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Abstract

In this paper we propose a new framework and new methods for the reference-free evaluation of topic segmentation

systems directly in the embedding space. Specifically, we define a common framework for reference-free,

embedding-based topic segmentation metrics, and show how this applies to an existing metric. We then

define new metrics, based on a previously defined cohesion score, Average Relative Proximity. Using this

approach, we show that Large Language Models (LLMs) yield features that, if used correctly, can strongly

correlate with traditional topic segmentation metrics based on costly and rare human annotations, while out-

performing existing reference-free metrics borrowed from clustering evaluation in most domains. We then

show that smaller language models specifically fine-tuned for different sentence-level tasks can outperform

LLMs several orders of magnitude larger. Via a thorough comparison of our metric’s performance across

different datasets, we see that conversational data present the biggest challenge in this framework. Finally, we

analyse the behaviour of our metrics in specific error cases, such as those of under-generation and moving of

ground truth topic boundaries, and show that our metrics behave more consistently than other reference-free methods.

Keywords:Evaluation Methodologies, Topic Detection & Tracking, Neural language representation mod-

els

1. Introduction

Topic segmentation is a well-established challenge

in natural language processing and serves as

the initial step for numerous downstream applica-

tions like topic-driven summarisation and semantic

search. The task involves automatically breaking

down a text into coherent units with shared topics

(Purver, 2011): for instance, a lengthy transcript

from a news programme can be partitioned into

individual stories to assist users in retrieving more

pertinent and specific information (Reynar, 1999).

Similarly, a lengthy article can be divided into sec-

tions to aid reading (Hearst, 1997).

Recent research has introduced several ad-

vances in this field, but evaluation remains difficult

for this task, partly due to the scarcity of expert-

annotated datasets in specific domains.

To overcome some of these problems, there has

been a recent surge in interest in reference-free

metrics, designed to score a hypothesised segmen-

tation of a document without the need to refer to

any expert annotation. Initial attempts in this direc-

tion seem promising, but they are limited in scope

and no formal definition in our knowledge has been

outlined for this type of evaluation framework.

As such, we propose a general taxonomy of such

evaluation techniques, which we name embedding-

based topic segmentation metrics. We propose

our own method within this framework, showing

improvements and closely reflecting the behaviour

of reference-based metrics in multiple scenarios.

Furthermore, as these techniques are based on

sentence embeddings, we evaluate three different

sentence encoding methods from Large Language

Models (LLMs) and show that the use of very large

models does not give any significant improvement

over smaller, well-optimised encoders.

Finally, we show how our metric performs in syn-

thetically created cases, so as to highlight the be-

haviour of our approach in specific situations.

2. Related Work

2.1. Existing Metrics

Several topic segmentation evaluation metrics

have been suggested in the literature (see e.g.

Beeferman et al., 1999; Pevzner and Hearst,

2002; Fournier and Inkpen, 2012; Fournier, 2013b).

These metrics all rely on the use of reference topic

boundaries, conventionally resulting from human

annotations. Most recently, the use of reference-

free metrics has seen a surge in interest in the NLP

community for applications such as machine trans-

lation (Leiter, 2021) and natural language genera-

tion (Ke et al., 2022). Reference-free metrics have

the obvious advantage of not needing any expert

annotation, while also possibly avoiding problems

related to annotator agreement. Very recently, an

initial attempt has been made to devise a reference-

free metric also for the task of topic segmentation

(Lucas et al., 2023), but this is the only such at-

tempt and, as such, it lacks comparison to other

possible reference-free methods.

Including this recent reference-free approach, ex-

isting segmentation metrics can be categorised into
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Figure 1: Illustrations of three different family of

metrics for topic segmentation: window-based (a),

boundary similarity (b) and the reference-free family

proposed in this work, embedding based (c).

three groups: window-based, boundary similarity-

based and embedding-based metrics. Window-

based metrics, exemplified by Pk (Beeferman et al.,

1999) and WindowDiff (Pevzner and Hearst, 2002),

employ a sliding window approach, comparing ref-

erence and hypothesis boundaries in the window.

Boundary Similarity (Fournier, 2013b), proposed

more recently to overcome some of the problems

with window-based metrics, works by representing

the input sequence by means of the identity of the

topic segment each element in the sequence be-

longs to. Given such a representation for both the

hypothesised and reference segmentation, mini-

mum edit distance is used to quantify the error.

