. (2019) encoded code into a
graph structure using Graph Neural Networks. How-
ever, these approaches were only trained to predict
code defects using limited datasets, and they have
limitations in performance.

As the pre-trained models based on the Trans-
former architecture (Vaswani et al., 2017) have
achieved great success in natural language un-
derstanding tasks (Devlin et al., 2019; Radford
et al., 2019; Liu et al., 2019; Lewis et al., 2020;
Clark et al., 2020; Raffel et al., 2020), the meth-
ods for extending natural language-based meth-
ods to code have recently been proposed in code
understanding tasks (Kanade et al., 2020; Feng
et al., 2020a; Guo et al., 2020; Ahmad et al.,
2021; Wang et al., 2021a; Guo et al., 2022; Wang
et al., 2023). Kanade et al. (2020) proposed a
method that was pre-trained on a massive amount
of Python code to obtain contextual embeddings
of source code. They also introduced three bench-
mark datasets such as Variable-Misuse Classifica-
tion, Wrong Binary Operator, Swapped Operand
for defect detection tasks. Feng et al. (2020a) pro-
posed CodeBERT, a pre-trained language model,
based on BERT (Devlin et al., 2019), to learn cross-
modal representation of both program language
and natural language. Ahmad et al. (2021) pro-
posed PLBART to support both code generation
tasks using encoder-decoder model BART (Lewis
etal., 2020). Wang et al. (2021a) proposed CodeT5,
a pre-trained encoder-decoder model based on
T5 (Raffel et al., 2020), to facilitate generation tasks
for programming language, and recently proposed
an expended CodeT5 model, CodeT5+ (Wang
et al., 2023). However, they only predict whether
there are defects in the entire code, and they do
not predict which specific lines contain defects.

Recently, Large Language Models (LLMs) have
been proposed with massive model sizes and ex-
tensive training data. ChatGPT (Brown et al., 2020;
OpenAl, 2024) has the capability to understand
various topics and contexts, thereby demonstrating
high performance in diverse generation tasks. How-
ever, its performance in classification tasks such as
code defect detection is not as high as that of tradi-
tional PLMs designed specifically for programming
languages.

3. Method

In this section, we introduce a unified framework
that utilizes both the encoder and decoder of PLMs
for code defect detection. Figure 2 shows the ar-
chitecture of our proposed method. Our proposed
method aims to train two tasks: code defect de-

3447

def debug_or_dot(self, msg):

| [CLS] | ()
I
. » -
1 |def debug_or_dot(self, msg): g— = S
2 if self.get(“DEBUG’): (] - o)
3 print(msg) : E - o
4 else: —
: E 8
] - -
S -
L [renor) L) [Enoy |

if self.get(‘DEBUG’):
print(msg)
else: =

IR -
Defect code

1
2
Defect/ No Defect 3
4
Ly 5

Defect/ No Defect 1
. def debug_or_dot(self, msg):
if self.get(‘DEBUG’):
print(msg)

Defect/ No Defect
L

else

A ON=

Line 2 has defect

a8
Qo
® @
@
S o
a

é
()

if self.get(“DEBUG’):

“Generate defect line”

Ly

Generate defect line 2

Figure 2: The framework of our proposed method. Our proposed method utilizes both the encoder and
decoder of PLMs to simultaneously train code defect detection and line-level localization tasks in a unified

manner.

tection and line-level defect localization. First, we
employ the encoder of PLMs with the primary goal
of classifying code defect detection (Section 3.1).
Second, we focus on identifying the specific loca-
tions of defects within the code, classifying defec-
tive lines on a line-by-line basis (Section 3.2). For
utilizing both the encoder and decoder of PLMs
which process information differently, we addition-
ally conduct the task of generating defective lines in
the decoder for line-level localization (Section 3.3).
Our goal is to enhance code defect detection by
simultaneously training on these three processes
within a unified framework (Section 3.4).

We provide a detailed explanation of our training
processing in the following subsection.

3.1. Encoder: Code Defect Detection

In the pre-training stage, PLMs incorporate the
[CLS] token at the beginning of each sequence
to facilitate the learning of sequence embeddings.
This [CLS] token serves as a crucial anchor, cap-
turing the context of the code sequence and rep-
resenting it as an embedding. As the embedding
of this token represents context information of the
entire input, it is used during the fine-tuning stage.
In code defect detection task, the embedding of the
[CLS] token enables PLMs to classify whether the
code contains defects.

Given code C, we aim to train the encoder of
PLMs that identify defects within code. In this phase,
we obtain the embedding value h; of C. The em-
bedding of the [CLS] token is then fed into the first

classifier for code defect detection as follows:

I = ([CLS]; G; [ENDY]) (1)
h = Encoder (1) (2)
logity = Classifierd(h[CLs]) (3)

where [CLS] and [END] tokens are special tokens
representing the classification token and the end
of sequence respectively, hc g refers to the em-
bedding of the [CLS] token, and logit, is the output
from the classifier for code defect detection.
Finally, the loss L, is computed as follows:

L4 = CrossEntropy(logitg, labely) 4)

where labely is the ground truth label whether the
code contains a defect or not.

