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Abstract
One of the most important communicative skills children have to learn is to engage in meaningful conversations
with people around them. At the heart of this learning lies the mastery of contingency, i.e., the ability to contribute
to an ongoing exchange in a relevant fashion (e.g., by staying on topic). Current research on this question relies
on the manual annotation of a small sample of children, which limits our ability to draw general conclusions
about development. Here, we propose to mitigate the limitations of manual labor by relying on automatic tools for
contingency judgment in children’s early natural interactions with caregivers. Drawing inspiration from the field of
dialogue systems evaluation, we built and compared several automatic classifiers. We found that a Transformer-based
pre-trained language model – when fine-tuned on a relatively small set of data we annotated manually (around 3,500
turns) – provided the best predictions. We used this model to automatically annotate, new and large-scale data,
almost two orders of magnitude larger than our fine-tuning set. It was able to replicate existing results and generate
new data-driven hypotheses. The broad impact of the work is to provide resources that can help the language
development community study communicative development at scale, leading to more robust theories.
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1. Introduction

Children’s language development involves not only
the acquisition of formal structures such as phonol-
ogy, syntax, and vocabulary but also the learning
of how to use this formal knowledge to commu-
nicate with people around them in day-to-day in-
teractions. Becoming a competent conversational
partner requires children to master several skills
such as turn-taking (Levinson, 2016; Casillas et al.,
2016; Agrawal et al., 2023), active listening (Bave-
las et al., 2000; Bodur et al., 2023; Liu et al., 2022),
communicative repair (Dingemanse and Enfield,
2024; Clark, 2020; Nikolaus et al., 2022) and in-
teractive alignment (Pickering and Garrod, 2004;
Chieng et al., 2024; Fusaroli et al., 2023; Misiek
et al., 2020; Misiek and Fourtassi, 2022).

In this paper, we focus on a conversational behav-
ior commonly known in the developmental literature
as contingency (Piaget, 2005; Keenan and Klein,
1975; Bloom et al., 1976; Slomkowski and Dunn,
1996; Hale and Tager-Flusberg, 2005; Melander
and Sahlström, 2009; Nadig et al., 2010; Pagmar
et al., 2022; Abbot-Smith et al., 2023). It can be
defined — broadly speaking — as the collabora-
tive ability to contribute to a dialogue in a relevant
fashion, e.g., by connecting with the topic of the
ongoing exchange. It is, thus, the glue that makes
conversation different from a “succession of dis-
connected remarks,” (Grice, 1975) and “collective
monologues” (Piaget, 2005).

Given that contingency is at the heart of the very
definition of a conversation; similar concepts have
been introduced and studied — beyond the domain

of child development — in many scientific fields that
deal with dialogue characterization and/or genera-
tion such as pragmatics in linguistic theories (e.g.,
Grice, 1975; Sperber and Wilson, 1986), Conver-
sation Analysis in sociology (e.g., adjacency pairs
Schegloff and Sacks, 1973), and dialogue evalu-
ation in human-agent interaction (e.g., Mehri and
Eskenazi, 2020).

Cognitive and social impact
Being able to provide contingent conversational
turns is believed to be associated with the child’s
developing cognitive competencies such as Theory
of Mind (the ability to infer other people’s mental
states such as goals, beliefs, and desires) and ex-
ecutive functions such as Inhibitory Control (that
is, the ability to inhibit one’s impulses vis-à-vis a
given stimulus so as to provide a more appropri-
ate response)(see Matthews et al., 2018, for a re-
view). Indeed, learning how to stay on topic re-
quires, amongst other things, the ability to also con-
sider the interlocutor’s perspective and to inhibit the
tendency to always talk about one’s own interests
regardless of what the interlocutor is talking about.

In addition, the mastery of contingency in child-
hood has important social implications such as the
ability to maintain friendships (Hazen and Black,
1989). For instance, peer popularity was found to
be negatively correlated with children producing
more non-contingent, off-topic comments in conver-
sations with their peers (Place and Becker, 1991).
More critically, research such as Garzaniti et al.
(2011) and Miczo et al. (2001) suggests that many
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observed differences between children in terms of
conversational skills tend to persist into adulthood,
with an impact on their workplace interactions and
relationship satisfaction (see Abbot-Smith et al.,
2023, for a review).

Towards an automatic annotation of child
contingency

Given the connection of conversational contingency
with children’s broad socio-cognitive development
and the persistence of its impact on their later well-
being, it is of utmost importance to investigate this
phenomenon in its earliest manifestation, i.e., in the
context of child-caregiver early natural interactions
(Pellegrini et al., 2012).

While several corpora of early child-caregiver
conversations have been curated (MacWhinney,
2000), a major impediment to the study of contin-
gency is the need for resource-intensive manual
annotation. We propose that this impediment can
be mitigated through partial or full automation,
thanks to recent advances in language and
dialogue modeling. Such tools could, in addition,
make it possible to study development at a large
scale; ideally allowing both an investigation of how
current knowledge on the matter – typically based
on small-scale studies (e.g., Piaget, 2005; Bloom
et al., 1976; Keenan and Klein, 1975) – generalize
to a much larger, more diverse sample of children,
as well as facilitating the discovery of new insights
and hypotheses using bottom-up approaches.

We turn, for inspiration, to the literature on di-
alogue system evaluation (e.g., evaluating the
response relevance of a ChatBot in a free con-
versation with a human) which has made signif-
icant progress, especially since the adoption of
pre-trained language models, namely transformer-
based models like BERT (Devlin et al., 2019) and
GPT2 (Radford et al., 2019). Earlier computational
methods tended to be feature-based, i.e., extract-
ing several cues and using them as estimators of
contingency (as perceived by humans). Such cues
included counting repetitions/distribution of certain
nouns phrases across turns, the use of speech
acts and adjacency pairs, contextual embeddings,
and measures of turn similarity (e.g., Barzilay and
Lapata, 2008; Cervone et al., 2018; Yi et al., 2019).

More recently, researchers started leveraging
pre-trained language models to evaluate the contin-
gency of a turn in the context of the dialogue history.
We will call this approach Language Model-based
(to contrast with the Feature-based approach).

Introducing pre-trained models has allowed re-
searchers to capitalize on rich linguistic knowledge
that these models had acquired from data that far
exceeds the size of the typical dialogue datasets

used to train feature-based methods. This addition
resulted in a significant improvement, i.e., a higher
similarity with human judgment – compared to pre-
vious methods (Sai et al., 2020; Pang et al., 2020;
Yeh et al., 2021; Mehri and Eskenazi, 2020; Mehri
et al., 2022).

The current study and related work

This work is, to the best of our knowledge, the first
attempt to automatize the evaluation of contingency
in early child-caregiver natural conversations. This
data is different from typical adult conversations
used in most above-reviewed work on contingency
evaluation (e.g., the SWITCHBOARD corpus: God-
frey et al., 1992). For instance, there is an asymme-
try between young children’s – rudimentary – lan-
guage use abilities and the caregiver’s mature con-
versational skills. In addition, the caregiver tends to
adapt their language when they talk with children,
compared to when they talk with adults. These
differences in terms of conversational asymmetry,
style, and context call for a dedicated investigation.

In terms of methods, while current research work
– with adult data – has largely moved from a Feature-
based to a Language Model-based (LM-based) ap-
proach, here we study and compare both. Indeed,
it is possible that pre-trained language models fail
to capture the above-mentioned specifics of child-
caregiver interaction, given that these models were
pre-trained on data of a very different nature. Con-
versely, it is possible that child-caregiver dialogues
show simpler patterns that can be more adequately
captured using a feature-based method. Finally,
it is not impossible that neither the feature-based
nor the LM-based approach provides a satisfactory
account of child-caregiver dialogue contingency if,
say, the overall context – which can be crucial for
contingency judgment – is not very transparent in
the verbal exchange.

For both the Feature-based and LM-based meth-
ods, we need a reasonable amount of hand-
annotated data from child-caregiver dialogues.
This annotated data is necessary for training, fine-
tuning, and evaluation. There is – to our knowledge
– no publicly available annotation for children’s early
contingency behavior. Thus, another contribution
of this work is to provide such a resource, using
a longitudinal corpus of children aged 20 and 32
months old (The New England Corpus, Snow et al.,
1996).

The paper is organized as follows. First, we de-
scribe how we processed and manually annotated
the New England corpus. Next, we describe the var-
ious features and models we used to automatically
annotate the corpus. Finally, we discuss the results
of the automatic annotation and demonstrate the
use of these models for a large-scale investigation



1858

of contingency within all of the English-language
CHILDES corpora.