All together, Pk, WindowDiff and Boundary Sim-

ilarity are the most used metrics in the field and,

even though they do present inherent problems,

many works make up for them by reporting two or

all of these metrics as they present largely compli-

mentary weaknesses (Georgescul et al., 2006).

Finally, in the context of reference-free evalua-

tion, we can turn to notions of embedding similari-

ties to measure similarity within (and/or difference

between) hypothesised topic segments. This is the

approach proposed in Lucas et al. (2023); it gen-

eralises the intuition behind a number of methods

for unsupervised segmentation proposed recently,

that all work by exploiting local minima in the simi-

larities of consecutive sentence embeddings (Ghi-

nassi, 2021; Solbiati et al., 2021; Harrando and

Troncy, 2021).

Figure 1 summarises the three different methods

just described. In this work, we formalise this new

family of evaluation techniques — the reference-

free embedding-based methods — and propose

our own method within this category, which, as we

show, outperforms the alternatives. In evaluating

the various methods we use the three traditional

metrics described before as a gold standard, as

they are by far the most used in the field and they

are closer to human judgements, due to the fact

that they are based on human annotations.

2.2. Methods for Topic Segmentation

Early text segmentation methods like TextTiling

(Hearst, 1994) used sliding windows with cosine

similarity between bag-of-words representations,

looking for local minima. Later approaches incorpo-

rated more informative sentence representations,

including TF-IDF scoring (Galley et al., 2003) and

topic probabilities (Riedl and Biemann, 2012).

More recently, neural supervised methods

showed significant improvements over non-neural

unsupervised methods (Koshorek et al., 2018).

Transformer-based LLMs such as BERT have

also been recently used for topic segmentation

by using them as sentence encoders extracting

sentence-level features to be input to various neu-

ral models like Bidirectional Long-Short Term Mem-

ory (BiLSTM) networks (Xing and Carenini, 2021)

or Transformers (Lo et al., 2021).

Unsupervised methods have also been recently

proposed to overcome the data scarcity problem

(Ghinassi, 2021; Harrando and Troncy, 2021; Sol-

biati et al., 2021). These methods build on the

same intuition as the early methods like TextTiling,

looking for local minima in similarity, but rely on

the use of sentence representations from LLMs to

characterise that similarity. In this, they closely re-

semble our general framework for reference-free

evaluation, as they mostly exploit notions of simi-

larities between sentence embeddings. This last

line of research has similarities with our framework,

but in our case embedding similarities are used to

evaluate existing topic segmentation systems.

3. Methodology

3.1. General Framework

Here we define the general framework of

embedding-based methods for reference-free eval-

uation of topic segmentation.

These methods need no ground truth annota-

tion; they work by comparing sentence embedding

similarities to assess whether sentences in a given

topic segment are more cohesive than average (i.e.

good segmentation performance) or less (bad per-

formance). Although we use the term ‘sentences’

here, we take it to cover other units of text such as

utterances, depending on the domain of application
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(e.g. in conversational datasets we use utterances

or speaker turns rather than sentences). Although

at least one attempt to use sentence embeddings

in this way exists, no formal definition of this frame-

work for the evaluation of topic model has yet been

proposed; in this section we aim to fill this gap.

Formally, we define the sentence embedding

for sentence (or otherwise defined unit of text)

si at the ith position of the given document as

ei = enc(si), where enc is a suitable encoder.

Then, we define a set of topic boundary positions

T = {t0, t1, t2, ..., ti, tN} where t0 = 0 and tN
equals the length of the current document (i.e. num-

ber of sentences). In this case ti represents the
sentence position in the given document where the

ith topic segment ends, while the start of the same

segment can be inferred as ti−1. We then group

the embeddings according to topic boundaries T
and we get {E1, ..., Ei, ..., EN}, where

Ei = {eti−1 , ..., eti} (1)

where i ranges from 1 toN . At this point, we obtain

a coherence score C for each consecutive segment

{ti, ti+1} as follows:

Cd
i = Score(Ei, Ei±1) (2)

where i ranges from 1 to N − 1 and Cd
i is the co-

herence score for document d and topic segment

i. Here, Score determines how we use the embed-

dings to compare consecutive segments, the main

choice in this framework; we propose a number of

possible scoring functions below.

We perform pooling across all the sentences in a

document and documents in the corpus to obtain:

Ĉ = poold(pooln(Cd
i )) (3)

where poold and pooln are pooling functions at the

corpus and document-level respectively. In the

simple case in which both those operations consists

in a simple average (as it is in all of our settings),

we then have:

Ĉ =
1

D

D∑
d=1

1

Nd

Nd∑
i=1

Cd
i (4)

whereD is the total number of documents andNd is

the length of the given document d (simply defined

as N in previous equations).