3.2. Encoder: Line-level Defect
Localization

Previous works for code defect detection using
PLMs only learn from the embedding of the [CLS]
token corresponding to code C. They simply re-
garded the entire code sequence as a whole input.
These approaches summarize the code with a sin-
gle [CLS] token. However, most code defects derive
from specific parts of a line, such as variables or
operators. Thus, training solely based on a single
[CLS] token may not effectively capture detailed
information about the precise locations of defects
or bugs in the code. To capture more context infor-
mation about the code, we introduce a line-level
defect localization method that allows the model
to detect defects on a line-by-line basis, thereby
enabling it to learn the exact location information
related to defects and bugs.

Given code C = {¢y, o, ..., ¢, } consisting of n
lines, which ¢; means the i-th line of the code, we

3448

Datasets Train Valid Test Lines (defective)
Devign 17.8K (9.7K/8.2K) 2.2K (1.3K/0.9K) 2.3K (1.3K/1.0K) 49.6 (6.2)
Variable-Misuse 700.6K (350.3K/350.3K) 8.2K (4.1K/4.1K) 378.4K (189.2K/189.2K) 10.2 (1.0)
Wrong Binary Operator 459.4K (229.7K/229.7K) 8.2K (4.1K/4.1K) 251.8K (125.9K/125.9K) 18.4 (1.0)
Swapped Operand 236.2K (118.1K/118.1K) 8.2K (4.1K/4.1K) 131.0K (65.5K/65.5K) 22.5 (1.0)

Table 1: Statistic of the four benchmark datasets. (/) represents the number of datasets with defects and
without defects, respectively. (defective) means the average number of defective lines in a code.

aim to train a model that detects defects on a line-
by-line basis. We insert line tokens to delineate
each line for a code C as shown in Figure 2. This ef-
fectively segments the code at every newline. Then,
using the encoder of PLMs, we obtain embeddings
for each individual line. The embeddings of the n
line tokens are fed into a classifier for line-level de-
fect localization. The process of obtaining logit; for
the i-th line ¢; is as follow:

I = ([CLS]; [LINE];; ¢1; .., [LINE],; ¢,,; [END]) (5)

n’

h = Encoder(I) (6)
lOgZ'tli = Classiﬁerl(h[L.NE]i) (7)

where [LINE], is a special token representing the
start of code i-th line, hying, refers to the final em-
bedding of the [LINE], token for the encoder of
PLMs, and logit;, is the output of i-th line from the
classifier for line-level defect localization.

The loss for localizing defects in each line of the
code is as follows:

L, =) CrossEntropy(logit,,, label;,) (8)

i=1

where label;, is the ground truth label whether the
i-th line of code is defective or not.

As shown in Figure 2, we simultaneously con-
duct code defect detection and line-level defect
localization using the encoder of PLMs. The whole
code sequence C is trained through the classifier
for code defect, and the classifier for line-level de-
fect is trained to determine the absence of defects
on a line-by-line basis. By integrating to train on
two tasks, a single PLM encoder shares the context
information of the code.

3.3. Decoder: Line-level Defect
Localization

For classification tasks, classifiers are commonly
trained using only the encoder of PLMs. The en-
coder is well-suited to understanding the context
of the input sequence for classification. To utilize
the generation capability of the decoder as well as
the encoder, we aim to train both the encoder and
decoder of PLMs for line-level defect localization.

If the encoder detects whether each line has a de-
fect, the decoder is designed to generate which line
contains the defect. Both the encoder and decoder
aim to find the defective line, but they differently pro-
cess information through each process. The code
embedding / obtained from the encoder is fed to
the decoder. The decoder generates a defective
line gen;. The generated line and defective line are
calculated to compute the loss as follows:

gen; = Decoder(h) (9)

L, = GenerationLoss(gen;, sent;) (10)

where sent; is the ground truth defective line in the
code.

3.4. Unified Multi-task Training

Instead of training each task separately, we aim
to learn across three processes in a unified man-
ner, leading to a better transfer of knowledge across
tasks. We obtain the loss in the encoder for classify-
ing the entire code’s defect, the loss for classifying
each line as a defect or not, and the loss in the
decoder for generating defective lines in the code.
Then we compute the final loss by summing the
three losses, each multiplied by a weight factor. The
final loss for our proposed method is presented as
follows:

(11)

where w1, wy, and w3 are the weights of each loss.