Our models, annotations, and code for
training the models and running the exper-
iments are all publicly available at https:
//github.com/abhishek-agrawal94/
childes-contingency.

2. Manual Annotation

2.1. Corpus
We annotated contingency behavior in a subset
of the New England corpus (Snow et al., 1996).
This corpus consists of a longitudinal recording of
N = 52 children at 14, 20, and then 32 months
of age. The context was semi-structured free play
between children and their caregivers. The corpus
is transcribed and segmented into conversational
turns. It is publicly accessible through the CHILDES
repository (MacWhinney, 2000) using CHILDES-db
R library (Sanchez et al., 2019). We picked this
corpus as it covers the age range where children be-
gin developing linguistic and (joint) attention skills
that allow them to engage in increasingly extended
back-and-forth conversations with the caregiver,
thus offering an ideal window to study development
from the earliest stages. In addition, the corpus
was manually annotated for speech act categories
(using the child-adapted INCA-A scheme, Ninio
et al., 1994), which we needed for our analyses.

2.2. Data pre-processing
After pilot annotations, it was apparent that verbal
data from 14-month-olds was not intelligible enough
to enable a precise study of contingency. Thus, our
sample included data from children recorded when
they were 20 months old and, then, when they were
32 months old.

Starting from the transcripts, we filtered out ut-
terances that weren’t intelligible or speech-related,
e.g., babbling and other vocalizations. We also
filtered out the utterances from the investigator of
the study (keeping only utterances from the child
or their caregiver). The resulting dataset included
a total of 32,343 utterances out of the original size
of 81,473 utterances in the New England corpus.

2.3. Procedure
We focused on turn switches, i.e., transitions in the
conversation when parents or children took a turn
following their interlocutor. In other words, if, say,
the caregiver made several consecutive utterances,
and the child did not intervene (or vice versa), we
do not analyze the transition between these con-
secutive utterances. From a total of 12,981 turn
switches across all 85 transcripts that make up

the corpus, we annotated – manually – 3,898 turn
switches (around 30%), from 28 transcripts that
were sampled randomly from the corpus.

The sample can be broken down into 4
equivalent-size conditions as follows: 955 turn-
switches of 20-months-olds responding to care-
givers, 994 turns of 32-months-olds responding to
caregivers, 957 turns of caregivers responding to
20-months-olds, and finally 992 turns of caregivers
responding to 32-months-olds.

Two human annotators coded all these turns
for contingency on a 3-point scale as non-
contingent, contingent, and ambiguous.
The annotators made their judgments based on
the surrounding verbal context in the dialog. We
decided to use the transcripts as our sole source
of information for judging contingency as not all the
transcripts in CHILDES had accompanying high-
quality videos. For turn switches that were not
classifiable without information from other modali-
ties, we used the label ambiguous. Consider the
following example:

Caregiver: What’s in there?
Caregiver: What do you think they are?
Child: What’s this?

— New England corpus, 32-55.cha

Here, if it can be inferred from the visual modality
that the child was pointing/referring to the same
thing as the caregiver, then we can consider the
child’s response to be contingent. However,
since we are only considering the verbal data, we
mark the child’s response as ambiguous.

Early attempts were used to converge on a com-
mon, systematic scheme (see Appendix A.1). Next,
both annotators coded all data in batches of approx-
imately 200 turn-switches. After every batch, they
adjudicated their disagreements. All original anno-
tations in each batch (i.e., before adjudication) were
used to calculate the inter-annotation agreement.
The two annotators achieved a weighted Kappa
score of κ = 0.728 (using quadratic weights).

2.4. Results
Figure 1 shows the results of the manual annota-
tion of contingency for children and adults, both
grouped (children vs. adults) and broken down by
the age of the child (20 and 32 months). When
we consider the grouped data (left panel), adults
had a higher overall average proportion of contin-
gent utterances (78% of their total turns) compared
to children (61% of their total turns). Adults also
had lower ambiguous turns (compared to children)
and only a very small proportion of non-contingent
turns. Children’s non-contingent turns represented
a minority of their total, but this proportion was still
noticeable: 14% of total turns.

https://github.com/abhishek-agrawal94/childes-contingency
https://github.com/abhishek-agrawal94/childes-contingency
https://github.com/abhishek-agrawal94/childes-contingency
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Figure 1: The proportion of contingent, non-
contingent, and ambiguous utterances spoken
by children and adults in our manually annotated
data. The results shown on the right-hand graph
are broken down by the age of the child (20 and 32
months).

When we look at the results broken down by
the child’s age (right panel), we can observe a de-
velopmental pattern. First, in terms of children’s
own responses, the proportion of contingent turns
increases from 51% at 20 months to 70% at 32
months. Non-contingency decreased from 18%
at 20 months to 11% at 32 months. Second, in
terms of caregivers’ responses to children, similar
findings were observed: Contingency increased
from 76% when talking to children at 20 months
to 80% when talking to 32-months-old. Ambigu-
ity decreased from 20% at 20 months to 17% at
32 months old (and non-contingent responses re-
mained at floor level).

3. Automatic Annotation

Following recent research on dialogue system eval-
uation (see Mehri et al., 2022, for an overview),
we define the task as labeling the contingency of a
turn given a context made of several previous turns
in the conversation. We test and compare two dif-
ferent approaches. The first is Feature-based: We
extract different verbal features from the dialogue
(based on previous research) and evaluate their
ability to predict contingency using simple classi-
fiers. The second approach is LM-based: We use
pre-trained Language Models and test three levels
of fine-tuning on our data (from broad to specific): 1)
pre-training only, 2) fine-tuning with self-supervised
learning on child-caregiver conversations, and 3)
fine-tuning on the supervised task (contingency
classification) using manual annotations.

3.1. Feature-based approach
We test the following features:

3.1.1. Speech acts

The speech act categories allow us to infer if, on a
high level, the target turn is contingent. For exam-
ple, we can determine that the category “Yes-no
response” is contingent when following a “Yes-no
question” and non-contingent when following, say,
a “Greeting” (Sacks, 1967; Schegloff and Sacks,
1973; Cervone and Riccardi, 2020; Higashinaka
et al., 2014). We use the Inventory of Commu-
nicative Acts - Abridged (INCA-A); the most com-
prehensive coding scheme to date, designed to
capture children’s emerging speech acts in the con-
text of early interaction with the caregiver (Ninio
et al., 1994). INCA-A has 67 different illocutionary
categories, which fall into several groups such as
directives, declarations, commitments, markings,
statements, questions, evaluations, and other vo-
calizations. The New England corpus, that we use
in the current work, was manually annotated for
INCA-A by the original authors (Snow et al., 1996).

3.1.2. Noun phrase repetitions

Several previous NLP studies on text coherence
or dialogue contingency used repeated named en-
tities across sentences or turns as a feature for
contingency prediction (Barzilay and Lapata, 2008;
Cervone et al., 2018; Cervone and Riccardi, 2020).
The idea is that a turn in which the speaker refers
to the same entities as the interlocutor did in a pre-
vious turn would be more contingent than one in
which the speaker refers to different entities. Given
that child-caregiver conversation evolves around
simple daily objects or animals instead of the typi-
cal entities identified by dedicated NLP tools (e.g.,
famous people’s names and big organizations), we
decided to use a broader measure indicating the
number of times any noun phrase was repeated
across the context and the target turn. To identify
the noun phrases, we use the English transformer-
based syntactic parser from SpaCy.1

3.1.3. Semantic embeddings and similarity

Following Yi et al. (2019), we make use of sentence-
level embeddings and cosine similarity as features
for contingency prediction. For the embeddings, we
used pre-trained Sentence Transformers (Reimers
and Gurevych, 2019) to obtain the embedding of
the composite {context, turn}. For cosine similarity,
we first obtained separate embeddings for context
and turn and then computed the cosine similarity

1link to model: https://spacy.io/models/en#
en_core_web_trf

https://spacy.io/models/en#en_core_web_trf
https://spacy.io/models/en#en_core_web_trf
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between them. The idea behind using these fea-
tures is that coherent context-turn pairs would occur
closer in the representation space as opposed to
non-coherent pairs since they would, for e.g., share
similar semantic content.

