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Abstract

Text image machine translation (TIMT) aims at translating source language texts in images into another target lan-
guage, which has been proven successful by bridging text image recognition encoder and text translation decoder.
However, it is still an open question of how to incorporate fine-grained knowledge supervision to make it consistent
between recognition and translation modules. In this paper, we propose a novel TIMT method named as BabyNet,
which is optimized with hierarchical parental supervision to improve translation performance. Inspired by genetic
recombination and variation in the field of genetics, the proposed BabyNet is inherited from the recognition and
translation parent models with a variation module of which parameters can be updated when training on the TIMT
task. Meanwhile, hierarchical and multi-granularity supervision from parent models is introduced to bridge the gap
between inherited modules in BabyNet. Extensive experiments on both synthetic and real-world TIMT tests show
that our proposed method significantly outperforms existing methods. Further analyses of various parent model
combinations show the good generalization of our method.
Keywords: Text image translation, knowledge inheritance, hierarchical parental supervision, contrastive learning

1. Introduction

Research of Machine translation (MT) has
been achieved significant progress in recent
years (Vaswani et al., 2017; Gehring et al.,
2017a,b; Johnson et al., 2017; Bahdanau et al.,
2015; Sutskever et al., 2014), which translates
the source language texts into another target
language. Text image machine translation (TIMT)
is one of the vital branches of MT research by
translating source language texts in images to
target language texts, which has been used in
various real-world applications, such as photo
translation, scanned document image translation,
and screen-shot translation.

Existing research on TIMT is mainly divided into
two types: (1) Cascade methods combine text im-
age recognition (TIR) and MT models to recognize-
then-translate source language text images (Hi-
nami et al., 2021; Shekar et al., 2021; Afli and
Way, 2016; Chen et al., 2015; Du et al., 2011).
Cascade methods have the advantage of utiliz-
ing well-trained TIR and MT models. However,
when the TIR model has recognition errors, MT
models will expand these errors and cause error
propagation problems. Meanwhile, deploying sep-
arated TIR and MT models leads to parameter re-
dundancy and decoding delay issues. (2) End-to-
end methods utilize an image encoder to obtain
source language text image features and gener-
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Figure 1: Diagram of Genetics in Biology and Ma-
chine Learning.

ate the target language directly (Mansimov et al.,
2020), which has a more efficient architecture and
faster decoding speed compared with the cascade
method. However, end-to-end methods have the
shortcomings of data scarcity and the difficulty of
cross-modal optimization, which limits the perfor-
mance. Existing research (Ma et al., 2023c, 2022;
Chen et al., 2020c) explores to incorporate exter-
nal TIR or MT datasets to alleviate the problem of
data limitation.

From the above-mentioned analysis, both cas-
cade and end-to-end methods have advantages
and shortcomings. Thus, how to combine the
advantages to achieve a better TIMT model has
attracted extensive attention recently. Modal
adapter and RTNet are studied to bridge TIR en-
coder and MT decoder for TIMT model (Ma et al.,
2023b; Su et al., 2021). However, guidance in
these methods is still coarse-grained, how to allevi-
ate the gaps between the TIR encoder and MT de-
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coder with fine-grained supervision signal remains
an unsolved problem.

In this paper, we propose to bridge the pre-
trained TIR and MT models with a trainable
BabyNet as shown in Figure 1 (b). Inspired by ge-
netic recombination in genetics as shown in Fig-
ure 1 (a), the TIR and MT models are regarded
as parent models, which provide half modules re-
spectively to born a child model for the TIMT task.
The inherited modules from parent models are re-
combined together and the parameters are fixed,
while a trainable BabyNet is inserted to bridge the
task gap between TIR and MT modules. To bet-
ter adapt BabyNet features into the MT feature
space, hierarchical parental supervision is intro-
duced to improve the optimization of BabyNet pa-
rameters. Embedding features, sequential fea-
tures, and decoding probability distribution from
the MT model are utilized to provide parental guid-
ance for BabyNet. Furthermore, both local and
global granularities are incorporated in hierarchi-
cal parental supervision, which is proven effective
and complementary to improve translation perfor-
mance. Our contributions are summarized as fol-
lows:

• We propose a novel BabyNet optimized with
hierarchical parental supervision for TIMT
task, which can take advantage of both cas-
cade and end-to-end TIMT methods.

