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Abstract
Script learning studies how stereotypical events unfold, enabling machines to reason about narratives with implicit
information. Previous works mostly consider a script as a linear sequence of events while ignoring the potential
branches that arise due to people’s circumstantial choices. We hence propose Choice-75, the first benchmark
that challenges intelligent systems to make decisions given descriptive scenarios, containing 75 scripts and more
than 600 scenarios. We also present preliminary results with current large language models (LLM). Although they
demonstrate overall decent performance, there is still notable headroom in hard scenarios.
Keywords:Commonsense Reasoning, Evaluation Benchmark, Decision-Making

1. Introduction
Events are the fundamental building blocks of the
world around us. To understand the world, one has
to comprehend the ways events interconnect with
each other. For the same reason, the understand-
ing of events and their relationship is critical for any
intelligent system. Reasoning about the event-to-
event relationships has long been a community ef-
fort from a wide range of perspectives, including
studies in temporal relationship (Zhou et al., 2021;
Zhang et al., 2020) and hierarchical relationship
(Li et al., 2020; Zhou et al., 2022), both of which
contribute to script generation (Chambers and Ju-
rafsky, 2008; Lyu et al., 2021). These tasks are
challenging because event relations are often im-
plicit and require commonsense to be uncovered.
As an important direction of event-centric rea-

soning, script learning studies how stereotypical
events unfold, which provides us with a human-
centered perspective of events. The notion of
scripts dates back to Schank (1977); since then,
researchers have explored various aspects and
applications of script learning, including narratives
(Chambers and Jurafsky, 2010), news events (Du
et al., 2022), and instructions (Zhou et al., 2022).
These studies jointly demonstrate the promising
nature of script learning in building better intelli-
gent systems.
However, most of these previous works in script

learning only consider scripts as linear develop-
ments of events. In the real world, scripts include
many crossroads where the next event can unfold
in multiple ways. When a human acts as the agent,
they would decide the direction to which a script
branches. There has yet been no benchmark that
challenges an intelligent system to model such a
decision-making process. Therefore, we define
and study such a decision branching task, as fol-
lows: given a particular scenario, an intelligent sys-
tem needs to identify the more reasonable among

∗ Work done while at University of Pennsylvania.

Goal
purchase a plane ticket
to see a desert abroad

Option 1
purchase a plane ticket to a major
city and take a train to the desert

Option 2
purchase a plane ticket to a small
city but right next to the desert

 Scenario 4 [N/A]
  (the person) really looks forward to 
  the first time ever in desert

 Scenario 3 [hard]
  (the person) hates connecting flights

 Scenario 1 [easy]
  (the person) finds no train route from
  the major city to desert at that time

 Scenario 5 [easy]
  [User Profile]
  Interests: 
  - Enjoy visiting metropolis
  Financial situation: 
  - Comfortable with spending on travel
  Occupation: police officer
  - Hobbies: photography; Gender: male
  ......

True: Either
Pred: Option 2

(more scenarios omitted)

True: Option 1
Pred: Option 2

True: Option 1
Pred: Option 2

True: Option 2
Pred: Option 2

  Scenarios & Choices

  Goal & Options

 Scenario 2 [medium]
  (the person) has a long-time friend
  living in that major city

True: Option 1
Pred: Option 1

Figure 1: An example of Choice-75. Each
goal-option pair has multiple scenarios.

two given options. One such example is in Figure
1: given a scenario that the person finds no train
route from the major city to desert at that time, it
would be obvious that the first option purchase a
plane ticket to a major city and take a train to the
desert would not be feasible and the second pur-
chase a plane ticket to a small city but right next to
the desert is the preferred answer.
We propose the first dataset, Choice-75, tar-

geting such decision branching in scripts with 75
examples each with one goal and two options. Be-
yond that, we also collect more than 600 scenar-
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Format Easy Medium Hard Either