3.2. Scoring Functions

The scoring function Score is the central part of our
framework. Here we show the scoring functions

that we use in our experiments, covering a range

of popular measures for embedding distances.

3.2.1. Clustering-based

As a baseline, we use traditional clustering evalua-

tion metrics:

SegReFree: This method was proposed in the

already cited work by Lucas et al. (2023), using

a measure borrowed from clustering research in

order to score consecutive segments given a hy-

pothesised segmentation. Specifically, this metric

is the Davies-Bouldin Index (Davies and Bouldin,

1979) with an additional correction term. For-

mally, for each segment i represented as before

as grouped embeddings Ei, they compute a cen-

troid ci = 1
|Ei|

∑
e∈Ei

e, where |Ei| is the number

of embeddings e in Ei. A dispersion measure Si

is then defined as the average Euclidean distance

between ci and all the embeddings e ∈ Ei. These

intra-cluster distances are then modified by:

Si =
Si

1− 1√
|Ei|

(5)

At this point, for each triplets of consecutive seg-

ments {Ei−1, Ei, Ei+1}, they compute first the Eu-

clidean distance between the relative centroids

Mij , j ∈ {i−1, i + 1}, which is then used to com-

pute a ratio of pairwise intra-cluster distances and

centroid distances:

Rij =
Si + Sj

Mij
, j ∈ {i− 1, i+ 1} (6)

Finally the maximum value ofRij for each segment

Ei is taken:

Cd
i = max(Ri,i−1,Ri,i+1) (7)

And the final corpus-level score is computed as per

equation 4 above.

This method includes a number of problems.

First, the correction factor
√

|Ei| implies that the

algorithm can’t deal with topic segments of one sen-

tence; the authors warned that in such instances

the algorithm should output a default value which

we set to
∑Nd

i=1 Cd
i , i.e. the average score in the

document. If all segments in the document have

just one sentence, then we set Cd
i = 10, where 10

is a high value empirically chosen to penalise such

occurrences.

Secondly, the metric is unbounded, making it

difficult to compare across different use cases.

Silhouette Score: This metric is also a com-

monly used one in clustering evaluation and it in-

volves the idea of comparing the average intra- and

minimum inter-cluster distances of individual data

points (Rousseeuw, 1987). In this context, we mod-

ify it to compare just adjacent clusters (i.e. topic

segments). For each embedding ei ∈ Sn, where

Sn is the nth topic segment, we compute:

ai =
1

|Sn| − 1

∑
ej∈Sn;j 6=i

distance(ei, ej) (8)
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Where |Sn| is the number of embeddings in the nth

segment, ei and ej are the ith and jth embeddings

in the same segment respectively and distance
can be any distance function, which here is the

Euclidean distance following the original algorithm.

For the same embedding ei we then compute:

bi = minSm

1

|Sm|
∑

ej∈Sm

distance(ei, ej) (9)

where Sm is one of the following or previous topic

segment (m ∈ {n + 1, n − 1}) and ej is the jth
embedding of topic segment Sm. If |Sn| > 1, the
two quantities are then combined as:

si =
bi − ai

max(ai, bi)
(10)

If |Sn| = 1, instead we set si = 0. After having

gathered all the scores si for each ei ∈ Sn, we

average them to obtain:

Cd
i =

1

|Sn|
∑

si∈Sn

si (11)

where in this case Cd
i corresponds to the segment-

level metric for segment Sn in document d with

i = n. We finally compute the corpus-level metric

Ĉ following equation 4.

This metric has the advantage over SegReFree

that is bounded, ranging from -1 (worst) to 1 (best).

We further adjust the metric to be a loss function

ranging from 0 (best) to 1 (worst) by applying the

following transformation:

Ĉloss = 1− Ĉ + 1

2
(12)

3.2.2. Our Methods

Using themethod above as a baseline, we compare

a number of alternative scoring functions within the

general framework laid out above. All the methods

we propose use as their starting point the Average

Relative Proximity (ARP) score (Ghinassi et al.,

2023a). In its original form, ARP was proposed

as a way to compare different sentence encoders

for the task of topic segmentation without needing

to train a segmentation system. Here we further

develop this idea, modifying the metric to work as a

reference-free metric for evaluating topic segmen-

tation systems. We employ three versions of this

score, all of which are described in details below.

