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Abstract
The in-context learning (ICL) for relational triple extraction (RTE) has achieved promising performance, but still
encounters two key challenges: (1) how to design effective prompts and (2) how to select proper demonstrations.
Existing methods, however, fail to address these challenges appropriately. On the one hand, they usually recast RTE
task to text-to-text prompting formats, which is unnatural and results in a mismatch between the output format at
the pre-training time and the inference time for large language models (LLMs). On the other hand, they only utilize
surface natural language features and lack consideration of triple semantics in sample selection. These issues
are blocking improved performance in ICL for RTE, thus we aim to tackle prompt designing and sample selection
challenges simultaneously. To this end, we devise a tabular prompting for RTE (TableIE) which frames RTE task into
a table generation task to incorporate explicit structured information into ICL, facilitating conversion of outputs to RTE
structures. Then we propose instructive in-context learning (I2CL) which only selects and annotates a few samples
considering internal triple semantics in massive unlabeled samples. Specifically, we first adopt off-the-shelf LLMs to
perform schema-agnostic pre-extraction of triples in unlabeled samples using TableIE. Then we propose a novel
triple-level similarity metric considering triple semantics between these samples and train a sample retrieval model
based on calculated similarities in pre-extracted unlabeled data. We also devise three different sample annotation
strategies for various scenarios. Finally, the annotated samples are considered as few-shot demonstrations in
ICL for RTE. Experimental results on two RTE benchmarks show that I2CL with TableIE achieves state-of-the-art
performance compared to other methods under various few-shot RTE settings.
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1. Introduction

Relational triple extraction (RTE) aims to identify
structured information from raw text, involving di-
verse output structures like named entity recogni-
tion (NER) (Zhang et al., 2021; Liu et al., 2024b;
Wu et al., 2024) and relation extraction (RE) (Li
et al., 2022, 2023b; Wang et al., 2023a,b). Previ-
ous studies (Paolini et al., 2021; Lu et al., 2022)
propose unified frameworks to tackle the RTE task
by converting the structured relational triples into
unstructured strings and then utilizing text genera-
tion models (Lewis et al., 2020; Raffel et al., 2020).
Recent studies (Wei et al., 2022; Wang et al., 2023c;
Shang et al., 2024) on large-scale pre-trained lan-
guage models (LLMs), such as GPT-3 (Brown et al.,
2020), demonstrate that LLMs perform well in vari-
ous natural language processing (NLP) tasks with-
out any fine-tuning but only with a few annotated
samples as prompts, which is called in-context
learning (ICL) (shown in Figure 1 (a)). However,
current ICL for RTE still encounters two challenges.
On the one hand, recasting RTE task to solely text-
to-text prompting format (see Figure 2 TextIE (Ma
et al., 2023)) like other NLP tasks is unnatural and

resulting in a mismatch between the output format
at the pre-training time and the inference time for
LLMs (Li et al., 2023c). Therefore, extracting struc-
tured data containing multiple dependent elements
using text-to-text prompting format makes RTE par-
ticularly challenging in ICL. Thus one important
question is how to design proper prompting formats
suitable in ICL for RTE? On the other hand, prior
work (Zhao et al., 2021; Liu et al., 2021) has found
that the performance of ICL is sensitive to the se-
lected samples. Moreover, due to limited context
length of LLMs, only a few annotated samples can
be presented in prompts. Therefore, another es-
sential research question is how to select a few high
quality annotated samples as few-shot demonstra-
tions in ICL for RTE?

Most studies (Lu et al., 2022; Jimenez Gutier-
rez et al., 2022; Ma et al., 2023; Wan et al., 2023;
Liu et al., 2024a) overlook the first challenge and
directly transform the RTE task into text-to-text
generation formats like TextIE, producing fragile
predicted outputs that require complex decoding
strategies for post-processing them into valid struc-
tures. CodeIE (Li et al., 2023c) (see Figure 2) ar-
gues the abundant structured code information en-
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Figure 1: Illustration of the instance-wise retrieving
ICL (a) and our I2CL framework (b). For different
test samples (e.g., t1 and t2), the former paradigm
retrieves B different samples from the large labeled
dataset as corresponding demonstrations d, while
I2CL only selects and annotates a few samples with
annotation budget B for all M test samples.