Verb Phrase
(Manual) 65 76 36 65

Verb Phrase
(Machine) 46 41 22 50

User Profile 53 76 17 73

All 164 193 75 188

Table 1: Counts of scenario in Choice-75.
ios, with difficulty levels based on human judg-
ment, and corresponding optimal choices. Dur-
ing dataset collection, we follow Liu et al. (2022)
and apply the human-in-the-loop paradigm to gen-
erate challenging examples. We then experi-
ment with state-of-the-art (SoTA) LLMs, including
text-davinci-003 and gpt-3.5-turbo and
find that the level of performance of LLMs aligns
with the difficulty levels based on human judgment.
While these SoTAmodels demonstrate decent per-
formance, there is still notable headroom in the
hard cases. Our dataset would hopefully fuel fur-
ther studies in AI-powered decision-making.1

2. Dataset
2.1. Overview
We begin by defining the basic unit of our dataset.
Every data point in Choice-75 has the following:
a goal, two options (option-1 and option-2),
a list of scenario, and a list of ground-truth
choice, all of which in plain text. A choice
could be option-1, option-2, or either (ei-
ther option makes little difference under that
scenario). For example, in scenario #4 in Figure
1, both options would have little impact in achiev-
ing the goal, and thus the ground truth answer is
either.
We use proScript (Sakaguchi et al., 2021) as the

starting point for our dataset. It has 6.4k scripts
that describe the sequence of actions for typical
day-to-day activities, making it a suitable pool of
goals for our task. We randomly sample 75 actions
from proScript as the goal and manually write two
feasible option to execute it. The options are
written by one researcher and verified by two other
researchers. In this way, we collect 75 (goal,
option-1, option-2) tuples.
After getting the feasible options for each goal,

we add scenario and corresponding ground-
truth choice. There are two data collection
schemes for scenarios: manual writing by one
researcher in this field (Section 2.3) and human-
in-the-loop scenario generation by an LLM (Sec-
tion 2.4). To verify the quality of scenarios

1Dataset and code can be found at https://
github.com/JoeyHou/branching.

Goal: find out the library’s hours
Option 1: call the library
Option 2: search online for the library’s hours
Easy Scenario: have no internet connection
Choice: Option 1

Medium Scenario: have special requests about
the book
Choice: Option 1

Medium Scenario (User Profile):
Name: Doe; Interests: American history
Special circumstances: has a bad sore throat
... (more details omitted)
Choice: Option 2

Hard Scenario: is 3 am in the morning
Choice: Option 2

Table 2: Different levels in the library hours case

and corresponding choices, we randomly sam-
ple 290 scenarios and conduct an annotator
agreement analysis on the ground-truth choice.
The Fleiss’ kappa coefficient for this sample is
0.59, which means moderate to substantial agree-
ment (Rücker et al., 2012). More details about an-
notator agreements are in Appendix A.
After we finish collecting all the scenarios, we

also define and annotate the difficulty level of each
scenario in terms of how complex it is for a human
to get the correct option choice. The criteria we
use is the number of “hops” that the reasoning in-
volves. In this way, we can explore multi-hop rea-
soning scenarios as a subset of our task. We de-
fined four levels: easy, medium, hard, and either
(for those scenarios without an optimal choice),
with detailed discussions in Section 2.2.

2.2. Difficulty Level
Difficulty levels are based on the number of rea-
soning steps required for the correct option. Con-
sider the library hours example in Table 2.
Easy In this level, scenarios explicitly refer to one
option, directly or indirectly. Only one easy reason-
ing step is required for such decision-making. For
example, “internet connection” is directly related to
“search online” and makes it infeasible.
Medium In this level, scenarios implicitly refer
to one option, directly or indirectly. The level of
simplicity is low, i.e. it is easy to relate based on
commonsense. For example, “special requests”
implies that the person needs to talk to a staff mem-
ber, which is related to “call the library”; for the
same reason, “has a very bad sore throat” implies
that the person cannot talk, which is related to “call
the library”.
Hard In this level, scenarios implicitly refer to
something related to one option. These scenarios
typically require the combination of commonsense
knowledge and multiple steps of reasoning. For

https://github.com/JoeyHou/branching
https://github.com/JoeyHou/branching
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example, one needs to know that “3 a.m. in the
morning” implies that the library is very likely to be
closed; then one needs to further reason that in
a closed library, no one would pick up the phone.
This makes “call the library” infeasible.