• Global and local fine-grained supervision is
jointly utilized to bridge the task gap between
the TIR encoder and MT decoder.

• Extensive experiment results on various par-
ent model combinations show the effective-
ness and good generalization of our method.1

2. Methodology

2.1. TIMT Task Formulation
TIMT task aims at translating source language text
lines embedded in images into target language
texts. Assume the source language text line in the
image is I and its corresponding translation ground
truth is Y = {y1, y2, ..., yt, ...yL}, where the yt de-
notes the t-th token and L represents the length
of the target language sentence. The optimization
loss function of the TIMT task is:

LTIMT = −
|DTIMT|∑
i=1

L∑
t=1

logP (ŷ
(i)
t |I(i), Ŷ

(i)

<t) (1)

where P (ŷ
(i)
t |I(i), Ŷ

(i)

<t) denotes the generation
probability at decoding step t. ŷt represents the

1Our code will be released to the public.

predicted target token and Ŷ<t denotes the trans-
lation history before t-th decoding step. DTIMT de-
notes the dataset of text image machine translation
task containing source language image and target
translation parallel pairs.

2.2. Architecture of Parent and Child
Models

2.2.1. Parent Models

TIR Model Text image recognition model en-
codes text line images containing source language
with an image encoder:

F TIR
I = Patch_Embedding(I; θTIR

I ) (2)

where Patch_Embedding(·) denotes the image
patch embedding based encoder as in ViT (Doso-
vitskiy et al., 2021) and θTIR

I denotes the parameters
of image encoder. F TIR

I ∈ RlI ·dI represents the
image feature sequence, while lI , dI denote the
length and dimension of image feature sequence,
respectively. To model the contextual information,
a sequential encoder is utilized to further encode
the image features by considering the whole fea-
ture sequences. The transformer based sequen-
tial encoder (Vaswani et al., 2017; Zhao et al.,
2023) is formulated as:

F TIR
S = TransformerEncoder(F TIR

I ; θTIR
S )

= FFN(MultiHead(F TIR
I , F TIR

I , F TIR
I ))

(3)

where θTIR
S denotes the parameters of TIR sequen-

tial encoder. MultiHead(Q,K, V ) represents the
multi-head self-attention function which takes the
same image feature F TIR

I for query matrix Q, key
matrix K, and value matrix V . FFN(·) denotes
the position-wise fully connected feed-forward net-
work. Note that the residual connection and layer
normalization are used in each sub-layer, which
are omitted in the presentation for simplicity. F TIR

S ∈
RlI ·dS represents the image sequential feature and
dS denotes the feature dimension.

Finally, the source language decoder generates
recognized texts for text line images:

F TIR
D = Src_TransformerDecoder(F TIR

S ; θTIR
D )

P (x̂t|I,X̂<t) ∝ exp(W TIR
o F TIR

D )
(4)

where Src_TransformerDecoder(·) represents the
source language transformer decoder, which con-
sists of multi-head self-attention, cross-attention,
and feed-forward sub-modules in each layer.
F TIR
D ∈ RlI ·dD denotes the decoder feature. θTIR

D

denotes the parameters of recognition decoder.
P (x̂t|I, X̂<t) denotes the decoding probability at
step t and X̂<t denotes the recognition history be-
fore step t. exp(·) represents the exponential func-
tion and W TIR

o ∈ R|VX|·dD represents a weight ma-
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Figure 2: Diagram of our proposed BabyNet with Hierarchical Parental Supervision and comparison with
related E2TIMT work (Ma et al., 2023b). Our work extends the knowledge transfer from the MT model
by incorporating multi-granularity and hierarchical parental supervision. Furthermore, both cross-modal
contrastive and knowledge distillation losses are utilized to fully inherit knowledge from the pre-trained
MT model.

trix, which maps the decoder feature into source
language vocabulary VX.

