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Abstract
Automated Medical Coding (AMC) is the task of automatically converting free-text medical documents into predefined
codes according to a specific medical coding system. Although deep learning has significantly advanced AMC, the
class imbalance problem remains a significant challenge. To address this issue, most existing methods consider only a
single coding system and disregard the potential benefits of reflecting the relevance between different coding systems.
To bridge this gap, we introduce a Joint learning framework for Across Medical coding Systems (JAMS), which jointly
learns different coding systems through multi-task learning. It learns various representations using a shared encoder
and explicitly captures the relationships across these coding systems using the medical code attention network, a
modification of the graph attention network. In the experiments on the MIMIC-IV ICD-9 and MIMIC-IV ICD-10 datasets,
connected through General Equivalence Mappings, JAMS improved the performance consistently regardless of
the backbone models. This result demonstrates its model-agnostic characteristic, which is not constrained by
specific model structures. Notably, JAMS significantly improved the performance of low-frequency codes. Our anal-
ysis shows that these performance gains are due to the connections between the codes of the different coding systems.
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1. Introduction

Medical coding is the task of converting free-text
medical documents into predefined codes accord-
ing to a specific coding system, such as the In-
ternational Classification of Diseases (ICD). This
process standardizes the medical information to im-
prove its accuracy and consistency, and it is used
in various medical services (Choi et al., 2016) and
insurance claims (Park et al., 2000). However, train-
ing human coders for medical coding is expensive.
For example, training coders for national health
services worldwide takes several months (Varela
et al., 2022). Additionally, manual coding by human
coders is time-consuming (Park et al., 2000) and
prone to human error (O’Malley et al., 2005). There-
fore, researchers have begun to automate medi-
cal coding processes. Automated Medical Coding
(AMC) has significantly advanced through deep
learning (Yuan et al., 2022; Yang et al., 2023). How-
ever, several challenges remain to be addressed.
The class imbalance problem is a significant is-
sue in AMC. The datasets used for AMC (John-
son et al., 2016; Jeong et al., 2023) are collected
from real-world medical environments. Codes for
common diseases, such as respiratory infections
and coughs, appear frequently, while codes for
rare diseases are scarce (Yan et al., 2022). This
phenomenon leads to a long-tailed distribution of
the codes. Using imbalanced datasets without
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appropriate strategies can bias the model toward
high-frequency codes. To address this issue, re-
searchers have proposed leveraging the hierarchi-
cal structure of the coding system (Vu et al., 2020;
Nguyen et al., 2023) or enhancing label embedding
methods for low-frequency codes (Zhang et al.,
2022). However, most of these approaches fo-
cused on a single coding system.

We believe reflecting the relevance of different
coding systems can alleviate the class imbalance
problem. For instance, the ICD-9 code 405.11 (Be-
nign renovascular hypertension) and the ICD-10
code I15.0 (Renovascular hypertension) are closely
related. We expect the model to be effectively gen-
eralized by capturing the relationships between
these codes. Therefore, we propose a Joint learn-
ing framework Across Medical coding Systems
(JAMS)1 that jointly learns different coding systems
through multi-task learning, incorporating explicit
mapping information across two systems. In this
study, we used two medical coding systems, ICD-9
and ICD-10, and employed General Equivalence
Mappings (GEMs)2 to connect them. GEMs are of-
ficial mapping tools between the ICD-9 and ICD-10
developed by various medical organizations, includ-
ing the National Center for Health Statistics. The
main contributions of our study are as follows:

1Our code is publicly available at https://github
.com/GY-Jeong/JAMS.

2https://www.cms.gov/medicare/coding-b
illing/icd-10-codes/2018-icd-10-cm-gem

https://github.com/GY-Jeong/JAMS
https://github.com/GY-Jeong/JAMS
https://www.cms.gov/medicare/coding-billing/icd-10-codes/2018-icd-10-cm-gem
https://www.cms.gov/medicare/coding-billing/icd-10-codes/2018-icd-10-cm-gem
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Figure 1: An illustration of (a) previous approach and (b) proposed approach (JAMS).

• While some studies have applied multi-task learn-
ing to the medical field (Suk et al., 2016; Sun et al.,
2022), few have focused on AMC. Our study is
one of the few multi-task learning methods avail-
able for AMC.