coded in the pre-trained LLMs can benefit RTE task
and achieves superior results compared to Tex-
tIE. Despite delivering the significant improvement
using code LLMs like Codex (Chen et al., 2021),
its advantage on natural language LLMs like GPT-
3 is slightly inferior. Besides, CodeIE inevitably
generates more tokens compared to TextIE as
shown in Figure 2, resulting in higher costs and
lower efficiency. To this end, we devise a tabular
prompting for RTE named TableIE that generates
organized and concise outputs with lower costs
and higher efficiency, incorporating explicit struc-
tured table information into ICL. Specifically, a table
header “|step|predicate|subject type|subject|object
type|object” is provided as part of the prompt and
the LLMs can automatically generate a table, where
“|” is the recognizable delimiter of tables in OpenAI 1

models. Specially, TableIE is suitable for both zero
and few-shot prompting while TextIE and CodeIE
can only be applied to few-shot setting as they can-
not guarantee the structural integrity under zero-
shot prompting in ICL for RTE.

For the second challenge, we argue that two
issues need to be considered. First, despite
retrieving the annotated samples as demonstra-
tions in large labeled dataset (see Figure 1 (a)),
LLMs ICL still significantly underperforms fine-
tuned moderate-size models (Ma et al., 2023).
Therefore, considering ICL in zero or low-resource
rather than high-resource scenarios is more suit-
able and promising (Su et al., 2023). In this
work, we formulate an instructive in-context learn-
ing (I2CL) framework for RTE (shown in Figure 1
(b)): select and annotate a few high-quality samples
from the unlabeled data based on the accessible
test data, so as to obtain better few-shot prompting
results. Second, raw-input-based sample selec-
tion method is one widely applied solution in ICL
which involves embedding raw inputs of samples
using an off-the-shelf embedding model and then
selecting the most similar samples (Rubin et al.,
2021). Nevertheless, this method is prone to be-

1https://openai.com

ing biased by surface natural language features
(syntax, lexicon, semantic, etc.) that may not hold
distinct effectiveness for intended tasks (An et al.,
2023). In RTE, raw-input-based selection just finds
out samples with similar whole sentence semantics,
while the better in-context samples should contain
the similar or exactly same entity types and relation
types (Wan et al., 2023).

To measure the similarities between samples,
features of both entities and relations are required,
besides the similarity metrics. First, the unlabeled
samples contribute limited unsupervised features.
Thus we incorporate the strong capability of LLMs
on zero-shot prompting (Kojima et al., 2022) to per-
form schema-agnostic pre-extraction of entities and
relations in unlabeled samples using TableIE. The
extracted triples is not consistent with annotation
schema, but still objectively represent the seman-
tics of the triples contained in samples. Second,
we propose a novel triple-level similarity metric con-
sidering the importance of entity and relation types,
describing the similarities between pre-extracted
unlabeled samples via Pompeiu–Hausdorff dis-
tance (Schutze et al., 2012) because a sample may
contain multiple triples. After the above two steps,
we obtain the similarities between all unlabeled
samples pairwise and then fine-tune a Sentence-
BERT (Reimers and Gurevych, 2019) as sample
retriever on the whole similarities calculated un-
labeled data, in which the model pays attention
to the internal triple semantic differences between
samples. During testing, we adopt this model to cal-
culate the similarities between test and unlabeled
data. Then we propose three different sample se-
lection strategies including top-k-based, balance-
based and coverage-based strategy, where differ-
ent strategies are suitable for different test data
distributions. Finally, we annotate the selected un-
labeled samples as demonstrations. In summary,
the contributions of our work are three-fold:

• We propose a tabular prompting TableIE, in-
corporating explicit structured table informa-
tion into ICL that achieves superior perfor-
mance with lower costs and higher efficiency
compared to TextIE and CodeIE. Specially,
TableIE can be utilized for both zero and few-
shot prompting scenarios in LLMs.