Ltingl = w1 * Lg 4+ we * L) 4+ w3 * Ly

4. Experiment Setup

Dataset We conduct experiments on four pub-
lic benchmark datasets for the defect detection
task. Zhou et al. (2019) introduced the Devign
dataset, which is one of the benchmark datasets in
CodeXGLUE (Lu et al., 2021). Kanade et al. (2020)
presented three benchmark dataset, Variable-
Miuse, Wrong Binary Operator, and Swapped
Operand. Table 1 shows the detailed statistics of
the datasets.

+ Devign consists of functions from large open-
source C projects. lts objective is to predict
whether the code is vulnerable to software sys-
tems or not. We removed datasets from which
we cannot obtain line-level defect information.

3449

Datasets \ Devign \ VM \ WBO \ SO
Models | Acc. F1. | Acc. Fi. | Acc. F1. | Acc. F1.
CuBERT (Kanade et al., 2020) - - 94.04 - 89.90 - 92.20 -
CodeBERT (Feng et al., 2020a) | 63.73 51.51 | 93.21 93.03 | 90.66 90.27 | 91.06 90.77
CodeT5 (Wang et al., 2021a) 62.87 58.39 | 93.82 93.74 | 88.12 87.75 | 91.78 91.70
CodeT5+ (Wang et al., 2023) 63.40 62.59 | 93.28 93.21 | 89.08 88.62 | 92.70 92.61
UniXcoder (Ahmad et al., 2021) | 63.18 47.57 | 93.95 93.85 | 90.35 90.11 | 93.73 93.66
CodeT5 (ours) 65.44 62.68 | 95.43 95.38 | 90.53 90.29 | 93.88 93.80
CodeT5+ (ours) 64.91 63.97 | 95.08 95.02 | 91.56 91.35 | 93.69 93.62
UniXcoder (ours) 64.29 58.37 | 95.36 95.30 | 92.49 92.31 | 94.22 94.16

Table 2: Comparison of our proposed method with the baseline models on the four benchmark dataset.
We selected CodeT5, CodeT5+, and UniXcoder, which are the state-of-the-art (SOTA) PLMs with the
encoder-decoder architecture, as our baselines. The best result is in boldface, and the next best is

underlined.

+ Variable-Misuse Classification (VM) is a
dataset to determine whether two variables
in a code are mistakenly swapped.

* Wrong Binary Operator (WBO) is a dataset
to check if a binary operator is erroneously
replaced with another operator.

» Swapped Operand (SO) is a dataset to verify
whether the operands of a binary operator are
incorrectly swapped.

Evaluation Metrics For code defect detec-
tion, we use Accuracy, F1-score, AUC-ROC
curve (Bradley, 1997), and PR-AUC (Davis and
Goadrich, 2006). For line-level defect selection, we
use Accuracy and F1-score.

» Accuracy is the ratio of correctly predicted
instances to the total number of instances in
the dataset.

* F1-score is the harmonic mean of precision
and recall.

» AUC-ROC is that the ROC curve plots the true
positive rate against the false positive rate for
various threshold values, and AUC gives the
area under the ROC curve.

* PR-AUC is the precision-recall curve plots pre-
cision against recall for various thresholds.

Baselines We compare our proposed approach
with PLMs for programming language, such as Cu-
BERT (Kanade et al., 2020), CodeBERT (Feng
et al., 2020a), CodeT5 (Wang et al., 2021b),
CodeT5+ (Wang et al., 2023), and UniXCoder (Guo
et al., 2022). They are fine-tuned using only the
[CLS] token of each code, as a general training
method for code defect detection. We refer to the
CuBERT reported by Kanade et al. (2020), which
is a PLM specifically for Python language.

Implementation Details We selected various
code PLMs, CodeT5, CodeT5+, and UniXcoder,
which are encoder-decoder architectures, as our
framework. Our framework has three main tasks:
(1) Code Defect Detection in Encoder, (2) Line-level
Defect Localization in Encoder, and (3) Line-level
Defect Localization in Decoder. The input is the
code C = [cy, ..., ¢,] with [CLS] token and [LINE]
tokens to delineate each code line ¢,. While other
tokens or different special tokens can be consid-
ered, we chose the [SEP] token that preserved the
overall meaning of the code in C and Python Lan-
guage. We set the batch size to 8 and the learning
rate is 2e-5, the maximum source length to 512
tokens. VM/WBO/SO and Devign fine-tuning for 2
and 10 epochs, respectively. Also, we set the maxi-
mum length of the [LINE] token to 50, 15, 20 and 30
for Devign, VM, WBO and SO, which are similar to
the average line length of the code in each dataset.

The loss weight values and ground truth label
are as follows:

(1) Fine-tuning with [CLS] token and target is no-
defect(0) or defect(1). We set the loss weight
wy for L 10 1.

(2) Fine-tuning with [LINE] tokens and target is no-
defect(0) or defect(1) with each line. We set the
loss weight w-, for £; to 0.1 and 0.5 for Devign

and VM/WBO/SO datasets, respectively.