3.2. Language Model-based approach

Since GPT-2, an auto-regressive transformer lan-
guage model (Radford et al., 2019), was proven ef-
fective in previous research on dialogue evaluation
(Pang et al., 2020; Mehri and Eskenazi, 2020), we
used it as a starting point to experiment with three
levels of fine-tuning on our data. Then, for com-
parison, we tested another – and more recently in-
troduced – transformer-based model (i.e., DeBER-
TaV3, He et al., 2023) pre-trained with a different
self-supervised objective function (i.e., Replaced
Token Detection), compared to GPT-2 (i.e., Next-
word prediction based on past context).

3.2.1. GPT-2

GPT-2 is a language model, built of Transformer
decoder blocks (no encoder) and pre-trained on
WebText: A corpus made of 8 million documents
that were linked to in Reddit and received at least
three upvotes (to increase the quality of training
data) (Radford et al., 2019). We used the version
of the model with 124 million parameters2.

We used this model in three ways, corresponding
to the three levels of fine-tuning on our data, ranging
from broad to specific, as follows:

a) GPT-2 with pre-training only First, we used
the default pre-trained version of the model with-
out any further training on our data. To estimate
the contingency, we calculated the perplexity of
a turn given the context, quantifying the extent to
which this turn naturally follows from the preceding
context. This estimation is based on the linguistic
knowledge the model has gathered in pre-training.

As GPT-2 is an auto-regressive model (i.e., pre-
dicting the next word based on the past context),
perplexity is well-defined as the exponent of the
average of the negative log-likelihood. For a se-
quence of tokens X = (x1, x2, x3, . . . , xt), making
up the composite {context, turn}, the perplexity of
X is calculated as follows:3

PPL(X) = exp

{
−1

t

t∑
i=0

log pθ (xi|x<i)

}

2link to model: https://huggingface.co/gpt2
3We compute the perplexity for the tokens in the turn

only (but conditioned on the entire context).

b) GPT-2 with self-supervised fine-tuning The
second approach involved fine-tuning a pre-trained
GPT-2 model on child-caregiver conversations. We
used the same (self-supervised) objective function
to fine-tune GPT-2 on all English-language corpora
in the CHILDES repository, excluding data from
the New England corpus (because it contains our
test data). The fine-tuning data consisted of 4,674
transcripts from a total of N=862 children aged 26
months4 and up to 60 months.

The model was fine-tuned for 3 epochs on the
training data. After fine-tuning, we estimated the
contingency by computing the perplexity of {con-
text, turn} using the same formula as in the default
version of GPT-2 above.

c) GPT-2 with supervised fine-tuning The third
approach was to use the pre-trained model and
fine-tune it by directly teaching it to classify whether
a turn is contingent, non-cotingnent, or am-
biguous (given its context) using the manual an-
notations.

3.2.2. DeBERTaV3

To compare with GPT-2, we use a more recently
introduced Transformer called DeBERTaV3 (He
et al., 2023); an improved variant of the the De-
BERTa model (He et al., 2020), which was, itself,
an improved version of BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) transformer mod-
els. The most important novelty of DeBERTaV3 is
the use of a pre-training objective called Replaced
Token Detection (RTD), which proved to be more
data-efficient than Mask Language Modeling (MLM)
used in DeBERTaV3’s predecessors. This model
has 304 million parameters and was pre-trained
on the English Wikipedia dump, the Book Corpus
(Zhu et al., 2015), OPENWEBTEXT which contains
reddit content (Gokaslan and Cohen, 2019) and on
the STORIES corpus (Trinh and Le, 2019) which is
a subset of CommonCrawl.

We fine-tuned DeBERTaV3 on the supervised
task of contingency prediction of a turn (given its
context) using our manual annotation.

3.3. Task training and Evaluation
All automatic classifications (both feature- and
LM-based) were done by training on 80% of our
manual annotation and testing on the remaining
20%. The task consists in learning how to as-
sociate the pair {context, turn} with one of three
labels (contingent, non-contingent, or am-
biguous). For each turn – and based on prelimi-

4We did not include younger children to ensure we
have a significant proportion of intelligible speech from
children.

https://huggingface.co/gpt2
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Classifier Child Adult
F1 score MCC score F1 score MCC score

Majority classifier 0.46 ± 0.06 0.00 ± 0.00 0.68 ± 0.03 0.00 ± 0.00
Chance classifier 0.38 ± 0.02 0.03 ± 0.04 0.41 ± 0.02 0.00 ± 0.05

Speech acts 0.47 ± 0.06 0.05 ± 0.04 0.68 ± 0.03 -0.01 ± 0.02
Noun phrase reps. 0.51 ± 0.05 0.08 ± 0.04 0.17 ± 0.16 0.00 ± 0.03
Cosine similarity 0.36 ± 0.17 0.05 ± 0.11 0.55 ± 0.03 0.16 ± 0.03

Sentence transformer embedding 0.52 ± 0.07 0.10 ± 0.05 0.68 ± 0.03 0.00 ± 0.04
GPT-2 (no fine-tuning) 0.04 ± 0.02 0.00 ± 0.00 0.28 ± 0.28 0.01 ± 0.01

GPT-2 (self-supervised) 0.53 ± 0.02 0.13 ± 0.06 0.51 ± 0.19 -0.03 ± 0.02
GPT-2 (supervised) 0.62 ± 0.06 0.35 ± 0.06 0.69 ± 0.03 0.22 ± 0.08

DeBERTaV3 (supervised) 0.70 ± 0.03 0.46 ± 0.05 0.76 ± 0.03 0.41 ± 0.04
DeBERTaV3 (supervised)+ optimal context 0.74 ± 0.01 0.53 ± 0.04 0.77 ± 0.03 0.42 ± 0.06

Human score 0.82 ± 0.02 0.65 ± 0.03 0.86 ± 0.03 0.58 ± 0.07

Table 1: The mean weighted F1 scores and MCC scores along with the standard deviation across a 5
fold cross-validation for children of all ages and for adults. The results for the feature based models are
with a logistic regression classifier.

nary exploration – we fixed the context size for all
classifiers to be the five preceding utterances. We
evaluate the models with 5-fold cross-validation.
Crucially, we decided to split folds using transcripts
(entire conversation session) as units instead of
turn-switches. The reason is to make sure there
were no overlapping passages in training and the
test folds regarding the context. Thus, our eval-
uation method is rather strict and tests the ability
of the model to generalize to other conversational
sessions.

For the feature-based methods, we used logistic
regression classifiers,5 testing the performance of
the features both individually and in combination
with each other. As for the LM-based classifiers,
we had two cases: Concerning models without
fine-tuning or with self-supervised fine-tuning, we
used the perplexity value of {context, turn} as a
feature in logistic regressions (as we did for feature-
based methods). Concerning language models
with supervised fine-tuning, we did not need to train
further classifiers as these models were trained
directly for the classification task.

For each model, we report the F-score and
the Matthews Correlation Coefficient (MCC) score.
While the F-score remains one of the most pop-
ular metrics, it can sometimes show misleadingly
inflated results, especially with imbalanced classes
as in our case. In contrast, the MCC is more reliable
and has been shown to be generally unaffected by
the unbalanced data issue (Chicco and Jurman,
2020)

5Other classifiers (e.g., random forest) were used but
not reported here as their performance did not improve
over the simpler logistic regression.

3.4. Results and Analyses
The results of all classifiers are shown in Table 1, to-
gether with chance and majority classifiers used as
baselines and human inter-annotation agreement
as a top-line. The results are broken down for clas-
sifiers that were trained/tested either on children’s
contingency data or on adults’ data.6

A first inspection of these results confirms that
the MCC scores paint a more reliable/interpretable
picture than the F-score. For instance, a simple ma-
jority classifier for adults’ data has a high F1 score
of 0.68, but this score only reflects the fact that the
overwhelming majority of adults’ turns are contin-
gent, and not the accuracy of the classification. In
contrast, the MCC score for this same majority clas-
sifier for adults is exactly 0, reflecting more faithfully
that the classifier has not really learned anything;
putting it on par with the performance of the chance
classifier. Thus, in the following, we will be analyz-
ing and discussing the results mainly in terms of
the MCC scores.

The feature-based classifiers are shown for each
feature (tested individually). None of the features
managed to surpass a MCC score of 0.16 which is,
overall, low. We also trained and tested classifiers
with various combinations of features and different
classifiers other than the logistic regression (results
not shown here, but provided in Appendix A.2), but
none of these configurations led to considerable

6Training/testing on each age group separately, i.e.,
20 and 32 months old led to data-sparsity-related issues,
in particular, noisy results with a large variance across
folds. These results were not reliable enough to draw
clear conclusions. The results are shown in Appendix
A.2.
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improvement compared to individual scores.
Moving to LM-based classifiers with GPT-2, we

can see that the performance increased when
GPT-2 was fine-tuned in a self-supervised fashion
on CHILDES (compared to GPT-2’s original pre-
training without any fine-tuning), but this increase
was observed only for children’s data. The super-
vised fine-tuning on the manual annotation led to
the best results across both children and adults.