• We propose an instructive in-context learning
(I2CL) framework, which selects and annotates
a few high-quality samples for better prompting
results. We propose a novel triple-level simi-
larity metric for instructive sample retrieval and
devise three different sample selection strate-
gies suitable for different data distributions.

• Experimental results demonstrate that TableIE
performs better than TextIE and CodeIE, in-
dicating the advantage of representing struc-
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def relation_extraction(input_text):
    """ extract the relations of named entities from the input text. """

    input_text = "Lionel Messi was born in Argentine on 24 June 1987."
    entity_relation_list = []

    # extacted relations

def relation_extraction(input_text):
    """ extract the relations of named entities from the input text. """

    input_text = "Lionel Messi was born in Argentine on 24 June 1987."
    entity_relation_list = []

    # extacted relations

Lionel Messi was born in Argentine on 24 June 1987.

def relation_extraction(input_text):
    """ extract the relations of named entities from the input text. """

    input_text = "Lionel Messi was born in Argentine on 24 June 1987."
    entity_relation_list = []

    # extracted relations
    

Lionel Messi was born in Argentine on 24 June 1987.
|step|predicate|subject type|subject|object type|object|

CODEIE

    entity_relation_list.append({“rel_type”: “birth_place”, “ent1_type”: “person”,
    “ent1_text”: “Lionel Messi”, “ent2_type”: “country”. “ent2_text”: “Argentine”})
    entity_relation_list.append({“rel_type”: “birth_time”, “ent1_type”: “person”,
    “ent1_text”: “Lionel Messi”, “ent2_type”: “time”. “ent2_text”: “24 June 1987”})

Lionel Messi was born in Argentine on 24 June 1987.Lionel Messi was born in Argentine on 24 June 1987. TEXTIE

(“Lionel Messi”: person, “Argentine”: country, “birth_place”)
(“Lionel Messi”: person, “24 June 1987”: time, “birth_time”)

|1|birth_place|person|Lionel Messi|country|Argentine|
|2|birth_time|person|Lionel Messi|time|24 June 1987|

Lionel Messi was born in Argentine on 24 June 1987.
|step|predicate|subject type|subject|object type|object|

Lionel Messi was born in Argentine on 24 June 1987.
|step|predicate|subject type|subject|object type|object|

TABLEIE

Figure 2: Formats of three prompting. The test sample is marked with underline. The outputs of LLMs
are highlighted in colors.

tured targets with table. With the same anno-
tation budget, I2CL consistently improves the
naive baselines by a notable margin.

2. Related Work

Zero and Few-shot Prompting The pre-trained
LLMs such as GPT-3 (Brown et al., 2020) have
demonstrated impressive zero and few-shot learn-
ing capabilities across various NLP tasks (Zhao
et al., 2021; Liu et al., 2021; Wei et al., 2022; Wang
et al., 2023c; Kojima et al., 2022; An et al., 2023).
Recent studies (Jimenez Gutierrez et al., 2022; Ma
et al., 2023; Wan et al., 2023) on ICL mainly focuses
on exploring NER and RE tasks separately, how-
ever, there has been relatively little research into
potential of LLMs for RTE task (Wei et al., 2023; Li
et al., 2023c). ChatIE (Wei et al., 2023) transforms
the zero-shot RTE task into a multi-turn question
answering problem with a two-stage framework,
even surpasses some full shot models on several
datasets. CodeIE (Li et al., 2023c) highlights the
beneficial of abundant structured code information
encoded in LLMs like Codex (Chen et al., 2021) in
information extraction (IE) tasks, delivering supe-
rior performance compared to common text-to-text
few-shot prompting. To the best of our knowledge,
we are the first to devise tabular prompting for RTE.