If code C has a defect in k-th line ¢, the de-
coder generate the the k-th line. Otherwise,
the decoder generates the "No Defect Found".
We set the target sequence length to 50 tokens
and loss weight w3 for £, t0 0.1.

5. Experiment Result

5.1.

Table 2 shows the comparison of our proposed
method with baselines on four benchmark datasets

Main Result

3450

Devign VM wBO SO
Acc. F1. Acc. F1. Acc. F1. Acc. F1.
Baseline: (1) 62.87 5839 93.82 93.74 88.12 87.75 91.78 91.70
Ours: (1)+(2) 63.18 58.88 94.76 94.70 89.13 88.84 92.35 92.28
Ours: (1)+(3) 63.67 56.01 94.12 94.06 89.97 89.68 92.80 92.72
Ours: (1)+(2)+(3) 65.44 62.68 95.43 95.38 90.53 90.29 93.88 93.80

Table 3: Ablation study on three learning processes of our proposed method, (1) Code Defect Detection
in Encoder (2) Line-level Defect Localization in Encoder, and (3) Line-level Defect Localization in Decoder.
The best result is in boldface, and the next best is underlined. We chose CodeT5 as the baseline.

Devign Variable Misuse(VM)

Wrong Binary Operator(WBO) Swapped Operand(SO)

1.00

0.81

)

o
o
©
S

True Positive rate
True Positive rate

o
IS
)
®
@

Baseline(1): 70.1

Ours (1)+(2): 71.6
Ours (1)+(3): 70.0
Ours (1)+(2)+(3): 71.2

Baseline(1): 98.6

Ours (1)+(2): 99.0
Ours (1)+(3): 98.7
Ours (1)+(2)+(3): 99.0

o
N~
o
®
S

o
o

True Positive rate

o
©
@

o
©
S

True Positive rate

)
®
¥

Baseline(1): 97.9
Ours (1)+(2): 98.2
Ours (1)+(3): 98.4

Baseline(1): 95.4
Ours (1)+(2): 96.0
Ours (1)+(3): 96.1
Ours (1)+(2)+(3): 96.6

o
®
S

Ours (1)+(2)+(3): 98.6

0.75 4+
0.00 0.05 0.10 0.15 020 0.25 0.30
False Positive rate

0.0 0.2 0.4 0.6 1.0

False Positive rate

0.8

0.75 47
0.00 0.05 0.10 0.15 020 0.25 0.30
False Positive rate

0.75 -
0.00 0.05 0.10 0.15 0.20 0.25 0.30
False Positive rate

Figure 3: Comparison results of AUC-ROC curve on the four benchmark datasets. The X-axis and Y-axis
represent the False Positive Rate and True Positive Rate, respectively. A higher AUC score indicates
better classification performance to distinguish between defective and non-defective classes.

for the code defect detection tasks. First, the De-
vign dataset contains defects that may be used to
attack software systems, such as resource leaks
and use-after-free, so the task is very difficult com-
pared to other datasets. Among the baselines, the
CodeT5+ showed higher scores with an Accuracy
and F1-score of 63.40 and 62.59. When we applied
our proposed method with CodeT5+, the score in-
creased by 2.38% and 2.20%, respectively. Also,
while UniXcoder demonstrated high Accuracy, its
F1-score was significantly lower. This indicates an
increased number of False Negative predictions,
leading to a decreased Recall and hence lower F1-
score. It implies that the model often misclassifies
actual defective code as non-defective. By apply-
ing our method, the increase in F1-score is more
significant in all baselines. Finally, CodeT5 with our
proposed method shows the best performance in
the Devign dataset.

For the datasets of Variable-Misuse (VM), Wrong
Binary Operator (WBO), and Swapped Operand
(SO), CuBERT and UniXcoder show higher perfor-
mance than other baselines. CUBERT is trained on
only Python programming language, so it shows
better performance in the datasets, which consist
of the code in Python datasets. In UniXcoder, code
representation is obtained based on the Abstract
Syntax Tree, enabling it to better capture structural
information. Also, CodeBERT, which is only com-
posed of a PLM encoder, showed higher perfor-
mance on the WBO dataset compared to other
baselines. However, all baselines tended to show a

lower F1-score compared to Accuracy. By applying
our proposed method to these baselines, both Ac-
curacy and F1-score improved and resulted in more
consistent defect detection. Finally, CodeT5 with
our proposed method shows the best performance
in VM dataset, and UniXcoder with our proposed
method achieves state-of-the-art in WBO and SO
datasets.