MT Model Machine translation model is used to
translate source language text sentences into the
target language. Similar to the TIR model, the MT
model also has three sub-modules: embedding
encoder, sequential encoder, and cross-lingual de-
coder. The transformer based MT model is formu-
lated as:

F MT
T = Text_Embedding(X; θMT

T )

F MT
S = TransformerEncoder(F MT

T ; θMT
S )

F MT
D = Tgt_TransformerDecoder(F MT

S ; θMT
D )

P (ŷt|X, Ŷ<t) ∝ exp(W MT
o F MT

D )

(5)

where Text_Embedding(·) denotes an em-
bedding matrix that maps the source lan-
guage words into dense word embeddings,
Tgt_TransformerDecoder(·) represents the target
language transformer decoder as in Vaswani et
al., (2017), W MT

o ∈ R|VY|·dD represents a mapping
matrix for translation, and VY denotes the target
language vocabulary. θMT

T , θMT
S , θMT

D represent
the parameters of text encoder, MT sequential
encoder, and cross-lingual translation decoder,
respectively.

2.2.2. BabyNet: The Child Model for TIMT

Text image machine translation has similar encod-
ing functions to the TIR image encoder, while the

sequential semantic encoding and cross-lingual
decoding functions are similar between TIMT and
MT decoders. Thus, the TIR encoder, MT sequen-
tial encoder, and MT decoder are re-combined for
the TIMT task. Meanwhile, to keep the capacity of
pre-trained modules, the parameters of inherited
modules are not updated. Additionally, a trainable
BabyNet is inserted between the TIR encoder and
MT sequential encoder for variation, which aims
at bridging the task gap between the TIR and MT
modules. Specifically, the BabyNet receives the
image feature F TIMT

I and transforms it into MT fea-
ture space with a multi-layer transformer encoder
architecture. By inheriting from parent models and
expanding a variation module, the TIMT process-
ing progress is then formulated as:

F TIMT
I = Patch_Embedding(I; θTIR

I )

F TIMT
Baby = BabyNet(F TIMT

I ; θBabyNet)

F TIMT
S = TransformerEncoder(F TIMT

Baby; θ
MT
S )

F TIMT
D = Tgt_TransformerDecoder(F TIMT

S ; θMT
D )

P (ŷt|I, Ŷ<t) ∝ exp(W MT
o F TIMT

D )

(6)

where θTIR
T , θMT

S , θMT
D and W MT

o represent inherited pa-
rameters which are not updated during training.
While θBabyNet denotes the trainable variation pa-
rameters in the BabyNet. By introducing BabyNet
between the TIR image encoder and the MT se-
quential encoder, the pre-trained TIR and MT mod-
ules are combined together, which utilizes the cas-
cade parameters and end-to-end architecture to
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Figure 3: Diagram of contrastive and knowledge distillation based parental supervision with various gran-
ularities. With parental supervision, BabyNet is guided to have a similar feature and decoding distribution
as the MT model.

translate text images with an efficient structure.

2.3. Hierarchical Parental Supervision

Features encoded by BabyNet are further fed into
MT sequential encoder as shown in Eq. (6).
Therefore, optimizing the BabyNet feature F TIMT

Baby
to match the distribution of MT text feature F MT

T

can effectively improve the consistency between
the BabyNet and MT sequential encoder. Figure 2
shows the hierarchical knowledge transfer method
from parental supervision. Specifically, embed-
ding encoder, sequential encoder, and decoder
layer knowledge guidance from the pre-trained MT
model is introduced to improve the capacity of
BabyNet. Meanwhile, global- and local-granularity
parental supervision is incorporated together to
provide coarse- and fine-grained parental supervi-
sion.

2.3.1. Parental Supervision at Embedding
Encoder Layer

To better map the BabyNet feature to the space
of the MT text encoder, the contrastive learning
based supervision is first calculated with the guid-
ance from the MT text feature. Local and global
granularity are utilized to provide more comprehen-
sive supervision signals.

For local-granularity contrastive learning, as
shown in Figure 3 (a), the BabyNet features and
MT text features at the same position of the same
sample are treated as positive pairs, while fea-
tures from different positions and different samples
are negative pairs. The InfoNCE (Gutmann and
Hyvärinen, 2010) based contrastive loss (Chen
et al., 2020a) is utilized to bring the feature repre-
sentations of positive example pairs together and
push away the feature representations of negative

pairs. The local-granularity contrastive loss func-
tion at the embedding layer is:

LEmb
Local = −

L∑
k=1

log
exp(d(F (ik)

Baby , F
(ik)
T )/τ)∑B

j=1

∑L
l=1 exp(d(F (ik)