• JAMS is a model-agnostic approach that can be
applied to any AMC model that adopts label-wise
attention.

• JAMS significantly improves the predictions for
low-frequency codes. In the medical field, accu-
rately predicting low-frequency codes (e.g., rare
diseases) is particularly important, making this a
key contribution.

2. Methodology

Most of the recently proposed AMC models rep-
resent each code as a vector and perform label-
wise attention with the encoder output to predict the
codes (Zhang et al., 2022). Figure 1 (a) illustrates
this approach. These models only consider a single
coding system. In contrast, JAMS extends these
models to learn from datasets with different coding
systems jointly. Figure 1 (b) illustrates JAMS. JAMS
employs a shared encoder to learn various repre-
sentations from two datasets and adopts a graph
network to leverage explicit mapping information
across the two systems. This strategy allows JAMS
to learn and represent interactions between medi-
cal coding systems more effectively.

2.1. Enhancing Code Embedding with
Medical Code Attention Network

The GEMs are code mapping information designed
to bridge the gap between the ICD-9 and the ICD-
10. To leverage this information effectively, we pro-
pose the Medical Code Attention Network (MAT), a
modification of the Graph Attention Network (GAT)
introduced by Veličković et al. (2018). The GAT

employs an attention mechanism to dynamically
highlight and assess the importance of interactions
between nodes in a graph. In our approach, we con-
ceptualize each medical code as a node and lever-
age the code connection information from GEMs
as edges. To make GAT more suitable, we modi-
fied it to capture the relationships between codes
more accurately. There are two distinctions be-
tween MAT and GAT. First, while the standard GAT
uses a single label-embedding table, MAT employs
separate label-embedding tables for each coding
system. This strategy allows the model to reflect
the unique characteristics of each coding system
more accurately. Second, MAT incorporates the
"approximate flag" information from GEMs. This
flag indicates whether two codes are "completely
equivalent" or "approximately equivalent", providing
a detailed understanding of their relationship. For
instance, ICD-10 code K83.1 (Obstruction of bile
duct) and ICD-9 code 576.2 (Obstruction of bile
duct) are "completely equivalent" as both codes
share the same meaning. Conversely, ICD-9 code
749.11 (Cleft lip, unilateral, complete) and ICD-10
code Q36.9 (Cleft lip, unilateral) are "approximately
equivalent" because they are similar but not identi-
cal. By integrating this, we can model the nuanced
relationship between codes across the two systems
more precisely.

The specific method is as follows: we define the
embedding table for ICD-9 codes as U = {ui}ni=1 ∈
Rn×d, and for ICD-10 codes as V = {vj}mj=1 ∈
Rm×d. Here, n and m represent the number of
unique codes in each dataset, respectively, and
d denotes the dimension of the code embedding
vector. We use these embedding tables to model
the relationships between different codes using an
attention mechanism. The attention score αij quan-
tifies the importance of code j to code i. This score
is calculated according to Equation 1:

αij =
exp(LeakyReLU(aT [hi ∥ hj ]))∑

k∈Ni
exp(LeakyReLU(aT [hi ∥ hk]))

(1)
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where hi ∈ Rd and hj ∈ Rd represent the embed-
ding vectors for codes i and j respectively, and
∥ denotes concatenation operation. a ∈ R2d is a
learnable weight vector used to compute the at-
tention coefficient between the two vectors. Ni

denotes the set of codes in another system related
to code i, including i itself. Finally, the code em-
bedding vectors u

′

i and v
′

j used for training are
calculated using Equation 2:

u
′

i = σ(αiiui +
∑

j∈Ni\{i}

αijωijvj)

v
′

j = σ(αjjvj +
∑

i∈Nj\{j}

αjiωjiui)
(2)

where σ represents the ELU activation function and
Ni \ {i} denotes the set of codes in another sys-
tem related to code i, excluding i itself. In addition,
weights are applied based on the approximate flag.
If the codes i and j are completely equivalent, the
weight ωij is set to 1. When they are approximately
equivalent, the weight is set to 0.5. The calculated
U

′
= {u′

i}ni=1 ∈ Rn×d and V
′
= {v′

j}mj=1 ∈ Rm×d

are the final embedding tables for ICD-9 and ICD-
10 codes, integrating information from both sys-
tems.