5.2. Ablation Study

In Table 3, we present an ablation study to inves-
tigate the impact of line-level defect localization
learning in the encoder and decoder respectively on
the code defect detection performance. We chose
CodeT5 as our baseline. Baseline (1) represents
the performance of the fine-tuning method using
only the [CLS] token. Ours (1)+(2) indicates the
results when only the encoder of PLMs is used for
both code defect detection and line-level defect lo-
calization. Ours (1)+(3) represents the results when
the encoder of PLMs is only trained for code defect
detection and the decoder of PLMs is trained for
line-level defect localization. Lastly, we present the
results of our final proposed method (1)+(2)+(3)
which combines all three training processes.

First, for ours (1)+(2), we observed an increase in
both Accuracy and F1-score compared to the base-
line. We treated the code as line-by-line based on
the [LINE] token rather than just a single sequence.
This demonstrates that by training the encoder to
detect code defects and simultaneously identify the

3451

Devign Variable Misuse(VM)

Wrong Binary Operator(WBO) Swapped Operand(SO)

Baseline(1): 67.7

Ours (1)+(2): 67.8

=+ Ours (1)+(3): 66.6

+ 0urs (1)+(2)+(3): 68.8

0.8

Precision
Precision

----- Baseline(1): 98.7
Ours (1)+(2): 99.1
=+ Ours (1)+(3): 98.8

Ours (1)+(2)+(3): 99.1

Precision

0.85

.......... Baseline(1): 98.1
Ours (1)+(2): 98.4
=+ Ours (1)+(3): 98.5

Ours (1)+(2)+(3): 98.7

Baseline(1): 96.0

Ours (1)+(2): 96.5
=+ Ours (1)+(3): 96.6
Ours (1)+(2)+(3): 97.0

0.0 0.2 0.4 0.6

Recall

0.8 0.80 0.85 0.90

Recall

0.95

0.95 0.85 0.90

Recall

0.80 0.85 0.90 0.95

Recall

0.80

Figure 4: Comparison results of PR-AUC curve on the four benchmark datasets. The X-axis and Y-axis
represent the Recall and Precision, respectively. A higher PR-AUC score indicates better classification

performance to correctly classify defective code.

Models | CodeT5 | CodeT5+ | UniXcoder Models | ChatGPT | ChatGPT+Ans | Ours
Dataset | Acc. F1. | Acc. F1. | Acc. F1. Dataset | Acc. F1. | Acc. Fi. | Acc. F1.
Devign | 78.8 11.2 | 78.2 7.8 80.4 13.8 Devign | 51.6 52.7 | 81.0 82.6 65.3 62.5
VM 99.0 935 | 987 913 | 988 922 VM 56.3 55.5 | 87.0 88.0 95.0 94.8
WBO 985 87.2 | 984 852 | 989 904 WBO 54.8 49.4 | 83.7 85.0 90.4 89.7
SO 994 945 | 99.2 93.1 | 994 949 SO 55.2 49.2 | 83.1 84.6 93.6 93.1

Table 4: Performance of the encoder of PLMs for
Line-level Defect Localization on the four bench-
mark datasets.

specific lines with defects, the model can better
pinpoint defective code.

For ours (1)+(3), while there was an overall perfor-
mance improvement compared to the baseline, we
noticed a significant increase in Accuracy but a no-
tably lower F1-score in the Devign dataset. This is
because the model does not focus on line-level but
instead tries to locate the defect sequence based
on the entire code, leading to a higher number of
False Negative predictions compared to (1)+(2).

Lastly, for our final proposed method (1)+(2)+(3),
we observed a significant increase in both Accuracy
and F1-score across all datasets. By utilizing code
PLMs with an encoder-decoder architecture that un-
derstands the context of programming languages,
we trained on code defect detection and line-level
defect localization tasks using an integrated learn-
ing method. This unified approach promotes knowl-
edge sharing between the encoder and decoder.

Figure 3 shows the AUC-ROC curve results for
four benchmark datasets. For all datasets, our
method achieved the highest AUC score. Espe-
cially, for our final approach (1)+(2)+(3), The re-
sults increase by 3.00%, 0.41%, 1.26%, and 0.72%
compared to the baseline (1), respectively. We
demonstrated that our method effectively classi-
fied whether the code has defects and consistently
performed well across all thresholds.

In Figure 4, we present the PR-AUC curve for four
benchmark datasets. For all datasets, our proposed
method achieved the highest PR-AUC score. A

Table 5: Comparison of our proposed method with
ChatGPT to detect defect code on four datasets
sampled with 1000 instances.

Models \ ChatGPT \ ChatGPT+Ours
Dataset | BLEU CodeBLEU | BLEU CodeBLEU
Devign | 63.2 65.1 65.3 67.6
VM 60.5 64.3 62.6 65.8
WBO 74.8 77.9 78.7 80.1
SO 721 75.2 771 80.2

Table 6: Comparison of our proposed method with
ChatGPT to fix repair code on defective code in
terms of BLEU (Papineni et al., 2002) and Code-
BLEU (Ren et al., 2020) score.

good PR-AUC curve performance indicates that the
model is effectively predicting the defective class
and the model is correctly predicting a large number
of defective samples while minimizing the number
of false positives. We showed that our proposed
method has the excellent predictive capability of
the model.