Baby , F
(jl)
T )/τ))

(7)
where the numerator term indicates the distance
between positive sample features, while the de-
nominator term represents the distances between
positive and negative sample features. i and j
represent i-th and j-th training samples in a mini-
batch, respectively. k and l represent the k-th
and l-th position of features within a training ex-
ample. B represents the batch size, and L rep-
resents the sequence length of the samples. d(·)
denotes a vector similarity metric and cosine dis-
tance is used in our work. τ represents the tem-
perature coefficient, which is set to 0.2 as in Chen
et al., (2020b). Besides local parental supervision,
global guidance is also introduced as shown in Fig-
ure 3 (b):

LEmb
Global = − log

exp(d(F̄ (i)
Baby, F̄

(i)
T )/τ)∑B

j=1 exp(d(F̄ (i)
Baby, F̄

(j)
T )/τ))

F̄
(i)
Baby =

1

L

L∑
k=1

(F
(ik)
Baby ); F̄

(i)
T =

1

L

L∑
k=1

(F
(ik)
T )

(8)

where F̄Baby and F̄T respectively represent the
global features of the BabyNet and the text en-
coder. The BabyNet feature and the text feature
with the same sentence content are considered
positive pairs, while features with different sen-
tence content are considered negative examples.
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2.3.2. Parental Supervision at Sequential
Encoder Layer

The BabyNet features are further encoded by the
MT sequential encoder to incorporate contextual
semantic information. To align the TIMT and MT
sequential features, the MT sequential encoder
provides both local and global supervision signals,
which guides the TIMT sequential feature to have
a consistent distribution as the MT sequential fea-
ture. Similar to embedding layer parental super-
vision, the contrastive loss is introduced to distin-
guish the TIMT and MT features and the local se-
quential encoder supervision loss is:

LSeq
Local = −

L∑
k=1

log exp(d(F (ik)
S-TIMT, F

(ik)
S-MT )/τ)∑B

j=1

∑L
l=1 exp(d(F (ik)

S-TIMT, F
(jl)
S-MT )/τ))

(9)
where FS-TIMT and FS-MT represent the TIMT and MT
sequential features, respectively. The positive and
negative pairs are constructed as that in embed-
ding layer supervision. Besides, the global guid-
ance at the sequential encoder layer is formulated
as:

LSeq
Global = − log exp(d(F̄ (i)

S-TIMT, F̄
(i)
S-MT)/τ)∑B

j=1 exp(d(F̄ (i)
S-TIMT, F̄

(j)
S-MT)/τ))

F̄
(i)
S-TIMT =

1

L

L∑
k=1

(F
(ik)
S-TIMT); F̄

(i)
S-MT =

1

L

L∑
k=1

(F
(ik)
S-MT )

(10)

where F̄
(i)
S-TIMT and F̄

(i)
S-MT denote the global TIMT and

MT sequential features through average pooling
for the i-th sample, respectively.

2.3.3. Parental Supervision at Decoder Layer

To transfer the cross-lingual generation capacity
from the parent MT model to the child TIMT model,
the decoding distribution of the MT decoder is uti-
lized to distillate the decoding knowledge into the
TIMT decoder. As shown in Figure 3 (c), the
local-granularity knowledge transfer replaces the
ground-truth one-hot distribution into the decoding
probability distribution generated by the MT de-
coder generated when calculating cross-entropy
loss function:

LDec
Local = −

L∑
t=1

∑
yt∈VY

Q(ŷt|Ŷ<t,X(i)) logP (ŷ|Ŷ<t, I(i))

(11)
where Q(ŷt|Ŷ<t,X(i)) represents the MT decod-
ing distribution given i-th source language sen-
tence and decoding history before t-th step. While
P (ŷ|Ŷ<t, I(i)) denotes the TIMT decoding probabil-
ity. VY represents the target language vocabulary.
Global-granularity parental supervision at the de-
coder layer is introduced to replace ground-truth

one-hot distribution with the MT model decoded
one-hot distribution as shown in Figure 3 (d):

LDec
Global = −

L∑
t=1

∑
yt∈VY

IMT(ŷt) logP (ŷt|Ŷ<t, I(i)) (12)

where IMT(·) denotes the indicator function that
takes the value of 1 when the decoded token ŷt by
the TIMT decoder is the same as MT generated
token, and 0 otherwise.