2.3. Manual Scenario Annotation
The manual-written scenarios are all in verb
phrase format, for example, scenario #1 to #4 in
Figure 1. In some cases, the scenario describes
an event, e.g., “finds no train route from the major
city to desert at that time” (scenario #1); in other
cases, the scenario describes a state of a person,
either concrete or abstract, e.g., “hates connecting
flights” (scenario #3). Summary statistics about
manual scenario generation are in Table 1.

2.4. Human-in-the-Loop Generation
During themanual scenario generation, coming up
with high-quality hard scenarios requires a signifi-
cant amount of mental effort. Therefore, we use a
human-in-the-loop data generation paradigm and
create two additional subsets of hard scenarios.
The first subset is also in verb phrase format (same
as the manual-written ones) and is referred to as
machine-generated verb phrases; the second sub-
set comes in a different format, i.e. user profile in
a bullet-point format, referred to as user profiles.
In terms of data collection procedure, we fol-

low (Liu et al., 2022) by these steps2: first, collect
a series of challenging scenarios as exemplars;
then, over-generate similar scenarios by few-shot
prompting an LLM; lastly, manually review and cu-
rate the generated scenarios to ensure their valid-
ity. Note that, although the initial goal for this step
is to create as many hard scenarios as possible,
during the manual review and curation step, we
still find many machine-generated scenarios that
are not hard. Instead of assuming all the machine-
generated scenarios are hard, we annotate their
difficulty levels based on the same criteria, with the
same annotator setup, described in Section 2.2.
Verb Phrase The first type of hard scenario
is the same as the manual written format, verb
phrases. For the over-generation step, instead of
a few-shot generation, we do a two-step prompt-
ing to simulate multi-hop reasoning (Figure 2).
We first prompt a text-davinci-003 model
to generate a scenario that leads to one choice
(i.e. scenario-base); then we do another few-
shot prompting to generate a new scenario that
leads to the scenario-base and save it as
scenario-hard. The scenario-hard then
goes through manual review and curation. More
details are in Appendix B.

2We skip the automatic filtering because the level of
challenge is very hard to automatically measure.

Goal
go to grocery store

Option 1
take a bus

Option 2
call an Uber

  Goal & Options

Text-Davinci-003

"Because Doe [INSERT],
Doe chooses option 1"

Text-Davinci-003

"Because Doe [INSERT],
Doe wants to save money"

  Scenario-Base
  "Because Doe wants to save money,
  Doe chooses option 1"

  Scenario-Hard
  "Because Doe needs to buy a new car recently
  and doesn't have enough money for that,
  Doe wants to save money"

Figure 2: Hard scenario generation (verb phrase)

Goal
go to grocery store

Option 1
take a bus

Option 2
call an Uber

  Goal & Options

Text-Davinci-003

Doe picked option 2 over the other one. 
Make a comprehensive user profile for Doe 
without explicitly mentioning the choice Doe made.
- Must includes: preferences, interests, financial situation, etc.
- Optional: occupations, hobbies, gender, lifestyle
- Avoid: long sentences

  [User Profile]
  - Name: Doe
  - Financial situation: sufficient
  - Lifestyle: very busy, fast-pace
  - Interests: reading books, shopping
     .......

Figure 3: Hard scenario generation (user profile)

User Profile Another type of hard scenario is a
user profile in the form of an unordered list, for
example, scenario #5 in Figure 1. Our consider-
ation of user profiles in addition to standard tex-
tual contexts is motivated empirically. First, many
smart assistant software needs to be personalized
to assist user decision-making. Moreover, user
profiles are closer to real-life situations where the
traits of a user are mined from heterogeneous data
sources rather than from short texts. Such pro-
files inevitably include noise, making the taskmore
challenging. For the example above, the only rele-
vant information to predict the optimal choice (Op-
tion 2) is that Doe enjoys visiting metropolis.