5.3. Line-level Defect Localization

We analyze how well the encoder of PLMs per-
formed on line-level defect localization, and evalu-
ate based on Accuracy and F1-score for lines that
contain defects. Table 4 presents the performance
of the encoder for Line-level Defect Localization. In
the Devign dataset, which predicts vulnerabilities
in a software system rather than just syntactical
errors, the result shows lower performance than
other datasets. Additionally, the dataset contains

3452

ChatGPT

ChatGPT+Ours

Prompt: Repair the following defect code snippet.
In your response, output the fixed code only.
(Code)

Prompt: Repair the following defect code snippet.
In your response, output the fixed code only.
Defect candidate Line: n-th line in this code.
(Code)

Code 1:
def update_thumbs(self, namelList):
invalid = (set(self.thumbList) - set(namelList))
if len(nameList) > 0:
with self.thmblock:
for thumbkey in invalid
self.thumbList.remove(thumbkey)
del self.thumbDict[thumbkey]
self._tkf_highlight.discard(thumbkey)
self.reorder_thumbs()

Code 1:
def update_thumbs(self, namelList):
invalid = (set(self.thumbList) - set(namelList))
if len(invalid) > O:
with self.thmblock:
for thumbkey in invalid
self.thumbList.remove(thumbkey)
del self.thumbDict[thumbkey]
self._tkf_highlight.discard(thumbkey)
self.reorder_thumbs()

Code 2:
def _guess_media_encoding(self, source):
info = source.byteStream.info()
if ‘Content-Type’ in info:
for param in self.getplist():
if param.startswith('charset="):
return param.split('=", 1)[1].lower()

Code 2:
def _guess_media_encoding(self, source):
info = source.byteStream.info()
if ‘Content-Type’ in info:
for param in info.getplist():
if param.startswith('charset="):
return param.split('=", 1)[1].lower()

Table 7: A qualitative example of the VM dataset on repair task.

multiple defective lines within a single code, mak-
ing accurate prediction challenging. However, by
training to identify which lines contain defects simul-
taneously, we can observe that the model better
represents code for the code defect detection task.
Furthermore, for the VM, WBO, and SO datasets,
the model is notably effective at predicting lines with
defects. It helps developers to identify precisely vul-
nerable sections within the source code.

5.4. Comparison with ChatGPT

To evaluate how well the Large Language Model,
ChatGPT, performs in code defect detection, we
sample 1000 instances from each dataset, and
compare the defect detection performances of
ChatGPT and our proposed method as shown in
Table 5. When we simply ask ChatGPT to detect
the defect code, ChatGPT shows a very low per-
formance, around 50% for each dataset. In order
to maximize the performance of ChatGPT, we per-
form additional experiments by providing defect
line information for each code in prompts. The
ChatGPT+Ans in Table 5 show the results with the
ground truth defect information.

We notify that our proposed method shows sig-
nificantly higher performance even than ChatGPT
with golden defect line information. Our proposed
method performs better on the VM, WBO, and SO
datasets. Interestingly, on the Devign dataset, Chat-
GPT with the ground truth of defect line information
performs the best. This may arise from the small
size of the Devign dataset. As shown in Table 1,
the size of Devign is approximately one over sev-

eral tens of others. So, a model may learn rela-
tively small amount of information from the dataset.
Since ChatGPT was trained on a large corpus, it
can perform better on the small size of datasets
using its knowledges from the pre-training dataset.
This suggests that we may benefits from the broad
knowledge of a pre-trained language model even
for code intelligence tasks.

5.5. Integration with ChatGPT

Since ChatGPT was designed as a general-
purpose generative Al, it showed limitations in clas-
sification tasks like code defect detection. However,
we can combine our proposed method to ChatGPT
to enhance its generative capabilities. We conduct
another experiments to generate repaired code by
combining ChatGPT with our model. We sample
100 defect code instances from each dataset, and
we additionally provide the predicted line-level de-
fect information by our method in prompts. The
repair performance is shown in Table 6.

When we simply ask ChatGPT to repair the de-
fective code (ChatGPT in Table 6), the BLEU scores
are 63.2%, 60.5%, 74.8%, and 72.1%, respectively,
on the four benchmark datasets. However, when
we provide ChatGPT with the predicted defect loca-
tions by our method (ChatGPT+Ours), the scores
significantly improve to 65.3%, 62.6%, 78.7%, and
77.1%. This demonstrated that we can enhance the
generative capabilities of large language models
using our proposed method.