2.4. Fused Loss Functions
By integrating the multi-granularity and hierarchi-
cal parental supervision (PS), the final optimization
objective during training is:

LALL = λTIMTLTIMT + λPS(LEmb
PS + LSeq

PS + LDec
PS )

LEmb
PS = LEmb

Local + LEmb
Global,L

Seq
PS = LSeq

Local + LSeq
Global

LDec
PS = LDec

Local + LDec
Global, λTIMT + λPS = 1

(13)

where λTIMT and λHPS are hyper-parameters to
control the weight of various loss functions.
LEmb

HPS,L
Seq
HPS,LDec

HPS represent parental supervision at
embedding, sequential, and decoder layers. Dur-
ing training, both source language text images
and corresponding texts contribute to parent su-
pervision through hierarchical knowledge transfer
and contrastive learning. For inference, only the
source language text image is used for encod-
ing, and source language texts are not utilized.
In essence, inference transforms the source lan-
guage text image into target language translation
results.

3. Experiment

3.1. Datasets
TIR and MT Datasets for Parent Models. To
provide a fair comparison, the dataset utilized to
train the parent models is kept the same as multi-
task learning based end-to-end TIMT work (Chen
et al., 2020c; Ma et al., 2022). For TIR task,
MJSynth (MJ) (Jaderberg et al., 2014)2, SynthText
(ST) (Gupta et al., 2016)3, and Synthetic Text Line
Dataset (Ma et al., 2022) are utilized to optimize
the parameters of TIR model. Parallel sentences
from the Workshop of Machine Translation 4 are
utilized to train the MT parent model.

TIMT Dataset for BabyNet. The public end-to-
end TIMT dataset released by Ma et al., (2022)
is utilized to train all end-to-end TIMT models and
our proposed BabyNet. This dataset contains 1

2https://www.robots.ox.ac.uk/vgg/data/text/
3https://www.robots.ox.ac.uk/vgg/data/scenetext/
4http://www.statmt.org/wmt18/
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Architecture Synthetic Subtitle Street
En⇒Zh En⇒De Zh⇒En En⇒Zh Zh⇒En Zh⇒En

Existing End-to-End TIMT Methods
ItNet (Jain et al., 2021) 18.43 15.71 11.38 16.91 10.07 0.94
CLTIR (Chen et al., 2020c) 19.44 16.31 13.52 17.96 11.25 1.74
RTNet (Su et al., 2021) 19.63 16.78 14.01 18.82 11.50 1.93
MTETIMT(Ma et al., 2022) 21.96 18.84 15.62 19.17 12.11 5.84
MHCMM(Chen et al., 2022) 22.08 18.97 15.66 19.24 12.12 5.87
E2E MC-TIT (Lan et al., 2023) 22.17 19.21 15.74 19.28 12.14 5.95
PEIT (Zhu et al., 2023) 22.23 19.29 15.81 19.30 12.15 6.04
MTKD (Ma et al., 2023c) 22.26 19.38 15.84 19.31 12.17 6.08
E2TIMT (Ma et al., 2023b) 22.53 19.67 16.25 19.46 12.39 6.24

Our Proposed BabyNet with Various Parental Supervision (PS.) Granularities
BabyNet w/ Local PS. 23.58 19.91 16.74 19.50 12.44 6.32
BabyNet w/ Global PS. 23.40 19.86 16.67 19.49 12.41 6.26
BabyNet w/ Fused PS. 23.65 20.13 16.82 19.53 12.47 6.37

Table 1: Comparison of end-to-end text image machine translation models.

million synthetic text line images and correspond-
ing translation pairs for training. The evaluation
sets have three translation directions: English-to-
Chinese (EnZh), English-to-German (EnDe), and
Chinese-to-English (ZhEn). Besides the synthetic
evaluation domain, two real-world (subtitle and
street-view) test sets are also utilized to evaluate
the generalization of the models. For more details
of this dataset please refer to Ma et al., (2022).