In the over-generation step of user profile sce-
narios, we prompt a text-davinci-003 model
to generate a user profile that prefers one choice
over another (Figure 3). In the prompt, we specify
some hints and requirements for the output. For
example, we require the model to include prefer-
ences, and financial situations, and make occupa-
tions, hobbies, and gender optional. These gener-
ated user profiles also go through human review
and curation. More details are in Appendix B.
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Group Prompt All Binary Easy Medium Hard Either
003 Turbo 003 Turbo 003 Turbo 003 Turbo 003 Turbo 003 Turbo

Verb Phrase
(Manual)

naive 0.60 0.63 0.81 0.82 0.91 0.92 0.83 0.80 0.58 0.67 0.05 0.14
story 0.63 0.64 0.86 0.81 0.95 0.88 0.87 0.81 0.69 0.69 0.02 0.18

Verb Phrase
(Machine)

naive 0.56 0.56 0.77 0.80 0.79 0.79 0.77 0.85 0.69 0.75 0.21 0.15
story 0.55 0.55 0.79 0.80 0.79 0.82 0.85 0.81 0.69 0.75 0.15 0.13

User Profile naive 0.61 0.59 0.72 0.69 0.78 0.73 0.73 0.69 0.47 0.60 0.40 0.40
story 0.50 0.60 0.57 0.73 0.58 0.76 0.60 0.74 0.40 0.60 0.37 0.34

Average 0.57 0.60 0.75 0.77 0.80 0.82 0.77 0.78 0.59 0.68 0.20 0.22

Table 3: Prediction accuracy by difficulty levels. Binary: overall performance on binary classification (i.e.
Option 1 or Option 2); All: overall performance on three-class classification.

3. Method and Experiments
Out of the 75 data points in Choice-75, we ran-
domly hold out 10 data points as demonstrations
for in-context learning and the rest for evaluation.
We formulate the task of predicting optimal

choice as an in-context learning task: the goal,
two option, and one scenario are presented
in the prompt; an LLM is then responsible for
completing the prompt with the optimal choice
(or either). The few-shot context consists of 9
demonstrations with the same format, including 3
different choices and 3 difficulty levels.
We include two models: text-davinci-003

and gpt-3.5-turbo 3. We set temperature to 0,
max_tokens to 30, top_p to 1, presence_penalty
to 0, and ferquency_penalty to 0. We also pro-
vide two prompt formats: naive prompt and story
prompt. Prompt templates are in Appendix C.

4. Results and Analysis
4.1. Difficulty Levels
The most outstanding result is the alignment of
human judgment of difficulty and the model’s per-
formance. As shown in Table 3, there is an obvi-
ous gap between easy, medium, and hard scenar-
ios across every setting. Although the models we
test demonstrate decent performance in easy and
medium levels, hard and either scenarios remain
challenging. This again demonstrates that LLMs
struggle more in multi-hop reasoning.

4.2. Human Performance
We also conduct a human performance analysis
on a subset of the dataset with 290 sampled sce-
narios, each answered by two participants. The
average human accuracy is 0.74, compared to
0.60 from the best model performance; the hu-
man accuracy is 0.76 for “hard” scenarios and 0.53
for “either” scenarios, both notably higher than the

3Our last experiment was in 05/2023; the closest vari-
ant of turbo model is gpt-3.5-turbo-0613

best model performances (i.e. 0.68 for “hard” and
0.22 for “either”). More details are in Appendix D.

4.3. Case Studies
We take out one example from Choice-75 (see
Figure 1) and examine the performance of one
model setup (gpt-3.5-turbo with story prompt).
For scenario #3, the model fails to recognize that a
small city usually requires a flight connection. For
scenario #5, a user profile example, although the
scenario explicitly describes this person as “enjoy
visiting metropolis”, the model still gets it wrong.
We can observe similar errors in other data points,
confirming the challenge of the long context win-
dow and unrelated information introduced by the
user profile format. More qualitative analyses are
in Appendix E.