ARPstd: This method makes use of the origi-

nal formulation of the ARP score (Ghinassi et al.,

2023a), which measures the dispersion in a group

of embeddings as the norm of the standard devi-

ation across each dimension of the embeddings.

Given two consecutive embedding groups corre-

sponding to topic segments,Ei andEi+1, we define

Eter as a set including embeddings from Ei and

embeddings from Ei+1, while Etra includes just

embeddings from Ei. We compute the variance of

the embeddings inside the same topic segment as:

intravari = ||std(Etra)||2 (13)

Furthermore, we compute the variance of the em-

beddings crossing multiple topic segments as:

intervari = ||std(Eter)||2 (14)

In order to overcome the standard deviation bias

of towards bigger values for smaller samples, we

force the intra-variance to be computed on a set of

embeddings of the same size as that from which

the inter-variance is computed. This is done by

adding a cutting point cut = |Ei|/2 where |Ei| is
the number of embeddings in the current segment,

so that Etra = Ei and Eter = E
cut:|E|
i ⊕E0:cut

i+1 , with

⊕ representing concatenation.

The two scores are aggregated to obtain a single

score representing the relative proximity of embed-

dings belonging to the same segment. We compute

it as

RPi =
intervari − intravari
intervari + intravari

(15)

At this point we perform a pooling operation that

also accounts for the cases in which some or every

segment consists of single embeddings. We do so

by applying the substitution

C〉 =


RPi, if |Ei| > 1
1
N

∑N
i=1 intervari, if |Ei| = 1∀i

1
N

∑N
i=1 intravari, otherwise

(16)

Where the above ultimately makes the method de-

fault to more uncertainty (C ≈ 0) as we encounter

more single-sentence segments.

We then follow equation 4 to obtain the average

relative proximity score Ĉ.
As in this case Ĉ range from -1 to 1 and it gives

more cohesive segments higher values, we finally

transform it into a loss function (i.e. the lower the

better) in the range 0 to 1 by applying equation 12.

ARPcos: In this version, we substitute equation

13 with:

intravari =
1

|Etra|
∑

e∈Etra

cosine( ˆEtra, e) (17)

where ˆEtra = 1
|Etra|

∑
e∈Etra

e.

We do the same with equation 14, such that:

intervari =
1

|Eter|
∑

e∈Eter

cosine( ˆEter, e) (18)

where ˆEter = 1
|Eter|

∑
e∈Eter

e.

In both cases, the notation reflects that explained

above and, from here, we can follow equation 15
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and 16 to obtain the final score Ĉ and 12 to trans-

form it in a loss score.

ARPpair: Lastly, we include a scoring method

which directly computes the average pairwise dis-

tance of embeddings (rather than their dispersion

from the segment centroid). We do that by substi-

tuting again equation 13 with:

intravari =
1

n(n−1)
2

n∑
i=1

n∑
j=1

cosine(ei, ej)∀i < j

(19)

Where n = |Etra|, ei and ej are the ith and jth ele-

ments of Etra respectively and the intra-variance in

this case represents the average of each possible

pairwise cosine similarities between the members

of Etra, defined as before.

We do the same for the inter-variance:

intervari =
1

n(n−1)
2

n∑
i=1

n∑
j=1

cosine(ei, ej)∀i < j

(20)

but this time n = |E1| and ei and ej are the ith and

jth elements of Eter.

We finally obtain Ĉ as per equations 15 and 16,

transforming it in a loss score with 12.

3.3. Embedding Models

As the name of our framework suggests, a good

embedding model is key for the success of these

type of metrics. As usual in recent research in NLP,

we compare three different LLMs that we use to

extract sentence embeddings:

RoBERTa: We use the base version of the ar-

chitecture (Liu et al., 2019), including 12 layers and

768 dimensional embeddings. To obtain sentence

representations we perform a simple average of

the last layer, shown to be effective in a variety of

scenarios (Huang et al., 2021).

MPNET: The original architecture derives from

Song et al. (2020); we use the base version hav-

ing same size as RoBERTa. It is optimised for

various sentence-level tasks and performs best in

benchmark results (Reimers and Gurevych, 2020).

Again, the average of the last layer is used as the

final sentence representation.