3.2. Experimental Settings
TIR parent models have four variants in our paper
to evaluate the influence of different parent mod-
els: CRNN (Shi et al., 2017), TRBA (Baek et al.),
TRT (Ma et al., 2023b), and TrOCR (Li et al., 2021).
While the base and big MT models utilize the same
architecture proposed in Vaswani et al., (2017).
Parent models are firstly trained with TIR or MT
datasets, respectively. Parameters of parent mod-
els are then frozen during the optimization on the
TIMT dataset. For the child model, the architecture
of BabyNet is a 6-layer transformer encoder with 8
attention heads, and the hidden dimension is set to
512. The batch size is 64, and the training step is
set to 300,000. The maximum lengths for English,
German, and Chinese sentences are set to 80, 80,
and 40 respectively. Parameters of the BabyNet
are initialized with Xavier initiation method (Glorot
and Bengio, 2010) and optimized with Adam opti-
mizer (Kingma and Ba, 2015) on a single NVIDIA
V100 GPU. The dropout rate is 0.1, and the initial
learning rate is set to 2e-3. Sacre-BLEU (Papineni
et al., 2002) 5 is utilized as the metric to evaluate
the translation performance.

5https://github.com/mjpost/sacrebleu

3.3. Compared End-to-End TIMT Models

We compare our method with existing end-to-end
TIMT models: ItNet utilizes CNN based image en-
coder and transformer decoder for target language
generation (Jain et al., 2021). CLTIR is multi-task
trained with TIR task (Chen et al., 2020c). RT-
Net utilizes a feature transformer to bridge the TIR
and MT modules (Su et al., 2021). MTETIMT is
trained with MT auxiliary task (Ma et al., 2022).
MHCMM is trained with hierarchical mimic learn-
ing (Chen et al., 2022). E2E MC-TIT (Lan et al.,
2023) incorporates multimodal codebook to quan-
tize image features into discrete code to further
improve the cascade TIMT. To provide a compari-
son of the end-to-end methods, we reproduce the
multimodal codebook based method with an end-
to-end architecture. PEIT (Zhu et al., 2023) em-
ploys a two-stage pre-training strategy and align-
ment with an auxiliary MT task. MTKD is a multi-
teacher knowledge distillation method (Ma et al.,
2023c). E2TIMT is an parameter-efficient model
with modal adapter (Ma et al., 2023b). To provide
a fair comparison, all models are trained and eval-
uated with the same TIMT data set released by Ma
et al., (2022).

3.4. Comparison with Existing
End-to-End TIMT Methods

Table 1 shows the results of our method and ex-
isting end-to-end TIMT methods on the synthetic
and two real-world (subtitle and street-view) eval-
uation sets. For the comparison with existing
methods like E2TIMT (Ma et al., 2023b), our pro-
posed BabyNet utilizes a trainable external bridge
module to link the pre-trained OCR modules and
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Architecture Params.(↓) Time(↓) BLEU(↑)
(Million) (Second) (%)

Cascade 195.1 0.33 20.46
End-to-End 121.9 0.19 18.02
Multi-Task 147.6 0.19 19.44
E2TIMT 13.2 0.19 22.53
BabyNet 13.2 0.19 23.65

Table 2: Comparison of model parameters and de-
coding time among various models on English-to-
Chinese translation direction.

MT modules, while E2TIMT focuses on parameter-
efficient tuning architecture like injecting adapter
modules inside the pre-trained models. Further-
more, both local and global features of BabyNet
are utilized during the calculation of loss functions,
while E2TIMT only considers global features and
lacks fine-grained knowledge supervision tailored
for TIMT task, which limits the performance.

In all translation directions (En⇒Zh, En⇒De,
and Zh⇒En), BabyNet with hierarchical parental
supervision consistently outperforms the existing
end-to-end TIMT methods with an average im-
provement of 0.72 BLEU scores on the synthetic
domain across three translation directions. As for
different granularities of parental supervision, local
granularity outperforms global granularity, which
we attribute to the fine-grained parental supervi-
sion signal providing more accurate guidance for
the optimization of BabyNet. Furthermore, the
fused parental supervision, which combines local
and granularity guidance together, achieves the
best results indicating that these two granularities
are complementary for end-to-end TIMT task.