Table 7 shows qualitative examples of the repair
task with ChatGPT. We provide the task descrip-

3453

tion in the prompt for ChatGPT as shown in the
left column, and provide the task description with
the predicted defect locations for ChatGPT+Ours.
When we simply instruct ChatGPT to repair the
defective code, ChatGPT struggle to identify the
defective line, which lead to unsuccessful repair
attempts. However, when we provide information
about the predicted defective line, ChatGPT suc-
cessfully repairs the defective code.

6. Conclusion

We introduced a novel method for code defect de-
tection with line-level defect localization in a uni-
fied manner. By segmenting the code based on
lines and leveraging both the encoder and decoder
of PLMs, we achieved a more detailed and inter-
pretable defect detection mechanism. We demon-
strated that our evaluations on four benchmark
datasets showed the superiority of our method in
code defect detection. Moreover, the interaction of
our approach with generative Al, specifically Chat-
GPT, broadens its applicability and potential in real-
world scenarios. In future work, we plan to conduct
research on an integrated model that simultane-
ously performs code defect detection and defect
repair based on line-level defect information.

7. Acknowledgments

This work was partly supported by Institute of In-
formation & communications Technology Planning
& Evaluation (lITP) grant funded by the Korea
government (MSIT) (No.2019-0-00421, Al Grad-
uate School Support Program, Sungkyunkwan Uni-
versity, and No.2022-0-01045, Self-directed Multi-
modal Intelligence for solving unknown, open do-
main problems)

8. Bibliographical References

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray,
and Kai-Wei Chang. 2021. Unified pre-training
for program understanding and generation. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, pages 2655-2668, Online. Association for
Computational Linguistics.

Berkay Berabi, Jingxuan He, Veselin Raychev, and
Martin Vechev. 2021. Tfix: Learning to fix coding
errors with a text-to-text transformer. In Interna-
tional Conference on Machine Learning, pages
780-791. PMLR.

Andrew P. Bradley. 1997. The use of the area under
the roc curve in the evaluation of machine learn-
ing algorithms. Pattern Recognition, 30(7):1145—
1159.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, Amanda Askell, et al. 2020. Language mod-
els are few-shot learners. Advances in neural
information processing systems, 33:1877-1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea
Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski
Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-
Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike,
Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage,
Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, llya
Sutskever, and Wojciech Zaremba. 2021. Evalu-
ating large language models trained on code.

KyungHyun Cho, Bart van Merrienboer, Dzmitry
Bahdanau, and Yoshua Bengio. 2014. On
the properties of neural machine transla-
tion: Encoder-decoder approaches. CoRR,
abs/1409.1259.

Kevin Clark, Minh-Thang Luong, Quoc V Le,
and Christopher D Manning. 2020. Elec-
tra: Pre-training text encoders as discrimina-
tors rather than generators. arXiv preprint
arXiv:2003.10555.

Jesse Davis and Mark Goadrich. 2006. The rela-
tionship between precision-recall and roc curves.
In Proceedings of the 23rd international confer-
ence on Machine learning, pages 233—240.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and
Short Papers), pages 4171-4186, Minneapolis,
Minnesota. Association for Computational Lin-
guistics.

3454

https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/https://doi.org/10.1016/S0031-3203(96)00142-2
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan,
Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou.
2020a. CodeBERT: A pre-trained model for pro-
gramming and natural languages. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 1536—1547, Online. Asso-
ciation for Computational Linguistics.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan
Duan, Xiaocheng Feng, Ming Gong, Linjun Shou,
Bing Qin, Ting Liu, Daxin Jiang, et al. 2020b.
Codebert: A pre-trained model for program-
ming and natural languages. arXiv preprint
arXiv:2002.08155.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. UniXcoder: Unified
cross-modal pre-training for code representation.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 7212—7225, Dublin,
Ireland. Association for Computational Linguis-
tics.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin
Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan
Duan, Alexey Svyatkovskiy, Shengyu Fu, et al.
2020. Graphcodebert: Pre-training code rep-
resentations with data flow. ArXiv preprint,
abs/2009.08366.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Harshit Joshi, José Cambronero Sanchez, Sumit
Gulwani, Vu Le, Gust Verbruggen, and Ivan
RadiCek. 2023. Repair is nearly generation: Mul-
tilingual program repair with lims. In Proceedings
of the AAAI Conference on Atrtificial Intelligence,
volume 37, pages 5131-5140.

Aditya Kanade, Petros Maniatis, Gogul Balakrish-
nan, and Kensen Shi. 2020. Learning and evalu-
ating contextual embedding of source code. In
International conference on machine learning,
pages 5110-5121. PMLR.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence
pre-training for natural language generation,
translation, and comprehension. In Proceedings
of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 7871-7880,
Online. Association for Computational Linguis-
tics.

Zhen Li, Deqging Zou, Shouhuai Xu, Hai Jin, Yawei
Zhu, and Zhaoxuan Chen. 2022. SySeVR: A

framework for using deep learning to detect soft-
ware vulnerabilities. IEEE Transactions on De-
pendable and Secure Computing, 19(4):2244—
2258.