When comparing GPT-2 (supervised) to DeBER-
TaV3 (supervised), we found that DeBERTaV3 im-
proved the results by a fairly large margin. This
score was further improved (especially for children)
with an optimal context size.7 Overall, this model
learned to classify children’s data better than it did
for adults’ data, echoing a similar difference ob-
served in terms of human agreement scores.

Note, however, that even the best-performing
classifier is still lower than the human inter-
annotation agreement, suggesting there is still
room for improvement.

Effect of training and context size

Using DeBERTaV3 (supervised), we simulated
the performance of the classifier when trained on
smaller portions of the data. Figure 2 shows that
the performance peaks when fed with around 80%
of the available training data for both children and
adults, indicating that the size of our manual anno-
tation dataset, although relatively small, was suffi-
cient for fine-tuning the language model.

Figure 2: The effect of varying fine-tuning data
size (i.e., from the manual annotation data) on the
performance of DeBERTaV3 (supervised). The
points indicate the mean MCC score across a 5-
fold cross-validation and the ranges represent the
standard deviation.

7The optimal context was 8 preceding turns for chil-
dren and 2 preceding turns for adults, see Figure 3

Next, we tested how DeBERTaV3 (supervised)
performed with different context sizes. The re-
sults are shown in Figure 3. We can see that a
large improvement occurs by adding only 2 pre-
ceding turns as context. For children’s data, per-
formance slightly increases; peaking at a context
size of around 8 preceding turns. For adults’ data,
however, adding context beyond 2 preceding turns
does not seem to improve performance (if anything,
the performance slightly decreases).

Interestingly, performance with no context at all
was above zero, suggesting that some turns had
intrinsic properties that correlated with their con-
tingency status. Qualitative inspection of a few
examples in the 0-context case shows that turns
that were successfully classified were often short ut-
terances or backchannels (e.g., ‘yeah’, ‘no’, ‘mhm’,
and ‘okay’).

Figure 3: The effect of varying context size on the
performance of DeBERTaV3 (supervised). The
points indicate the mean MCC score across a 5-
fold cross-validation and the ranges represent the
standard deviation.

3.5. Toward large-scale investigation
We select the best models from our training and
then use them to predict the contingency for turn
switches from all English-language CHILDES cor-
pora (excluding the New England corpus) to see
how the automatic annotation of the model behaves
on new, large-scale data. We test the model’s be-
havior both within and beyond the age range of the
training set.

Within-range automatic annotation Since we
used manually annotated data from conversations
of children aged 20 and 32 months old for our
training, we restricted this first exploration to all
English-language turn switches in CHILDES cor-
pora belonging to children aged 20 to 32 months



1863

(and their caregivers). Since we did 5-fold cross-
validation during DebertaV3’s fine-tuning (see Sec-
tion 3.3), we ended up with 5 different classifiers,
one for each fold. We ran all 5 models on this
new CHILDES data and did a majority vote to get
a final prediction for each {context, turn}. In this
manner, we automatically annotated 345, 893 turn-
switches for children and 345, 133 turn-switches for
caregivers in total, that is, two orders of magnitude
larger than the manually annotated training data.

Figure 4 shows the results. First, the automatic
annotation captures the broad developmental differ-
ence between 20-month-olds (lower contingency)
and 32-month-olds (higher contingency). Thus the
automatic classifier replicates the same result ob-
tained with manual annotation (shown in Figure 1)
using completely different corpora (that have not
been seen in fine-tuning), also generalizing it at
a large scale. In addition, automatic annotation
reveals a new finding: There is a rather continuous
developmental pattern in children’s contingency be-
tween 20 and 32 months, although – crucially –
no data from children in these intermediate ages
were seen in fine-tuning. We can also see a similar
(though slower) developmental pattern in parents’
contingency, this slight increase appears to be due
mostly to a reduction in the number of ambiguous
turns, with non-contingent turns remaining largely
at floor level (which is also similar to what we ob-
tained with manual annotation).

Figure 4: The proportion of contingent, non-
contingent, and ambiguous utterances obtained
using automatic annotation of new, large-scale data
within the age range of the fine-tuning set.

Beyond-range automatic annotation To inves-
tigate the extent to which our automatic classifier
can be used with data beyond the age range of
the fine-tuning set, we now automatically annotate
conversations of children aged up to 64 months

in all English-language CHILDES, following a sim-
ilar procedure as above (leading to 911, 143 turn-
switches for children and 893, 973 turn-switches for
caregivers in total).

Figure 5 reproduces results of Figure 4 in the
20-32 months interval (same data) and shows the
automatic annotation beyond this range, up to 64
months. The results show no increase in children’s
contingent turns beyond 32 to 36 months and no de-
crease in non-contingent turns either, a finding that
is counter-intuitive and most certainly inaccurate.
We conclude that the model cannot be used reliably
to annotate data beyond the age range seen by the
model during fine-tuning.

Figure 5: The proportion of contingent, non-
contingent, and ambiguous utterances obtained
using automatic annotation of new, large-scale data
beyond the age range of the fine-tuning set, and
up to 64 months.

4. Conclusion

Conversational contingency plays a crucial role in
children’s communicative and socio-cognitive de-
velopment. Understanding how this skill develops
requires that we study its earliest manifestation in
child-caregiver natural interaction, soon after the
child becomes able to utter intelligible speech and
engage in a verbal back-and-forth with the care-
giver. While several studies have investigated con-
tingency behavior around that period and beyond
(Piaget, 2005; Keenan and Klein, 1975; Bloom et al.,
1976; Abbot-Smith et al., 2023), most are typically
based on small-scale samples (with known limi-
tations); due primarily to the fact that the study
of this phenomenon in natural interaction requires
resource-intensive manual annotations.

Here we explored the possibility of automatizing
the process of child-caregiver contingency judg-
ment, with the goal of facilitating more research
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into this question, e.g., by testing the generality of
our current knowledge at a large scale and by al-
lowing a bottom-up exploration of new hypotheses.
We took inspiration from the field of dialogue sys-
tems evaluation to build and test various automatic
classifiers. The most accurate one was based on
a pre-trained language model, which we fine-tuned
on a relatively small sample of data that we anno-
tated manually. This classifier was able not only to
replicate and generalize findings – obtained with
human annotators – on data it had never seen but
also to generate a new hypothesis about the shape
of the developmental trajectory.

Finally, this work can impact not only research
on children’s early conversational development but
also research on the role of interaction in predict-
ing language learning in the wild. While current
methods examine the role of predictors such as
children’s overall linguistic input (e.g., the quantity
of speech heard) or broad interactive measures
like the number of turns or temporal contingency
(Bergelson et al., 2023; Donnelly and Kidd, 2021;
Elmlinger et al., 2023), the current work allows more
detailed examination of the verbal content of the in-
teraction and its semantic connectedness, facilitat-
ing empirical testing —at scale— of key proposals
from interactionist theories and models of language
acquisition (Tomasello, 2003; Clark, 2018; Bruner,
1983; Nelson, 2007; Masek et al., 2021; Nikolaus
and Fourtassi, 2023, 2021).

5. Limitations

The performance of our best model was still inferior
to that of human annotators (although the gap is
not huge). How can we improve? The common
approach is to annotate more data manually and
increase the size of the fine-tuning data. However,
as Figure 2 demonstrates, this is unlikely to im-
prove performance as we appear to have already
hit a peak. Another – and perhaps more promising
way forward – is to use larger language models
with a lot more parameters, pre-trained on much
more data than say, GPT2 or DeBERTaV3. Up until
very recently, such Large Language Models (LLMs)
have been closed to researchers with no possibility
of fine-tuning their parameters (e.g., GPT4 Ope-
nAI, 2023). This is changing both with the release
of more open LLMs (e.g., Llama 2 Touvron et al.,
2023, Mistral 7B Jiang et al., 2023) and with im-
provements in machine learning techniques that
allow fine-tuning of LLMs with reasonable computa-
tion resources (e.g., Houlsby et al., 2019; Dettmers
et al., 2022).