3.5. Comparison on Model Size and
Decoding Time of TIMT Models

Table 2 shows the comparison of model parame-
ters and decoding time. The cascade methods uti-
lize separated TIR and MT models, which have
parameter redundancy and a long decoding de-
lay. The end-to-end method has fewer param-
eters and faster decoding. Multi-task learning
based method incorporated external parameters
for auxiliary tasks, while the decoding speed is
fast due to the single-task inference during eval-
uation. E2TIMT is a parameter-efficient method,
which just fine-tunes the modal adapter parame-
ters. Similar to E2TIMT, our proposed method op-
timizes the inserted BabyNet between the TIR en-
coder and MT decoder, which just has 10.8% pa-
rameters of the end-to-end model to train. Mean-
while, the decoding speed of BabyNet is much
faster than the cascade model with 41.1% less

time. Furthermore, BabyNet has better transla-
tion performance than existing methods with an im-
provement of 1.12 BLEU score on the English-to-
Chinese synthetic test set, which takes full advan-
tage of cascade and end-to-end methods.

3.6. Analysis on Different Parent Model
Combinations

The BabyNet method can bridge various parent
models, which is flexible in practical applications.
To validate the generalization of BabyNet, Figure 4
shows the experimental results of different par-
ent model recombinations. Four TIR models are
evaluated in this paper: CRNN (Shi et al., 2017),
TRBA (Baek et al.), TRT (Ma et al., 2023b) and
TrOCR (Li et al., 2021). While two MT models are
utilized: transformer-base and transformer-big as
in Vaswani et al., (2017).

Figure 4 (a) shows the results of various TIR
models and transformer-base combinations, while
(b) shows the results of corresponding TIR mod-
els with transformer-big MT model. The cascade
model in each group denotes the corresponding
TIR and MT pipeline structure. BabyNet inherits
the corresponding TIR encoder and MT decoder
in each comparison group. Various granularity set-
tings are also compared to illustrate the effective-
ness of parental supervision.

From this comparison, BabyNet with different
TIR and MT combinations consistently outper-
forms the corresponding cascade model, indicat-
ing the good generalization of BabyNet. Mean-
while, with a better TIR image encoder (like the
TrOCR encoder), BabyNet achieves better perfor-
mance through the inheritance of stronger image
encoding capacity. Furthermore, models in Fig-
ure 4 (b) all outperform corresponding models in
Figure 4 (a), indicating stronger transformer-big
MT decoder further enhances the BabyNet trans-
lation performance. Additionally, the local granu-
larity is better than the global granularity and fused
granularity achieves the best results, revealing that
multi-granularity parental supervision is vital for
BabyNet optimization.

3.7. Ablation Study
To verify the performance gain of parental super-
vision at different layers, ablation studies were
conducted on different combinations of loss func-
tions. As shown in Table 3, Row 1 represents the
BabyNet trained without any parental supervision.
Rows 2, 3, and 5 show the single-layer parental su-
pervision and parental supervision at the image en-
coder layer achieves the best performance with an
improvement of 3.06 BLEU compared with Row 1.
This is because aligning the features of text image
and machine translation at lower layers facilitates
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3

（a）Combinations of Various TIR Models and Transformer Base （b）Combinations of Various TIR Models and Transformer Big

Figure 4: Results of Different Parent Model Combinations. ’PS.’ is the abbreviation of Parental Supervi-
sion. Tr.Base and Tr.Big represent Transformer Base and Transformer Big as in (Vaswani et al., 2017),
respectively

LEmb
PS LSeq

PS LDec
PS Local Global Fused

1 0 0 0 - - 22.63
2 0 0 1 24.81 23.96 24.98
3 0 1 0 25.04 24.14 25.16
4 0 1 1 25.45 24.52 25.71
5 1 0 0 25.22 24.39 25.69
6 1 0 1 25.63 24.71 25.82
7 1 1 0 25.70 25.02 25.98
8 1 1 1 25.74 25.28 26.06

Table 3: Results of Ablation Study on English-to-
Chinese Synthetic Validation Set.

better consistency with the pre-trained MT model
in the subsequent processes.

For bi-layer combinations (Row 4, 6, and
7), it can be observed that combining bi-layer
parental supervision outperforms single-layer guid-
ance with 0.56 BLEU. Meanwhile, the fusion of
parental supervision at the embedding and se-
quential encoding layer achieves the best perfor-
mance for bi-layer settings. The eighth row shows
the results of incorporating parental supervision
at all three layers and it achieves the best per-
formance compared with other layer combinations.
Furthermore, the comparison between column lo-
cal, global, and fused granularities shows that lo-
cal granularity outperforms global guidance and
various granularities are complementary.