5. Related Work
Event-centric reasoning and script learning
(Schank, 1977) are crucial domains of machine
reasoning. Past efforts include procedure reason-
ing (Dalvi et al., 2019; Zhang et al., 2020; Zhou
et al., 2022), entity tracking (Tandon et al., 2020;
Zhang et al., 2023a), and script learning (Cham-
bers and Jurafsky, 2008; Lyu et al., 2021; Sak-
aguchi et al., 2021). All of these works above fo-
cus on singular chains of events while we focus on
branching structures in events.
In addition, a series of other works have ex-

plored the effect of a scenario or additional context
on a given, main event. For example, (Rudinger
et al., 2020) explores the influence of different sce-
narios on human interpretation of events, (Otani
et al., 2023) focuses on conversational tasks and
analyzes the influence of different scenarios on hu-
man behaviors, and (Wang et al., 2023) studies
the context-dependency of event causality.
Human decision-making has been studied un-
der single-agent and multi-agent settings. Efforts
in the former focus on specific domains, such as
financial earnings call (Keith and Stent, 2019), on-
line review text (Wang et al., 2019), and fantasy
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text-adventure game (Qiu et al., 2022). In con-
trast, our methods and findings are more general.
Efforts in the latter focus on dialogues and con-
versational AIs, such as dialogues (Bak and Oh,
2018; Karadzhov et al., 2022; Fernández et al.,
2008) with an emphasis on modeling the differ-
ences among characters, which is not our focus.
Human-in-the-loop dataset creation has been
used for efficient data collection and quality im-
provement. Recent work shows that LLMs can
effectively generate data for NLP tasks, including
natural language inference (Liu et al., 2022), struc-
tural data synthesis (Yuan et al., 2022), script con-
struction (Zhang et al., 2023b), hate speech detec-
tion (Tekiroğlu et al., 2020). In our work, we closely
follow the paradigm of (Liu et al., 2022) in dataset
creation.

6. Conclusion
We investigate the decision-making ability of cur-
rent SoTA LLMs and find room for improvement in
hard decision-making scenarios when compared
with human performance. We also observe a no-
table alignment between human judgment of diffi-
culty and corresponding LLM performance. With
the Choice-75 dataset, we introduce a new ma-
chine reasoning task where a model needs to in-
corporate implicit commonsense knowledge into
decision-making. We hope this task can be a start-
ing point for future studies of LLM’s capability of
daily decision-making.

Limitations
The first and most obvious drawback of
Choice-75 is its distribution. Since we build
Choice-75 from the steps from proScript
(Sakaguchi et al., 2021), which focuses on daily
procedures; therefore the distributions of word
choices, writing styles, and domains are inherently
limited. Therefore, specific adaptation would be
required if the data come from a different domain.
Secondly, the size of the dataset is also rela-

tively small due to limited annotation resources
available to us. This also brings potential biases
from the annotator, although we try to address this
issue by having another annotator verify the anno-
tations. Such a bias in the dataset might negatively
impact the models fine-tuned on our dataset in the
future. That could potentially lead to inappropriate
prediction results from those fine-tuned models if
the end users are from a different cultural back-
ground.
In addition, in the Choice-75, we make a lot

of assumptions that are essentially oversimplified
representations of real-world scenarios. For exam-
ple, we assume each goal has two mutually exclu-
sive choices, while in some cases there are much

more choices (not two) and each choice overlaps
with others (notmutually exclusive). There are lots
of ways to expand and enrich this dataset and we
leave this as future work.
Last but not least, we also do not conduct any

prompt engineering due to a limited computation
budget. We only experiment with two very basic
prompt formats, a fixed number of few-shot sam-
ples, and a fixed set of GPT generation parame-
ters. It would also be interesting for future works to
study the performance of different language mod-
els and different prompt settings on Choice-75.
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Appendices
A. Inter-Annotator Agreement

We collected annotations for 290 randomly sam-
pled scenarios from 7 researchers in total. For
each scenario, the optimal choice (i.e. Option
1, Option 2, or Either) is annotated by 3 re-
searchers. The overall Fleiss’ kappa is 0.59,
which lies on the borderline between moderate
and substantial agreement. In particular, there are
125 verb phrases (manual) with Fleiss’ kappa be-
ing 0.66; 65 verb phrases (machine) with Fleiss’
kappa being 0.49; and 100 user profiles with
Fleiss’ kappa being 0.55.