Another limitation of our study is that – for practi-
cal reasons – we considered only the transcript of
the conversation for our manual annotations and
for training/evaluating our models. Nevertheless,

the visual context can be very informative for con-
tingency judgment in early childhood, especially
in evaluating referring expressions. Adding the vi-
sual context would help resolve several instances
of what we labeled as “ambiguous.” This, however,
will depend on the availability of curated multimodal
corpora (which are rare, given the concern to pro-
tect the anonymity of children) as well as on the
ability of models to learn reliably from real-life, natu-
ralistic, and noisy multimodal scenes (which is still
an open research question).

6. Acknowledgements

This work, carried out within the Institute of Conver-
gence ILCB (ANR-16-CONV-0002), has benefited
from support from the French government (France
2030), managed by the French National Agency for
Research (ANR) and the Excellence Initiative of Aix-
Marseille University (A*MIDEX). Furthermore, this
study was also supported by the ANR MACOMIC
(ANR-21-CE28-0005-01) grant. This work was per-
formed using HPC resources from GENCI–IDRIS
(Grant 2022-AD011013886).

7. Bibliographical References

Kirsten Abbot-Smith, Julie Dockrell, Alexandra Stur-
rock, Danielle Matthews, and Charlotte Wilson.
2023. Topic maintenance in social conversation:
What children need to learn and evidence this
can be taught. First Language.

Abhishek Agrawal, Jing Liu, Kübra Bodur, Benoit
Favre, and Abdellah Fourtassi. 2023. Develop-
ment of multimodal turn coordination in conversa-
tions: Evidence for adult-like behavior in middle
childhood. In Proceedings of the Annual Meeting
of the Cognitive Science Society, volume 45.

Regina Barzilay and Mirella Lapata. 2008. Model-
ing Local Coherence: An Entity-Based Approach.
Computational Linguistics, 34(1):1–34.

Janet B. Bavelas, Linda Coates, and Trudy John-
son. 2000. Listeners as co-narrators. Journal of
Personality and Social Psychology, 79(6):941–
952. Place: US Publisher: American Psycholog-
ical Association.

Elika Bergelson, Melanie Soderstrom, Iris-Corinna
Schwarz, Caroline F. Rowland, Nairán Ramírez-
Esparza, Lisa R. Hamrick, Ellen Marklund, Ma-
rina Kalashnikova, Ava Guez, Marisa Casillas,
Lucia Benetti, Petra van Alphen, and Alejandrina

https://doi.org/10.1177/01427237231172652
https://doi.org/10.1177/01427237231172652
https://doi.org/10.1177/01427237231172652
https://hal.science/hal-04411367/document
https://hal.science/hal-04411367/document
https://hal.science/hal-04411367/document
https://hal.science/hal-04411367/document
https://doi.org/10.1162/coli.2008.34.1.1
https://doi.org/10.1162/coli.2008.34.1.1
https://doi.org/10.1037/0022-3514.79.6.941


1865

Cristia. 2023. Everyday language input and pro-
duction in 1,001 children from six continents. Pro-
ceedings of the National Academy of Sciences,
120(52).

Lois Bloom, Lorraine Rocissano, and Lois Hood.
1976. Adult-child discourse: Developmental in-
teraction between information processing and
linguistic knowledge. Cognitive Psychology,
8(4):521–552.

Kübra Bodur, Mitja Nikolaus, Laurent Prévot, and
Abdellah Fourtassi. 2023. Using video calls
to study children’s conversational development:
The case of backchannel signaling. Frontiers in
Computer Science, 5.

J.S. Bruner. 1983. Child’s Talk: Learning to Use
Language. W.W. Norton.

Marisa Casillas, Susan C Bobb, and Eve V Clark.
2016. Turn-taking, timing, and planning in early
language acquisition. J. Child Lang., 43(6):1310–
1337.

Alessandra Cervone and Giuseppe Riccardi. 2020.
Is this Dialogue Coherent? Learning from Di-
alogue Acts and Entities. In Proceedings of
the 21th Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pages 162–
174, 1st virtual meeting. Association for Compu-
tational Linguistics.

Alessandra Cervone, Evgeny Stepanov, and
Giuseppe Riccardi. 2018. Coherence Models
for Dialogue. In Interspeech 2018, pages 1011–
1015. ISCA.

Davide Chicco and Giuseppe Jurman. 2020. The
advantages of the Matthews correlation coeffi-
cient (MCC) over F1 score and accuracy in bi-
nary classification evaluation. BMC genomics,
21(1):6.

Adriana Chee Jing Chieng, Camille J. Wynn,
Tze Peng Wong, Tyson S Barrett, and
Stephanie A. Borrie. 2024. Lexical align-
ment is pervasive across contexts in non-weird
adult–child interactions. Cognitive Science,
48(3):e13417.

Eve V. Clark. 2018. Conversation and Language
Acquisition: A Pragmatic Approach. Language
Learning and Development, 14(3):170–185.

Eve V. Clark. 2020. Conversational repair and the
acquisition of language. Discourse Processes,
57(5-6):441–459.

Tim Dettmers, Mike Lewis, Younes Belkada, and
Luke Zettlemoyer. 2022. Llm.int8(): 8-bit matrix
multiplication for transformers at scale.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language
Understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis,
Minnesota. Association for Computational Lin-
guistics.

Mark Dingemanse and N J Enfield. 2024. Inter-
active repair and the foundations of language.
Trends Cogn. Sci., 28(1):30–42.

Seamus Donnelly and Evan Kidd. 2021. The longi-
tudinal relationship between conversational turn-
taking and vocabulary growth in early language
development. Child Development, 92(2):609–
625.

Steven L. Elmlinger, Michael H. Goldstein, and
Marisa Casillas. 2023. Immature vocalizations
simplify the speech of tseltal mayan and u.s. care-
givers. Topics in Cognitive Science, 15(2):315–
328.

Riccardo Fusaroli, Ethan Weed, Roberta Rocca,
Deborah Fein, and Letitia Naigles. 2023. Care-
giver linguistic alignment to autistic and typically
developing children: A natural language pro-
cessing approach illuminates the interactive com-
ponents of language development. Cognition,
236:105422.

Ivana Garzaniti, Glenn Pearce, and John Stanton.
2011. Building friendships and relationships: The
role of conversation in hairdressing service en-
counters. Managing Service Quality: An Interna-
tional Journal, 21(6):667–687. Publisher: Emer-
ald Group Publishing Limited.

John J Godfrey, Edward C Holliman, and Jane Mc-
Daniel. 1992. Switchboard: Telephone speech
corpus for research and development. In Acous-
tics, speech, and signal processing, ieee interna-
tional conference on, volume 1, pages 517–520.
IEEE Computer Society.

Aaron Gokaslan and Vanya Cohen. 2019. Open-
webtext corpus.

H. P. Grice. 1975. Logic and conversation. In Peter
Cole and Jerry L. Morgan, editors, Syntax and
Semantics: Vol. 3: Speech Acts, pages 41–58.
Academic Press, New York.

Courtney M. Hale and Helen Tager-Flusberg. 2005.
Social communication in children with autism:
The relationship between theory of mind and
discourse development. Autism, 9(2):157–178.
Publisher: SAGE Publications Ltd.

https://doi.org/10.1073/pnas.2300671120
https://doi.org/10.1073/pnas.2300671120
https://doi.org/10.1016/0010-0285(76)90017-7
https://doi.org/10.1016/0010-0285(76)90017-7
https://doi.org/10.1016/0010-0285(76)90017-7
https://doi.org/10.3389/fcomp.2023.1088752
https://doi.org/10.3389/fcomp.2023.1088752
https://doi.org/10.3389/fcomp.2023.1088752
https://aclanthology.org/2020.sigdial-1.21
https://aclanthology.org/2020.sigdial-1.21
https://doi.org/10.21437/Interspeech.2018-2446
https://doi.org/10.21437/Interspeech.2018-2446
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/https://doi.org/10.1111/cogs.13417
https://doi.org/https://doi.org/10.1111/cogs.13417
https://doi.org/https://doi.org/10.1111/cogs.13417
https://doi.org/10.1080/15475441.2017.1340843
https://doi.org/10.1080/15475441.2017.1340843
https://doi.org/10.1080/0163853X.2020.1719795
https://doi.org/10.1080/0163853X.2020.1719795
http://arxiv.org/abs/2208.07339
http://arxiv.org/abs/2208.07339
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/https://doi.org/10.1111/cdev.13511
https://doi.org/https://doi.org/10.1111/cdev.13511
https://doi.org/https://doi.org/10.1111/cdev.13511
https://doi.org/https://doi.org/10.1111/cdev.13511
https://doi.org/https://doi.org/10.1111/tops.12632
https://doi.org/https://doi.org/10.1111/tops.12632
https://doi.org/https://doi.org/10.1111/tops.12632
https://doi.org/https://doi.org/10.1016/j.cognition.2023.105422
https://doi.org/https://doi.org/10.1016/j.cognition.2023.105422
https://doi.org/https://doi.org/10.1016/j.cognition.2023.105422
https://doi.org/https://doi.org/10.1016/j.cognition.2023.105422
https://doi.org/https://doi.org/10.1016/j.cognition.2023.105422
https://doi.org/10.1108/09604521111185646
https://doi.org/10.1108/09604521111185646
https://doi.org/10.1108/09604521111185646
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://www.ucl.ac.uk/ls/studypacks/Grice-Logic.pdf
https://doi.org/10.1177/1362361305051395
https://doi.org/10.1177/1362361305051395
https://doi.org/10.1177/1362361305051395


1866

Nancy L. Hazen and Betty Black. 1989. Preschool
peer communication skills: The role of social
status and intervention context. Child Develop-
ment, 60(4):867–876. Place: United Kingdom
Publisher: Blackwell Publishing.