Building on this, the code connected through
MAT can interact with code from another system
during the update process, resulting in more refined
and generalized code embeddings.

2.2. Training

JAMS retains the loss functions presented in each
backbone model. However, unlike backbone
models, which use a single dataset, JAMS uses
datasets from both systems. Thus, if the datasets
of the two systems are imbalanced within a batch,
it leads to a bias for a particular system, which will
negatively affect the model. To mitigate this prob-
lem, we introduce a normalized loss function in
Equation 3:

L =
LICD-9 ∗ µ+ LICD-10 ∗ η

µ+ η
(3)

where µ and η denote the numbers of ICD-9 and
ICD-10 data in a single batch. LICD-9 represents
the loss of data tagged as ICD-9 within a batch,
while LICD-10 is the loss of data tagged as ICD-10.
L represents the overall batch loss. This normal-
ized loss function helps the model learn from both
coding systems equally without being affected by
batch-level data imbalance.

3. Experiment

3.1. Experimental Settings
In this experiment, we used the MIMIC-IV ICD-9
and MIMIC-IV ICD-10 datasets. These datasets
are based on MIMIC-IV (Johnson et al., 2023) and
labeled according to their respective ICD versions.
The statistics for each dataset are presented in Ta-
ble 1. We evaluated the proposed method using the
F1 score, AUC-ROC, Exact Match Rate (EMR), pre-
cision@k (k=8,15), R-precision, and Mean Average
Precision (MAP) for comparison with the previous
study (Edin et al., 2023).

MIMIC-IV ICD-9 MIMIC-IV ICD-10
# of documents 209,326 122,279
# of patients 97,709 65,659
# of unique codes 6,150 7,942
Train / val / test [%] 73.8/10.5/15.7 72.9/10.9/16.2

Table 1: Statistics of MIMIC-IV ICD-9 and MIMIC-IV
ICD-10 datasets

As our backbone models, we selected AMC
models that adopt label-wise attention, specifically
CAML (Mullenbach et al., 2018), MultiResCNN (Li
and Yu, 2020), LAAT (Vu et al., 2020), and PLM-
ICD (Huang et al., 2022). We then compared their
performances after applying JAMS. For a fair com-
parison, we aligned the hyperparameters with the
standards set by Edin et al. (2023) for each model.
Furthermore, to demonstrate the stability and re-
liability of JAMS, we conducted experiments with
three different seeds and reported the average re-
sults.

3.2. Main Results
Table 2 presents the experimental results for
MIMIC-IV ICD-9 and MIMIC-IV ICD-10. JAMS im-
proved the performance consistently regardless
of the backbone models, demonstrating its model-
agnostic characteristic, which is not constrained
by specific model structures. In addition, the pro-
posed approach enhanced the performance of both
datasets. Particularly, as shown in Table 1, even
though the MIMIC-IV ICD-10 has fewer documents
and more unique codes than the MIMIC-IV ICD-
9, our method showed a comparable increase in
performance across both datasets. This result sug-
gests effective knowledge transfer across the two
coding systems, consistent with studies indicat-
ing that human coders familiar with ICD-9 perform
better on ICD-10 tests (Sand and Elison-Bowers,
2013). Furthermore, our method showed more sig-
nificant improvements in the macro-average scores,
indicating its effectiveness in addressing the class
imbalance issue.
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MIMIC-IV ICD-9 MIMIC-IV ICD-10

AUC-ROC F1 EMR Precision@k R-precision MAP AUC-ROC F1 EMR Precision@k R-precision MAP
Micro Macro Micro Macro 8 15 Micro Macro Micro Macro 8 15

CAML 98.8 90.7 58.6 19.3 0.6 66.3 50.3 58.5 62.4 98.5 91.1 55.4 16.0 0.3 66.8 52.2 54.5 57.4
CAML† 99.0 93.0 59.5 21.5 0.7 67.0 51.0 59.4 63.6 98.9 94.0 56.3 19.7 0.3 67.6 53.0 55.6 58.7

MultiResCNN 99.2 95.1 60.4 27.7 0.8 67.6 51.8 60.4 64.7 99.0 94.5 56.9 21.1 0.4 67.8 53.5 56.1 59.3
MultiResCNN† 99.2 96.0 60.9 29.2 0.8 68.0 52.2 61.0 65.4 99.1 96.2 57.9 23.5 0.4 68.9 54.4 57.3 60.9