Falcon: We include a more recent LLM, which

belongs to the family of models with over a billion

parameters. Such models show impressive capa-

bilities in language generation, but they have also

been shown to fall short as sentence encoders

(Jiang et al., 2023). In this case we use the small

version of Falcon, a 7 billion parameter LLM pre-

trained on selected data from the web and showing

considerable improvements over comparable open-

source models on a variety of tasks (Penedo et al.,

2023). We use the average of the last layer to

obtain sentence representations.

3.4. Evaluation Methods

To evaluate the proposed metrics we compare

them to three traditional metrics which use a ref-

erence segmentation produced by human expert

annotators. The metrics we use are Pk (Beefer-

man et al., 1999), WindowDiff (Pevzner and Hearst,

2002) and Boundary Similarity (Fournier, 2013b);

we use Pearson Correlation coefficient to show the

correlation between the results obtained with the

reference-free metrics and the traditional metrics.

To do so we collect hypothesised segmentations

in two ways described below.

3.4.1. Real System Evaluation

We perform topic segmentation with a number of

real segmentation systems and compute each met-

ric on the resulting hypothesised segmentations.

Specifically, we use the 9 supervised approaches

described in Ghinassi et al. (2023b), including 3

sentence encoders producing the sentence-level

features and for each encoder a BiLSTM classifier,

a Transformer encoder classifier and a modifica-

tion of the BiLSTM classifier previously proposed

by Sehikh et al. (2018). To these supervised ap-

proaches we add the ground truth segmentation

(i.e. results of the metrics when we use the cor-

rect segmentation from the annotators) and nine

random baselines, one outputting a topic bound-

ary at each sentence with probability 1
k , where k is

the average number of segments per document in

the corpus, while the other eight methods output a

topic boundary at each sentence with probability 1
n

with n ranging from 2 to 9.

3.4.2. Synthetic Evaluation

Following previous work by Lucas et al. (2023), we

also evaluate our metrics in two specific scenarios.

Boundary Removal: in this case we progres-

sively remove a number n of topic boundaries from

the ground truth, therefore generating segmenta-

tions biased towards false negatives.

Boundary Transposition: we also progres-

sively transpose existing boundaries a number n
of sentences away from their original place, to ex-

amine how lenient our metrics are in case of the

predicted boundary being further and further away

from the original one.

4. Datasets

To have a broad coverage of different domains, we

use 4 different datasets from existing literature:

en_city (Arnold et al., 2019): this dataset from

the WikiSection collection includes Wikipedia arti-

cles about cities, where the headings in the original

article are used as markers, marking a topic shift.
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en_disease (Arnold et al., 2019): again from

the WikiSection collection, this dataset is smaller in

size and the articles deal with diseases, therefore

including a more specialised medical lexicon.

QMSum (Zhong et al., 2021): this dataset ag-

gregates three smaller conversational datasets for

topic segmentation from meeting transcripts, ICSI

(Janin et al., 2003), AMI (Carletta et al., 2006) and

a third dataset of Canadian parliamentary meet-

ings released by the authors themselves. This

dataset includes real face-to-face conversations

and, as such, longer and more blurred topic seg-

ments, while many disfluencies and speech acts

also make it a more complex dataset for the task.

SBBC-RadioNews (Ghinassi et al., 2023): pro-

posed as a lightweight dataset for multimodal topic

segmentation in the media domain, it includes 47

radio news shows from the BBC Sound collection.

For each dataset and in each experiment we use

the default test set.

5. Experimental Setup

In all experiments we use the parameters described

by Ghinassi et al. (2023b) for the training of all topic

segmentation models and their optimisation.

For the Pk and WindowDiff metrics, we use the

default window size k = 1
2K where K is half the

average segment length in the given document.

For boundary similarity metric, we keep the fixed

value for the maximum transposition position at 2.

Pk, WindowDiff and Boundary Similarity were

computed using the standard python library segeval
(Fournier, 2013a); all other reference-free metrics

were implemented by us.

Finally, for cases in which no segmentation is

output by a given real world system, either for a

document or (in a few cases) for an entire dataset,

we have skipped the document/dataset and it is

not reflected in the results.

6. Results

6.1. Real System Evaluation

Table 1 shows the results on all datasets obtained

by performing a correlation analysis of our four

embedding-based metrics with the three traditional

metrics and by using the three different sentence

encoders previously mentioned.