Pengcheng He, Jianfeng Gao, and Weizhu
Chen. 2023. DeBERTaV3: Improving deberta
using electra-style pre-training with gradient-
disentangled embedding sharing. In The
Eleventh International Conference on Learning
Representations.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-
enhanced bert with disentangled attention. ArXiv,
abs/2006.03654.

Ryuichiro Higashinaka, Toyomi Meguro, Kenji Ima-
mura, Hiroaki Sugiyama, Toshiro Makino, and
Yoshihiro Matsuo. 2014. Evaluating coherence
in open domain conversational systems. In Inter-
speech 2014, pages 130–134. ISCA.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for
NLP. In Proceedings of the 36th International
Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research,
pages 2790–2799. PMLR.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur
Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand,
Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne
Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. 2023. Mistral 7b.

Elinor Ochs Keenan and Ewan Klein. 1975. Co-
herency in children’s discourse. Journal of Psy-
cholinguistic Research, 4(4):365–380.

Stephen C. Levinson. 2016. Turn-taking in Human
Communication – Origins and Implications for
Language Processing. Trends in Cognitive Sci-
ences, 20(1):6–14.

Jing Liu, Mitja Nikolaus, Kübra Bodur, and Abdel-
lah Fourtassi. 2022. Predicting backchannel sig-
naling in child-caregiver multimodal conversa-
tions. In Companion Publication of the 2022 In-
ternational Conference on Multimodal Interaction,
ICMI ’22 Companion, page 196–200.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.

2019. RoBERTa: A Robustly Optimized BERT
Pretraining Approach. ArXiv:1907.11692 [cs].

Lillian R Masek, Brianna TM McMillan, Sarah J
Paterson, Catherine S Tamis-LeMonda,
Roberta Michnick Golinkoff, and Kathy Hirsh-
Pasek. 2021. Where language meets attention:
How contingent interactions promote learning.
Developmental Review, 60:100961.

Danielle Matthews, Hannah Biney, and Kirsten
Abbot-Smith. 2018. Individual differences in chil-
dren’s pragmatic ability: A review of associations
with formal language, social cognition, and exec-
utive functions. Language Learning and Devel-
opment, 14(3):186–223.

Shikib Mehri, Jinho Choi, Luis Fernando D’Haro,
Jan Deriu, Maxine Eskenazi, Milica Gasic, Kallir-
roi Georgila, Dilek Hakkani-Tur, Zekang Li, Ver-
ena Rieser, et al. 2022. Report from the nsf fu-
ture directions workshop on automatic evaluation
of dialog: Research directions and challenges.
arXiv preprint arXiv:2203.10012.

Shikib Mehri and Maxine Eskenazi. 2020. Unsu-
pervised evaluation of interactive dialog with Di-
aloGPT. In Proceedings of the 21th Annual Meet-
ing of the Special Interest Group on Discourse
and Dialogue, pages 225–235, 1st virtual meet-
ing. Association for Computational Linguistics.

Helen Melander and Fritjof Sahlström. 2009. In
tow of the blue whale: Learning as interactional
changes in topical orientation. Journal of Prag-
matics, 41(8):1519–1537.

Nathan Miczo, Chris Segrin, and Lisa E.
Allspach. 2001. Relationship between
nonverbal sensitivity, encoding, and rela-
tional satisfaction. Communication Reports,
14(1):39–48. Publisher: Routledge _eprint:
https://doi.org/10.1080/08934210109367735.

Thomas Misiek, Benoit Favre, and Abdellah Four-
tassi. 2020. Development of Multi-level Linguistic
Alignment in Child-adult Conversations. In Pro-
ceedings of the Workshop on Cognitive Modeling
and Computational Linguistics, pages 54–58, On-
line. Association for Computational Linguistics.

Thomas Misiek and Abdellah Fourtassi. 2022.
Caregivers exaggerate their lexical alignment to
young children across several cultures. In Pro-
ceedings of the 26th Workshop on the Semantics
and Pragmatics of Dialogue - Full Papers.

Aparna Nadig, Iris Lee, Leher Singh, Kyle Bosshart,
and Sally Ozonoff. 2010. How does the topic
of conversation affect verbal exchange and eye
gaze? A comparison between typical develop-
ment and high-functioning autism. Neuropsy-
chologia, 48(9):2730–2739.

https://doi.org/10.2307/1131028
https://doi.org/10.2307/1131028
https://doi.org/10.2307/1131028
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://api.semanticscholar.org/CorpusID:219531210
https://api.semanticscholar.org/CorpusID:219531210
https://doi.org/10.21437/Interspeech.2014-38
https://doi.org/10.21437/Interspeech.2014-38
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html
http://arxiv.org/abs/2310.06825
https://doi.org/10.1007/BF01067065
https://doi.org/10.1007/BF01067065
https://doi.org/10.1016/j.tics.2015.10.010
https://doi.org/10.1016/j.tics.2015.10.010
https://doi.org/10.1016/j.tics.2015.10.010
https://doi.org/10.1145/3536220.3563372
https://doi.org/10.1145/3536220.3563372
https://doi.org/10.1145/3536220.3563372
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.1907.11692
https://aclanthology.org/2020.sigdial-1.28
https://aclanthology.org/2020.sigdial-1.28
https://aclanthology.org/2020.sigdial-1.28
https://doi.org/10.1016/j.pragma.2007.05.013
https://doi.org/10.1016/j.pragma.2007.05.013
https://doi.org/10.1016/j.pragma.2007.05.013
https://doi.org/10.1080/08934210109367735
https://doi.org/10.1080/08934210109367735
https://doi.org/10.1080/08934210109367735
https://doi.org/10.18653/v1/2020.cmcl-1.7
https://doi.org/10.18653/v1/2020.cmcl-1.7
http://semdial.org/anthology/Z22-Misiek_semdial_0005.pdf
http://semdial.org/anthology/Z22-Misiek_semdial_0005.pdf
https://doi.org/10.1016/j.neuropsychologia.2010.05.020
https://doi.org/10.1016/j.neuropsychologia.2010.05.020
https://doi.org/10.1016/j.neuropsychologia.2010.05.020
https://doi.org/10.1016/j.neuropsychologia.2010.05.020


1867

Katherine Nelson. 2007. Young minds in social
worlds: Experience, meaning, and memory. Har-
vard University Press.

Mitja Nikolaus and Abdellah Fourtassi. 2021. Mod-
eling the interaction between perception-based
and production-based learning in children’s early
acquisition of semantic knowledge. In Proceed-
ings of the 25th Conference on Computational
Natural Language Learning, Online. Association
for Computational Linguistics.

Mitja Nikolaus and Abdellah Fourtassi. 2023. Com-
municative feedback in language acquisition.
New Ideas in Psychology, 68:100985.

Mitja Nikolaus, Eliot Maes, Jeremy Auguste, Lau-
rent Prévot, and Abdellah Fourtassi. 2022. Large-
scale study of speech acts’ development in early
childhood. Language Development Research,
2(1):268–304.

Anat Ninio, Catherine E. Snow, Barbara A. Pan,
and Pamela R. Rollins. 1994. Classifying com-
municative acts in children’s interactions. Journal
of Communication Disorders, 27(2):157–187.

OpenAI. 2023. Gpt-4 technical report.