B. Human-in-the-loop Data
Generation Prompting Details

There are three implementation details about
the prompting setup for Human-in-the-loop data
generation.
First, in all prompts, we include “overall goal”,
which is the goal for the script from proScript,
while “step goal” is the goal the person needs to
make a decision on as well as the goal we refer to
in the paper. We include the “overall goal” just to
provide additional context information.
Second, for all prompts, the results would be the
scenarios with the correct answer being option 1.
We also swap two options in these prompts so
that we can get hard scenarios with the correct
answer being option 2.
Third, for all prompts, we provide four hand-written
demonstrations, all of which come from the 10
held-out training scripts described in Section
3. We use the insertion mode of the provided
OpenAI API, text-davinci-003 as the model,
and 0.75 as the temperature.

Verb Phrase

Prompt Step 1:
Doe wants to go {overall goal}. One of
the steps towards that is {step goal}. Doe
has two options: 1) {option 1} or 2) {op-
tion 2}
Because Doe [INSERT], Doe chooses
option 1.
Prompt Step 2:
Doe wants to {overall goal}. One of the
steps towards that is to {step goal}. Doe
has two options: 1) {option 1} or 2) {op-
tion 2}
Because [INSERT], Doe {scenario-base}.
Therefore, option 2 is not available or not
desirable for Doe and Doe chooses op-
tion 1.

User Profile

Prompt:
A person Doe would like to {overall goal}
and need to finish the step of {step goal}.
Doe now has two options: option 1 is to
{option 1} and option 2 is to {option 2}.
Eventually, Doe picked option 1 over the
other.
Make a comprehensive user profile for
Doe without explicitly mentioning the
choice Doe made.
Must-includes: preferences, interests, fi-
nancial situation, etc.
Optional: occupations, hobbies, gender,
lifestyle
Avoid: long sentences
User Profile:

C. Decision Prediction Prompting
Details

During inference time, we provide 9 in-context
demonstrations, which are the combination of
3 difficulty levels and 3 labels. We also set the
temperature to 0 to ensure consistency across
runs.

Naive Prompt
[Goal]: {step goal}
[Option 1]: {option 1}
[Option 2]: {option 2}
[Scenario]: {scenario}
[Question]: Given the Scenario, which
option above is the better choice in order
to achieve the Goal?
1) Option 1
2) Option 2
3) Either one, since they have similar ef-
fect when it comes to the goal
[Answer]:

Story Prompt
A person Doe needs to {step goal}. Now
there are two options for Doe: we can
either {option 1} (Option 1) or {option 2}
(Option 2).
Suppose Doe {scenario}.
[Question]: Given the Scenario, which
option above is the better choice in order
to achieve the Goal?
1) Option 1
2) Option 2
3) Either one, since they have similar ef-
fect when it comes to the goal
[Answer]:

D. Human Performance
We tested human performance on a subset of
290 samples (Table 4). For some entries in easy
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Format Easy Medium Hard Either

Verb Phrase
(Manual) 0.94 0.81 0.82 0.62

Verb Phrase
(Machine) 0.94 0.77 0.68 0.41

User Profile 0.89 0.78 0.75 0.53

All 0.92 0.79 0.76 0.53

Table 4: Human performance (accuracy) on
Choice-75
and medium difficulty levels, there is not much dif-
ference between human and model performance.
However, in the hard and “either” difficulty levels,
there is notable headroom ahead of the language
models tested in our experiments.

E. Qualitative Error Analysis
Here we provided two qualitative analyses where
the prediction is different from the ground truth an-
swer:
Example 1

- Goal: purchase a plane ticket
- Option 1: purchase a plane ticket to a
major city but far from the desert
- Option 2: purchase a plane ticket to a
small city but right next to the desert
- Scenario: hate connecting flights
- Level: hard
- True Answer : option 1
- Predicted Answer : option 2

Analysis: for the example above, a flight to a
major city & far from the desert would most likely
require a connecting flight as the next step; a flight
to a small city near the desert would be ideal since
it does not require a connecting flight. The model
is not able to conduct these reasoning steps given
the output.

Example 2

- Goal: pack hiking backpacks
- Option 1: bring process food for every
meal
- Option 2: bring raw foods and some
cookware to cook at the campsite
- Scenario: want to enjoy every minute of
the holiday
- Level: medium
- True Answer : option 1
- Predicted Answer : option 2

Analysis: if the person brings raw foods and
cooks them at the campsite, most likely they would
have to spend more time on the cooking instead of
enjoying the hike. Therefore option 1 is preferable.
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