As a general observation, it can be noticed how

the correlation between the embedding-based met-

rics and the window-based metrics Pk and Window

Difference can be quite high, often reaching over

90%. The correlation with the Boundary Similar-

ity metric, instead, is generally lower but in some

instances it still reaches over 90% as well. One

of the reasons for this discrepancy might relate to

specific weaknesses of the window-based metrics

which tend to penalise more false positives over

false negatives (Georgescul et al., 2006) and, as

such, behave similarly to the reference-free metrics

in penalising more cases in which more segment

boundaries are output. For the random-based sys-

tems described above, then, a lower probability of

outputting a topic boundary is less penalised even

if the output boundaries are equally random.

Domain seems to be important as well: with QM-

Sum, embedding-based methods struggle in corre-

lating with reference-based metrics, reflecting the

aforementioned difficulty of this dataset.

6.1.1. Scoring Functions Comparison

When we compare the scoring functions discussed

in section 3.2, we see that the best correlation

values are mostly exhibited by ARP-based meth-

ods, especially ARPpair. SBBC-RadioNews is an

exception as here the Silhouette method reaches

the best correlation values (even though ARPpair

scores slightly higher in Boundary Similarity).

The success of ARPpair can be explained by the

fact that it does not compare centroids but pairs

of embeddings, therefore giving a higher weight to

anaphora and repetitions, often used in discourse

as cohesive tools (Halliday and Hasan, 1976). This

is exemplified by the much better results reached

by this method in the SBBC-RadioNews dataset,

where elements such as proper names in news

stories are repeated throughout a topic segment.

The same explains Silhouette’s success on this

dataset, as it compares pairs of embeddings, too.

On the other hand, this same characteristic can

lead to a worse metric in cases in which such repe-

titions are not indicative of topic continuity. This is

the case in QMSum dataset, where there are many

utterances consisting in disfluencies (e.g. ”Mmm”)

and common words (e.g. ”Ok”) throughout the tran-

scripts. In this case, a method like Silhouette fail,

having negative or close to null correlation with

all of the metrics based on human judgement. If

we look at the bi term in equation 9, in fact, we

can see that in case two sentences that are ex-

actly the same or very similar occur in consecu-

tive segments, then bi will tend to be smaller. The

same logic also explains the failure of SegReFree

in some cases, even though there is a difference

as in this case centroids rather than individual em-

beddings are compared. From equation 6 we can

see that SegReFree heavily rely on the distance

between segments’ centroids as a way to scale up

or down the average inter-cluster distance. This

way, if two consecutive segments are very similar

(e.g. by means of several repetitions) the resulting

score R will be very high, tending to infinity as the

centroids’ distance tends to 0, which in turn skew

results and might result in numerical overflow prob-
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en_city en_disease QMSum SBBC-RadioNews

RoB Fal MPN RoB Fal MPN RoB Fal MPN RoB Fal MPN

Pk

SegReFree 0.25 0.38 0.78 0.15 -0.05 0.65 0.41 -0.62 -0.66 0.26 0.28 -0.69

Silhouette 0.13 0.81 0.36 0.83 0.85 0.88 -0.42 -0.42 -0.46 0.97 0.97 0.98

ARPstd 0.91 0.94 0.93 0.91 0.9 0.93 0.75 0.72 0.77 0.85 0.75 0.85

ARPcos 0.91 0.93 0.93 0.91 0.9 0.93 0.77 0.73 0.85 0.85 0.79 0.85

ARPpair 0.93 0.95 0.96 0.92 0.9 0.95 0.64 0.44 0.38 0.89 0.75 0.93

WD

SegReFree 0.34 0.51 0.75 -0.04 -0.23 0.5 0.47 -0.77 -0.81 0.27 0.35 -0.78

Silhouette 0.08 0.79 0.33 0.75 0.78 0.83 -0.5 -0.5 -0.53 0.99 0.98 0.99

ARPstd 0.92 0.95 0.93 0.89 0.9 0.92 0.82 0.79 0.86 0.87 0.82 0.86

ARPcos 0.92 0.95 0.93 0.9 0.92 0.92 0.84 0.8 0.92 0.89 0.86 0.86

ARPpair 0.94 0.97 0.95 0.91 0.94 0.94 0.7 0.52 0.49 0.93 0.83 0.92

B

SegReFree 0.23 0.29 0.81 0.28 0.07 0.72 0.22 -0.36 -0.38 0.24 0.24 -0.63

Silhouette 0.24 0.87 0.4 0.82 0.8 0.84 0.02 0.03 -0.01 0.94 0.93 0.96

ARPstd 0.93 0.94 0.95 0.82 0.8 0.85 0.34 0.37 0.35 0.88 0.75 0.91

ARPcos 0.92 0.92 0.95 0.81 0.78 0.84 0.38 0.4 0.47 0.88 0.78 0.91

ARPpair 0.94 0.93 0.97 0.83 0.78 0.88 0.25 0.25 -0.04 0.89 0.7 0.97

Table 1: Results from our experiments with real segmentation systems. Results are expressed in terms

of Pearson Correlation coefficients with regard to the reference-based metrics Pk, Window Difference