3.8. Analysis on Hyper-Parameter

Hyper-parameter λPS in Eq. (13) is utilized to con-
trol the optimization weight of end-to-end TIMT
and parental supervision loss functions. The con-

straint between λTIMT and λPS is: λTIMT + λPS = 1.
As shown in Figure 5, when λPS = 0, the BabyNet
is only optimized with LTIMT and the performance
is limited due to the lack of guidance from parent
models. As the weight of the parental supervision
loss increases, more constraints from parental fea-
tures are incorporated, leading to improved trans-
lation performance of the model. When λPS =
0.8, the model achieves the best translation per-
formance on the English-to-Chinese validation set
with an improvement of 3.43 BLEU. When λPS =
1.0 and λTIMT = 0.0, the performance slightly
decreases, indicating end-to-end TIMT loss is
also useful to provide direct translation knowledge
guidance. The hyper-parameter analysis demon-
strates that the TIMT loss and parental supervision
loss can provide complementary information and
the joint optimization achieves the best results.

4. Related Work

To translate source language text images, in-
image machine translation aims at generating im-
ages containing target translation results (Mansi-
mov et al., 2020; Hinami et al., 2021), while text
image machine translation (TIMT) is designed to
decode target language texts (Chen et al., 2020c).
The research of TIMT is highly related to our
work and it can be mainly categorized into two
types: cascaded models and end-to-end models.

Cascaded models combine pre-trained text im-
age recognition models (Baek et al.; Li et al., 2021;
Zhang et al., 2021, 2019, 2018) with machine
translation models (Vaswani et al., 2017; Zhao
et al., 2023, 2020) to translate text images in the
source language (Afli and Way, 2016; Chen et al.,
2015; Du et al., 2011; Wong et al., 2011; Chang
et al., 2009; Yang et al., 2002). MC-TIT (Lan
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Figure 5: Comparison Experiment Results of
Hyper-parameter λPS.

et al., 2023) incorporates a multimodal codebook
to quantize image features into discrete code to fur-
ther improve the cascade TIMT.

End-to-end models directly translate the input
source language text images into target language
sentences. To incorporate external TIR or MT
datasets, multi-task learning based methods are
proposed to improve TIMT performance (Chen
et al., 2020c; Ma et al., 2022). While multi-teacher
knowledge distillation (Ma et al., 2023c) and cross-
modal mimic learning (Chen et al., 2022) are stud-
ied to transfer knowledge into end-to-end TIMT
models. PEIT (Zhu et al., 2023) employs a two-
stage pre-training strategy and alignment with an
auxiliary MT task. Modal contrastive learning (Ma
et al., 2023a) is proposed to align text and im-
age representation while quantized feature shows
better performance of text image representation
learning (Ma et al., 2024). Another solution is in-
spired by parameter-efficient tuning (Zaken et al.,
2022; Sun et al., 2021; Rothe et al., 2020; Le et al.,
2021; Rebuffi et al., 2017), which takes advantage
of pre-trained TIR or MT models with an external
trainable feature transformation (Su et al., 2021)
or modal adapter (Ma et al., 2023b). Different
from existing research, our work aims at incorpo-
rating multi-granularity hierarchical parental super-
vision to guide the training of parameter-efficient
BabyNet, which achieves new state-of-the-art and
has a good generalization for various parent com-
binations.

5. Conclusion

In this paper, we propose a novel BabyNet op-
timized with hierarchical parental supervision for
end-to-end TIMT. BabyNet bridges the pre-trained
TIR and MT parent modules and effectively im-

proves the translation performance. The Analyses
on supervision granularity show local parental su-
pervision outperforms global granularity due to the
more accurate fine-grained knowledge guidance.
Meanwhile, lower layer alignment with parental su-
pervision has better consistency in the decoding
process, which achieves better translation perfor-
mance. Additionally, BabyNet achieves significant
improvements with various combinations of parent
model structures, indicating the good generaliza-
tion of our method. In the future, we will explore
more parental supervision functions to further im-
prove translation performance.
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