LAAT 99.3 96.0 61.7 26.4 0.9 68.9 52.7 61.7 66.3 99.0 95.4 57.9 20.3 0.4 68.9 54.3 57.2 60.6
LAAT† 99.2 95.7 62.2 28.7 1.0 69.4 53.1 62.2 66.9 99.1 96.0 59.0 22.7 0.5 70.1 55.4 58.5 62.2

PLM-ICD 99.4 97.2 62.6 29.8 1.0 70.0 53.5 62.7 68.0 99.2 96.6 58.5 21.1 0.4 69.9 55.0 57.9 61.9
PLM-ICD† 99.4 96.8 62.8 31.8 1.0 70.2 53.8 63.1 68.3 99.2 96.7 59.8 25.6 0.5 71.0 56.1 59.3 63.6

Table 2: Experimental results on the MIMIC-IV ICD-9 and MIMIC-IV ICD-10 test sets. Models marked
with † indicate JAMS is applied.

3.3. Analysis
Performance Comparison by Code Frequency:
We measured the performance based on the code
frequency to assess the effectiveness of JAMS for
low-frequency codes in an imbalanced label distri-
bution setting. The codes were grouped into three
categories (1-100, 101-1000, 1001-) based on
their frequencies in the training data, and the macro
F1 scores of LAAT and LAAT† were compared. The
results are shown in Figure 2.

Figure 2: Performance comparison for groups
based on code frequency.

As shown in Figure 2, LAAT† outperforms LAAT
across all frequency groups in both datasets.
Notably, the group with low-frequency codes
(1-100) shows the most significant improvement,
increasing by 3.2 in MIMIC-IV ICD-9 and 3.7 in
MIMIC-IV ICD-10. These improvements are likely
to be due to the effect of the generalization of
low-frequency codes by leveraging related codes
from another coding system. However, a group
with high-frequency codes (1001-) could achieve
sufficient generalization with their own system’s
data. Therefore, it can be speculated that the

performance gains from incorporating data from
another system are relatively limited.

Performance Comparison Based on Code
Linkage: Building on the above results, we
can confirm that JAMS effectively improves the
performance of low-frequency codes. However, it
remains unclear whether this is due to the linkages
between different coding systems. To clarify this,
we further divided the group with low-frequency
codes (1-100) that showed the most significant
performance improvement, based on whether
they had corresponding mappings in the GEMs.
Subsequently, we measured the performance
using the macro F1 metric. Figure 3 shows the
results of this comparison.

Figure 3: Performance comparison based on code
linkage for low-frequency codes.

As shown in Figure 3, LAAT† achieves signifi-
cant improvements in the group with connection
information (w/ connection), with a gain of 4.2
in MIMIC-IV ICD-9 and 4.1 in MIMIC-IV ICD-10.
These results indicate that our MAT-based code
embedding method effectively generalizes low-
frequency codes through connections across dif-
ferent coding systems. This finding provides sig-
nificant evidence of the importance and effective-
ness of leveraging relevance across these coding
systems. Moreover, LAAT† shows improved per-
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formance even in the group without connection in-
formation (w/o connection), with an increase of
1.9 in MIMIC-IV ICD-9 and 1.2 in MIMIC-IV ICD-
10. These performance gains are likely due to
the shared encoder, which learns the medical docu-
ments of both datasets. This approach produces an
effect similar to data augmentation and enhances
the generalization ability of the encoder.

4. Conclusion

In this study, we introduce a novel approach to AMC
called JAMS. Unlike most existing methods that
consider only a single coding system, JAMS incor-
porates information from two different coding sys-
tems. It learns various representations and explic-
itly captures relationships across coding systems
using MAT. Our experiments confirm that JAMS
is model-agnostic and significantly improves the
performance of low-frequency codes. In addition,
our analysis shows that these performance gains
are due to the connections between the codes of
different systems. Based on our findings, we ex-
pect JAMS to be useful in various scenarios where
different coding systems are used. These scenar-
ios include migrations due to medical code version
changes and transitions to different national coding
systems. Therefore, our upcoming research will
focus on expanding JAMS to a multilingual environ-
ment by incorporating the medical coding systems
of two distinct countries.
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