David Pagmar, Kirsten Abbot-Smith, and Danielle
Matthews. 2022. Predictors of children’s conver-
sational contingency. Language Development
Research, 2(1). Number: 1 Publisher: Carnegie
Mellon University Library Publishing Service.

Bo Pang, Erik Nijkamp, Wenjuan Han, Linqi Zhou,
Yixian Liu, and Kewei Tu. 2020. Towards Holistic
and Automatic Evaluation of Open-Domain Di-
alogue Generation. In Proceedings of the 58th
Annual Meeting of the Association for Compu-
tational Linguistics, pages 3619–3629, Online.
Association for Computational Linguistics.

Anthony D Pellegrini, Frank Symons, and John
Hoch. 2012. Observing children in their natural
worlds: A methodological primer. Psychology
Press.

Jean Piaget. 2005. Language and Thought of the
Child: Selected Works vol 5. Routledge.

Martin J. Pickering and Simon Garrod. 2004. To-
ward a mechanistic psychology of dialogue. Be-
havioral and Brain Sciences, 27(2):169–226.
Place: United Kingdom Publisher: Cambridge
University Press.

Karen S. Place and Judith A. Becker. 1991.
The influence of pragmatic competence
on the likeability of grade-school chil-
dren. Discourse Processes, 14(2):227–
241. Publisher: Routledge _eprint:
https://doi.org/10.1080/01638539109544783.

Alec Radford, Jeffrey Wu, Rewon Child, David
Luan, Dario Amodei, and Ilya Sutskever. 2019.
Language Models are Unsupervised Multitask
Learners.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese
BERT-Networks. In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pages 3982–3992, Hong
Kong, China. Association for Computational Lin-
guistics.

Harvey Sacks. 1967. Transcribed lectures. March
9th, University of California, Irvine.

Ananya B. Sai, Akash Kumar Mohankumar, Sid-
dhartha Arora, and Mitesh M. Khapra. 2020. Im-
proving Dialog Evaluation with a Multi-reference
Adversarial Dataset and Large Scale Pretrain-
ing. Transactions of the Association for Computa-
tional Linguistics, 8:810–827. Place: Cambridge,
MA Publisher: MIT Press.

Alessandro Sanchez, Stephan C Meylan, Mika Bra-
ginsky, Kyle E MacDonald, Daniel Yurovsky, and
Michael C Frank. 2019. childes-db: A flexible and
reproducible interface to the child language data
exchange system. Behavior research methods,
51:1928–1941.

Emanuel A. Schegloff and Harvey Sacks. 1973.
Opening up Closings. 8(4):289–327. Publisher:
De Gruyter Mouton Section: Semiotica.

Cheryl Slomkowski and Judy Dunn. 1996. Young
children’s understanding of other people’s be-
liefs and feelings and their connected communi-
cation with friends. Developmental Psychology,
32(3):442–447. Place: US Publisher: American
Psychological Association.

Catherine E. Snow, Barbara Alexander Pan,
Alison Imbens-Bailey, and Jane Herman. 1996.
Learning How to Say What One Means: A
Longitudinal Study of Children’s Speech Act
Use*. Social Development, 5(1):56–84. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-
9507.1996.tb00072.x.

Dan Sperber and Deirdre Wilson. 1986. Relevance:
Communication and cognition, volume 142. Cite-
seer.

Michael Tomasello. 2003. Constructing a Lan-
guage: A Usage-Based Theory of Language Ac-
quisition. Harvard University Press.

Hugo Touvron, Louis Martin, Kevin Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,

https://aclanthology.org/2021.conll-1.31
https://aclanthology.org/2021.conll-1.31
https://aclanthology.org/2021.conll-1.31
https://aclanthology.org/2021.conll-1.31
https://www.sciencedirect.com/science/article/pii/S0732118X22000551
https://www.sciencedirect.com/science/article/pii/S0732118X22000551
https://ldr.lps.library.cmu.edu/article/532/galley/486/view/
https://ldr.lps.library.cmu.edu/article/532/galley/486/view/
https://ldr.lps.library.cmu.edu/article/532/galley/486/view/
https://doi.org/10.1016/0021-9924(94)90039-6
https://doi.org/10.1016/0021-9924(94)90039-6
http://arxiv.org/abs/2303.08774
https://doi.org/10.34842/2022-511
https://doi.org/10.34842/2022-511
https://doi.org/10.18653/v1/2020.acl-main.333
https://doi.org/10.18653/v1/2020.acl-main.333
https://doi.org/10.18653/v1/2020.acl-main.333
https://doi.org/10.1017/S0140525X04000056
https://doi.org/10.1017/S0140525X04000056
https://doi.org/10.1080/01638539109544783
https://doi.org/10.1080/01638539109544783
https://doi.org/10.1080/01638539109544783
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1162/tacl_a_00347
https://doi.org/10.1162/tacl_a_00347
https://doi.org/10.1162/tacl_a_00347
https://doi.org/10.1162/tacl_a_00347
https://doi.org/10.1515/semi.1973.8.4.289
https://doi.org/10.1037/0012-1649.32.3.442
https://doi.org/10.1037/0012-1649.32.3.442
https://doi.org/10.1037/0012-1649.32.3.442
https://doi.org/10.1037/0012-1649.32.3.442
https://doi.org/10.1111/j.1467-9507.1996.tb00072.x
https://doi.org/10.1111/j.1467-9507.1996.tb00072.x
https://doi.org/10.1111/j.1467-9507.1996.tb00072.x
https://doi.org/10.2307/j.ctv26070v8
https://doi.org/10.2307/j.ctv26070v8
https://doi.org/10.2307/j.ctv26070v8


1868

Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucu-
rull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj
Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin
Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier
Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy
Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ran-
jan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan,
Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sha-
ran Narang, Aurelien Rodriguez, Robert Sto-
jnic, Sergey Edunov, and Thomas Scialom. 2023.
Llama 2: Open foundation and fine-tuned chat
models.

Trieu H. Trinh and Quoc V. Le. 2019. A
Simple Method for Commonsense Reasoning.
ArXiv:1806.02847 [cs].

Yi-Ting Yeh, Maxine Eskenazi, and Shikib Mehri.
2021. A Comprehensive Assessment of Dialog
Evaluation Metrics. In The First Workshop on
Evaluations and Assessments of Neural Conver-
sation Systems, pages 15–33, Online. Associa-
tion for Computational Linguistics.

Sanghyun Yi, Rahul Goel, Chandra Khatri, Alessan-
dra Cervone, Tagyoung Chung, Behnam Heday-
atnia, Anu Venkatesh, Raefer Gabriel, and Dilek
Hakkani-Tur. 2019. Towards Coherent and En-
gaging Spoken Dialog Response Generation Us-
ing Automatic Conversation Evaluators. In Pro-
ceedings of the 12th International Conference
on Natural Language Generation, pages 65–75,
Tokyo, Japan. Association for Computational Lin-
guistics.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. 2015. Aligning Books
and Movies: Towards Story-Like Visual Explana-
tions by Watching Movies and Reading Books.
In 2015 IEEE International Conference on Com-
puter Vision (ICCV), pages 19–27, Santiago,
Chile. IEEE.

8. Language Resource References

MacWhinney, Brian. 2000. The CHILDES project:
Tools for analyzing talk: Transcription format

and programs, Vol. 1, 3rd ed. Lawrence Erl-
baum Associates Publishers, The CHILDES
project: Tools for analyzing talk: Transcription
format and programs, Vol. 1, 3rd ed. PID
https://childes.talkbank.org/. Pages: xi, 366.

Snow, Catherine E. and Pan, Barbara Alexan-
der and Imbens-Bailey, Alison and Her-
man, Jane. 1996. Learning How to Say
What One Means: A Longitudinal Study
of Children’s Speech Act Use*. PID
https://childes.talkbank.org/access/Eng-
NA/NewEngland.html. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-
9507.1996.tb00072.x.

http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.48550/arXiv.1806.02847
https://doi.org/10.48550/arXiv.1806.02847
https://doi.org/10.18653/v1/2021.eancs-1.3
https://doi.org/10.18653/v1/2021.eancs-1.3
https://doi.org/10.18653/v1/W19-8608
https://doi.org/10.18653/v1/W19-8608
https://doi.org/10.18653/v1/W19-8608
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://childes.talkbank.org/
https://doi.org/10.1111/j.1467-9507.1996.tb00072.x
https://doi.org/10.1111/j.1467-9507.1996.tb00072.x
https://doi.org/10.1111/j.1467-9507.1996.tb00072.x
https://childes.talkbank.org/access/Eng-NA/NewEngland.html
https://childes.talkbank.org/access/Eng-NA/NewEngland.html


1869

A. Appendix

A.1. Annotation Scheme
We develop an annotation scheme to annotate con-
tingency for the New England corpus which is one
of several corpora of child-caregiver interactions
available in the CHILDES databank. We annotate
utterances only at the turn switch level between the
child and the caregiver i.e., when the role of the
speaker in the conversation changes from child to
caregiver or vice versa. We don’t consider a fixed
past context length in terms of the number of utter-
ances that we consider while annotating a target
utterance.