(WD) and Boundary Similarity (B). For each of the four datasets we report the correlation of the relative

reference-based metric and the reference-free metric computed with one of the proposed scoring methods

and one of three sentence encoders: RoBERTa (RoB), Falcon (Fal) or MPNET (MPN).

lems. SegReFree is also influenced by how close

in the embedding space different encoders tend to

encode both similar and dissimilar sentences. Pre-

vious literature, in fact, have shown how different

encoders like RoBERTa tend to express similar-

ities between even very dissimilar sentences as

very close in the embedding space, while still be-

ing able to assign higher similarity to more similar

sentences (Ghinassi et al., 2023a); this however

has a strong effect on SegReFree, following what

explained above about the influence of very small

centroid distances in the algorithm’s denominator.

ARP methods, instead, are more robust with re-

spect with the choice of encoder and with respect

to repetitions in different segments. On one hand,

similarly to Silhouette, the denominator has merely

a normalising function, while it is less dependent

on repetitions than Silhouette because it uses the

average inter-cluster similarity rather than the mini-

mum distance (0 if an identical sentence appears

in an adjacent segment).

6.1.2. Sentence Encoders Comparison

When we turn to compare different sentence en-

coders, we can immediately notice how MPNET

seems to be consistently the best.

RoBERTa and, especially, Falcon lead to bet-

ter correlation with reference-based metrics in few

cases, but they both tend to lead to very bad re-

sults in other cases, such as when used with the

SegReFree method, which varies the most under

different encoders. It is interesting to notice how

Falcon perform much better in all metrics when us-

ing Silhouette method on the en_city dataset. This

however is an isolated case and it might originates

from a more specific interaction of this method and

the encoder in the given context.

In general, comparatively much smaller en-

coders like MPNET outperform very big LLMs such

as Falcon in this task. This evidence is in line with

previous observations on similar semantic similar-

ity tasks and denote a limit of more recent LLMs,

which still perform worse than smaller fine-tuned

models (Jiang et al., 2023; Deshpande et al., 2023).

6.2. Synthetic Evaluation

Figure 2 shows the value of different metrics when

we progressively remove true topic boundaries

from the ground truth labels of our 4 datasets. The

metrics’ scores have all been normalised per metric

with a MinMax scaler, so that they all lie between

0 and 1, where 1 is the worst score in the given

metric group and 0 is the best scoring one.

The boundary removal experiments shows good

results for all the reference-free metrics in most

cases, confirming the results reported in Lucas et al.

(2023) which showed how SegReFree is able to

correctly penalise cases in which we progressively

remove boundaries in the same way as traditional

metrics based on human judgement do. An excep-

tion is QMSum, where ARP and Silhouette follow

more closely the traditional metrics while SegRe-

Free has an irregular pattern. On the contrary,

SegReFree shows a more clear upward trend than

the other two metrics on SBBC-RadioNews.

When we turn to the boundary transposition ex-

periments shown in figure 3, instead, Silhouette

seems to be the metric having the most problems,

showing quite different trends from the traditional

metrics for all but the SBBC-RadioNews dataset.
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Figure 2: Boundary removal experiments showing

relation between scaled loss scores output by our

metrics (y-axis) and number of removed bound-

aries (x-axis) for the 4 datasets using MPNET.

SegReFree seems to output better results after

around 2 transposed boundaries in the WikiSec-

tion datasets, while the ARP score behaves much

more closer to the Boundary Similarity metric. All

reference-free metrics show an inconsistent be-

haviour on the QMSum dataset.

The synthetic experiments show two main things.

First, this type of evaluation (especially if we look at

SegReFree’s performance in the boundary removal

experiments) might overestimate the performance

of reference-free metrics, as these metrics might

perform very similar to existing metrics in some of

these controlled experiments. Most embedding-

based metrics, for example, show a trend similar

to traditional ones in the QMSum dataset, while

we can see how in the real systems’ experiments

Silhouette yields very different scores, negatively

correlated with the scores from the same metrics.