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai
Jin, Sujuan Wang, Zhijun Deng, and Yuyi Zhong.
2018. VulDeePecker: A deep learning-based
system for vulnerability detection. In Proceedings
2018 Network and Distributed System Security
Symposium. Internet Society.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Dangi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. Roberta: A robustly optimized bert pre-
training approach.

Benjamin Livshits and Thomas Zimmermann. 2005.
Dynamine: finding common error patterns by min-
ing software revision histories. ACM SIGSOFT
Software Engineering Notes, 30(5):296—-305.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang,
Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang,
et al. 2021. Codexglue: A machine learning
benchmark dataset for code understanding and
generation. arXiv preprint arXiv:2102.04664.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu,
Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. 2022. Codegen: An open large
language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474.

OpenAl. 2024. Gpt-4 technical report.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for auto-
matic evaluation of machine translation. In Pro-
ceedings of the 40th annual meeting of the As-
sociation for Computational Linguistics, pages
311-318.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, llya Sutskever, et al. 2019. Lan-
guage models are unsupervised multitask learn-
ers. OpenAl blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. 2020. Explor-
ing the limits of transfer learning with a unified
text-to-text transformer. The Journal of Machine
Learning Research, 21(1):5485-5551.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shuijie
Liu, Duyu Tang, Neel Sundaresan, Ming Zhou,
Ambrosio Blanco, and Shuai Ma. 2020. Code-
bleu: a method for automatic evaluation of code
synthesis.

3455

https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://arxiv.org/abs/2009.08366
https://arxiv.org/abs/2009.08366
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.1109/tdsc.2021.3051525
https://doi.org/10.1109/tdsc.2021.3051525
https://doi.org/10.1109/tdsc.2021.3051525
https://doi.org/10.14722/ndss.2018.23158
https://doi.org/10.14722/ndss.2018.23158
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2009.10297

Yeonhee Ryou, Sangwoo Joh, Joonmo Yang, Sujin
Kim, and Youil Kim. 2022. Code understanding
linter to detect variable misuse. In Proceedings
of the 37th IEEE/ACM International Conference
on Automated Software Engineering, pages 1-5.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu,
and Neel Sundaresan. 2020. Intellicode com-
pose: Code generation using transformer. In
Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and
Symposium on the Foundations of Software En-
gineering, pages 1433—-1443.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
tukasz Kaiser, and lllia Polosukhin. 2017. Atten-
tion is all you need. Advances in neural informa-
tion processing systems, 30.

Song Wang, Devin Chollak, Dana Movshovitz-
Attias, and Lin Tan. 2016. Bugram: bug detection
with n-gram language models. In Proceedings
of the 31st IEEE/ACM International Conference
on Automated Software Engineering, pages 708—
719.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,
Nghi DQ Bui, Junnan Li, and Steven CH Hoi.
2023. Codet5+: Open code large language mod-
els for code understanding and generation. arXiv
preprint arXiv:2305.07922.

Yue Wang, Weishi Wang, Shafiq Joty, and
Steven C.H. Hoi. 2021a. CodeT5: Identifier-
aware unified pre-trained encoder-decoder mod-
els for code understanding and generation. In
Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing,
pages 8696—8708, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Yue Wang, Weishi Wang, Shafiq Joty, and
Steven CH Hoi. 2021b. Codet5: Identifier-aware
unified pre-trained encoder-decoder models for
code understanding and generation. arXiv
preprint arXiv:2109.00859.

Yagin Zhou, Shangging Liu, Jingkai Siow, Xiaoning
Du, and Yang Liu. 2019. Devign: Effective vulner-
ability identification by learning comprehensive
program semantics via graph neural networks.
Advances in neural information processing sys-
tems, 32.

9. Language Resource References

Aditya Kanade, Petros Maniatis, Gogul Balakrish-
nan, and Kensen Shi. 2020. Learning and evalu-
ating contextual embedding of source code. In
International conference on machine learning,
pages 5110-5121. PMLR.

Yagqin Zhou, Shangging Liu, Jingkai Siow, Xiaoning
Du, and Yang Liu. 2019. Devign: Effective vulner-
ability identification by learning comprehensive
program semantics via graph neural networks.
Advances in neural information processing sys-
tems, 32.

3456

https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685

	Introduction
	Related Work
	Method
	Encoder: Code Defect Detection
	Encoder: Line-level Defect Localization
	Decoder: Line-level Defect Localization
	Unified Multi-task Training

	Experiment Setup
	Experiment Result
	Main Result
	Ablation Study
	Line-level Defect Localization
	Comparison with ChatGPT
	Integration with ChatGPT

	Conclusion
	Acknowledgments
	Bibliographical References
	Language Resource References