We consider topic shifts on a case by case ba-
sis. Generally, we consider minor topic shifts to
be ambiguous in nature. For instance, while read-
ing the animal picture book, if the caregiver keeps
asking “what is this?" we annotate it as ambiguous.
Any smooth topic shifts which fall in line with some-
thing from the recent past context is annotated as
contingent. Consider the below example:

Caregiver: what is it?
Caregiver: a book!
Child: yeah.
Caregiver: oh you want me to read it?

In the above example, we consider the turn switch
from child to caregiver as contingent since the topic
shifts smoothly from the book to reading the book.
An example of a non-contingent topic shift is shown
below:

Caregiver: what are you going to do now?
Child: going to do.
Caregiver: what’s that?
Caregiver: is that a block?

In the above example, the turn switch from the
child to the caregiver is non-contingent since it is
an abrupt change of topic.

If a turn switch can be considered contingent on
the assumption that the person is pointing/gesturing
to something then we mark it as ambiguous (since
we rely only on the transcripts and not visual data
for our annotations). If an utterance is a repetition
of the previous utterance then we consider it as
contingent as it can be a confirmation or acknowl-
edgment of the previous utterance. However, if the
interlocutor/s keep repeating an utterance redun-
dantly then we annotate it as ambiguous since we
cannot be sure of the intention behind this repetition.
Consider the below example:

Caregiver: this is a no-no.
Child: no-no.
Caregiver: no-no.

Child: no-no.
Caregiver: no-no.

In the above example, we consider the first repeti-
tion done by the child to be contingent but all the
other repetitions we mark as ambiguous since they
are redundant.

We consider all clarification requests to be con-
tingent. If there are two back to back utterances
from the same interlocutor where the second utter-
ance can be considered as a continuation of the
first utterance and the turn switch is contingent with
the second utterance then we mark the turn switch
as contingent. Consider the below example:

Caregiver: what’s this?
Caregiver: what’s in this box?
Child: oh.
Child: oh this.

In the above example, we annotate the turn switch
as contingent since the second utterance by the
child indicates that the child has an idea of what
could be in the box.

We annotate any random or off topic responses
to questions as non-contingent. If the response to
a question is another question then we mark it as
non-contingent unless the question in the response
is a clarification request. If we are unsure whether
the response question is a clarification request then
we mark it as ambiguous.

We consider backchannels (short verbal utter-
ances like “mhm", “mm", “uh-huh", “oh", etc.) on a
case by case basis. We never treat a backchannel
as non-contingent. If there is any doubt concerning
the contingent nature of a backchannel response,
then we annotate it as ambiguous. Consider the
example below:

Caregiver: is that a cow?
Child: mhm.
Caregiver: mm.
Caregiver: and a baby donkey on the
farm.

In the above example, we consider the child turn
switch as contingent since the child is responding
to the question. However, consider the following
example:

Caregiver: what’s that?
Caregiver: wanna sit down and read the
book?
Child: oh.
Caregiver: come here.

This was marked as ambiguous because one
cannot be sure – based on the transcript alone –
what the child is trying to express.
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Classifier Child Adult
F1 score MCC score F1 score MCC score

Majority classifier 0.35 ± 0.07 0.00 ± 0.00 0.66 ± 0.06 0.00 ± 0.00
Chance classifier 0.34 ± 0.05 -0.01 ± 0.07 0.40 ± 0.04 -0.01 ± 0.03
Speech acts (SA) 0.35 ± 0.07 0.03 ± 0.04 0.66 ± 0.06 0.00 ± 0.00

Noun phrase reps. (NP) 0.44 ± 0.05 0.12 ± 0.09 0.25 ± 0.25 0.00 ± 0.03
Cosine similarity (CS) 0.28 ± 0.04 0.12 ± 0.05 0.55 ± 0.05 0.17 ± 0.03

NP + CS 0.37 ± 0.07 0.07 ± 0.03 0.43 ± 0.09 0.10 ± 0.05
GPT-2 (no fine-tuning) 0.06 ± 0.04 0.00 ± 0.00 0.31 ± 0.26 -0.01 ± 0.01

GPT-2 (self-supervised, PPL) 0.46 ± 0.08 0.14 ± 0.09 0.55 ± 0.15 -0.03 ± 0.04
PPL + NP 0.49 ± 0.05 0.18 ± 0.09 0.20 ± 0.20 0.00 ± 0.02
PPL + CS 0.51 ± 0.03 0.20 ± 0.05 0.53 ± 0.05 0.14 ± 0.05

PPL + NP + CS 0.52 ± 0.05 0.21 ± 0.07 0.44 ± 0.10 0.09 ± 0.06
DeBERTaV3 (default) 0.19 ± 0.14 0.01 ± 0.01 0.26 ± 0.29 0.03 ± 0.04

DeBERTaV3 (supervised) 0.64 ± 0.07 0.41 ± 0.08 0.33 ± 0.05 0.73 ± 0.06

Table 2: The mean weighted F1 scores and MCC scores along with the standard deviation across a 5
fold cross-validation for children aged 20 months and for adults conversing with 20 months old children.
The results for the feature based models are with a logistic regression classifier.

Classifier Child Adult
F1 score MCC score F1 score MCC score

Majority classifier 0.58 ± 0.06 0.00 ± 0.00 0.71 ± 0.02 0.00 ± 0.00
Chance classifier 0.38 ± 0.03 -0.02 ± 0.04 0.41 ± 0.02 0.01 ± 0.02
Speech acts (SA) 0.58 ± 0.06 0.00 ± 0.00 0.71 ± 0.02 -0.01 ± 0.01

Noun phrase reps. (NP) 0.57 ± 0.05 0.05 ± 0.03 0.41 ± 0.05 0.05 ± 0.03
Cosine similarity (CS) 0.51 ± 0.08 0.05 ± 0.09 0.55 ± 0.02 0.14 ± 0.04

NP + CS 0.55 ± 0.08 0.04 ± 0.08 0.50 ± 0.05 0.10 ± 0.03
GPT-2 (no fine-tuning) 0.02 ± 0.01 0.00 ± 0.00 0.28 ± 0.32 0.01 ± 0.01

GPT-2 (self-supervised, PPL) 0.35 ± 0.21 0.08 ± 0.08 0.45 ± 0.19 -0.03 ± 0.04
PPL + NP 0.58 ± 0.05 0.08 ± 0.04 0.42 ± 0.05 0.04 ± 0.04
PPL + CS 0.43 ± 0.15 0.01 ± 0.08 0.55 ± 0.03 0.14 ± 0.05

PPL + NP + CS 0.56 ± 0.07 0.07 ± 0.06 0.51 ± 0.05 0.10 ± 0.04
DeBERTaV3 (default) 0.26 ± 0.25 0.02 ± 0.02 0.31 ± 0.34 0.01 ± 0.02

DeBERTaV3 (supervised) 0.59 ± 0.14 0.24 ± 0.14 0.73 ± 0.04 0.24 ± 0.11

Table 3: The mean weighted F1 scores and MCC scores along with the standard deviation across a 5
fold cross-validation for children aged 32 months and for adults conversing with 32 months old children.
The results for the feature based models are with a logistic regression classifier.

A.2. Classifier Results Segregated by
Age of Child

We also trained separate models for data segre-
gated by the age of the child. Table 2 displays
the results for the models trained on data from the
20 months old children. The classifier used in the
feature-based methods and for the baselines was
the logistic regression classifier. In instances where
we compute the perplexity with the GPT-2 model,
we then further fit a logistic regression classifier to
predict the contingency label from the perplexity
values. As you can see in the table, the feature-
based models perform quite poorly while the best

model is the supervised DeBERTaV3 model for
both children and adults.

Table 3 displays the results for the models trained
on data from the 32 months old children. Once
again, the feature-based models perform quite
poorly while the best model is the supervised De-
BERTaV3 model for both children and adults.