Secondly, even though the performance of the

metrics is often similar in the experiments, there

are some evident failures especially in the case of

Silhouette in most boundary transposition experi-

ments. This evidence reflects the performance of

such metrics in real systems and confirm that ARP

scores are more robust, yielding results that are

more similar to reference-based metrics.

6.3. Mean and Variance of Correlations

As a final point, it can be seen and it has been al-

ready noted that throughout the experiments there

are a number of negative correlation values and,

in general, cases for which there is a high variance

among the correlation coefficients. It is interesting

X +
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Figure 3: Boundary transposition experiments

showing relation between scaled loss scores (y-

axis) and the number of transposed boundaries

(x-axis) for the 4 dataset using MPNET.

to notice that almost all the negative correlations in

table 1 come from SegReFree and Silhouette. Our

method, ARP, gives much stronger positive corre-

lations across the board, which highlights its rela-

tive strength as opposed to the other two methods.

The ARP method only gives a negative correlation

value with one particular variant in one case (the

QMSum dataset with the MPNET encoder, com-

paring to the Boundary Similarity metric), and even

there the value is very close to zero so that it most

likely represents a lack of correlation rather than a

negative one.

If we look at table 2, highlighting mean and stan-

dard deviation for each method and metric, it is

clear that the average correlations for ARP meth-

ods are far greater than the ones from the compet-

ing methods, with SegReFree having the lowest

average correlation. On another hand, ARP meth-

ods also lead to more robust results across the

experiments as the standard deviation are consis-

tently lower for each metric and when considering

all the metrics together.

7. Conclusion

In this work we have established a new frame-

work for reference-free evaluation of topic segmen-

tation systems, which can potentially allow self-

supervised training and scoring of such systems.

We have also proposed a set of such metrics

based on the ARPmethod, which we have shown to

correlate better than existing reference-free meth-

ods with traditional metrics for topic segmentation
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Pk WD B All

mean ↑ std ↓ mean ↑ std ↓ mean ↑ std ↓ mean ↑ std ↓
SegReFree 0.10 0.48 0.56 0.54 0.14 0.41 0.27 0.48

Silhouette 0.46 0.57 0.42 0.59 0.57 0.38 0.48 0.51

ARPstd 0.85 0.07 0.87 0.05 0.74 0.23 0.82 0.12

ARPcos 0.86 0.07 0.89 0.04 0.75 0.20 0.83 0.10

ARPpair 0.80 0.20 0.84 0.16 0.70 0.33 0.78 0.23

Table 2: Mean and Standard Deviation (std) for the correlation coefficients presented in table 1, aggregated

by metric. Last column presents the statistics obtained concatenating the results of the relative method

for each metric.

based on human expert annotations. We have then

tested different aspects of the embedding-based

metrics, such as their behaviour under different en-

coders and in different domains. Our experiments

have shown that encoders specifically fine-tuned

for sentence-level tasks mostly work better, even

when compared to LLMs which are bigger by sev-

eral orders of magnitude. Furthermore, we have

shown how the performance of these metrics can

change a lot depending on the domain of the ap-

plication. In the best cases, our best method out-

puts scores which are almost perfectly correlated

with the scores output by reference-based metrics.

When the method is applied to noisier data like dia-

logues in meeting transcripts, however, this type of

metric shows several shortcomings. Further exper-

iments with progressively removing or transposing

ground truth boundaries mostly confirmed the re-

sults with real systems, while also showing how

this type of evaluation might be too lenient and it is

better used together with non-synthetic results.

By looking more closely at the aggregated corre-

lation coefficients for the different methods we have

used, we have further confirmed that ARP scores

are better suited across all experiments, yielding

not only stronger positive correlations but also less

variable correlation coefficients across encoders,

datasets and metrics, therefore providing a more

stable metric.

Finally, this work lays the foundation for a new

type of reference-free, embedding-based metrics

for topic segmentation, which originates from but

could also extend to different tasks like topic mod-

elling and text clustering more in general, where

different works in this direction already exist.

Limitations still exist, especially related to dia-

logue data. Future work might expand the present

one by proposing solutions for these cases.

8. Ethical Concerns

The main ethical concerns stemming from this work

are the risk of misusing the metric, like over-relying

on it for critical decisions, as well as possible losses

of jobs for linguists in case the metric is used as

a total substitute for expert annotators. Further-

more, potential biases could arise in its application,

especially if the embedding model’s training is un-

suitable for the specific domain, while the environ-

mental cost of using very large language models

should be leveraged against the relative benefits

when choosing the encoder for this family of meth-

ods.
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