Sample Selection and Annotation Prior stud-
ies (Zhao et al., 2021; Liu et al., 2021; An et al.,
2023; Liu et al., 2023) have found that the perfor-
mance of ICL is sensitive to the selected samples
as few-shot demonstrations. In addition, retrieving
annotated samples on the large labeled dataset still
significantly underperforms fine-tuned models in
NER and RE tasks (Jimenez Gutierrez et al., 2022;
Ma et al., 2023; Wan et al., 2023). Different from
the above ICL paradigm, selective annotation (Su
et al., 2023) chooses a pool of samples to anno-
tate from unlabeled data in advance, followed by
sample retrieval that retrieves task samples from
the annotated pool at test time. However, selective
annotation computes the similarities between un-

labeled samples using Sentence-BERT (Reimers
and Gurevych, 2019), where how to select and an-
notate samples on specific NLP tasks such as RTE
is not studied. Moreover, selective annotation main-
tains a moderate-size sample pool for subsequent
sample retrieval during test phase, while I2CL se-
lects a specific number of samples that are most
worth annotating based on the test data. Therefore,
I2CL is more suitable for RTE and comes at a lower
annotation cost compared to selective annotation.

Active Learning Our method for ICL shares the
same goal of reducing the annotation cost com-
pared to active learning. For example, iterative
parameter updates (Wang et al., 2016; Kasai et al.,
2019) based active learning methods are computa-
tionally expensive for LLMs used in ICL compared
to our method. Recently, the effectiveness of active
learning has been questioned when LLMs are fine-
tuned for various tasks (Karamcheti et al., 2021).
Our method reduces the annotation cost of ICL,
departing from the recent observations on fine-
tuning with active learning. The limitations of super-
vised state-of-the-art models for relation extraction
in data-scarce and domain-specific scenarios are
discussed in Mallart et al. (2022), which is similar
with our motivation.

3. Methodology

3.1. Problem Statements
In this work, we assume no large-scale labeled
data is available, and we require to select a few
samples from existing unlabeled data and annotate
them for effective inference. Formally, the objec-
tive of I2CL is to select a small subset S ⊂ X from
the set of unlabeled samples X = {xi}Ni=1 for an-
notating contained entities and relations based on
the test samples T = {ti}Mi=1, satisfy the annota-
tion budget B = |S|. N and M represent the total
number of samples in unlabeled data and test data,
respectively. After the selection and annotation,
we treat these samples as the few-shot demonstra-
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Zero-shot Prompting Extract the relational triples from the sentence below.
Microsoft is a famous computer technology company in the 
U.S. whose history started in 1975.
|step|predicate|subject type|subject|object type|object|
|1|situated in|organization|Microsoft|country|the U.S.|
|2|founded in|organization|Microsoft|time|1975|

Extract the relational triples from the sentence below.
Microsoft is a technology company founded by Bill Gates 
and Paul Allen.
|step|predicate|subject type|subject|object type|object|
|1|founded by|organization|Microsoft|person|Bill Gates|
|2|founded by|organization|Microsoft|person|Paul Allen|

Extract the relational triples from the sentence below.
OpenAI is an artificial intelligence research laboratory of 
America founded in 2015 by Sam Altman and others.
|step|predicate|subject type|subject|object type|object|
|1|located in|organization|OpenAI|country|America|
|2|founded in|organization|OpenAI|time|2015|
|3|created by|organization|OpenAI|person|Sam Altman|(a) (b) (c)

 [1] Organization Microsoft founded in time 1975
 [2] Organization Microsoft situated in country the U.S.

 [1] Organization Microsoft founded by person Bill Gates
 [2] Organization Microsoft founded by person Paul Allen

 [1] Organization OpenAI located in country America
 [2] Organization OpenAI founded in time 2015
 [3] Organization OpenAI created by person Sam Altman
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Figure 3: Illustration of the I2CL framework. We aim to measure the similarities of the triple sets contained
in two samples and select the most representative samples to annotate based on the whole test data.
For instance, sample (b) is very similar to (a) on the surface natural language features while (c) is more
similar to (a) in the triple-level semantic features. Moreover, annotate one sample (c) is better than two
samples (a) and (b) because (c) contains all the similar triple patterns in (a) and (b).

tions in ICL for RTE. We should note that this kind
of setting (obtaining the test set in advance to select
instances) is practical in real-world scenarios.

3.2. Framework Overview
The framework of I2CL is illustrated in Figure 3,
which consists of five stages: (1) zero-shot prompt-
ing, (2) distance calculation, (3) model training, (4)
sample selection and (5) few-shot prompting. First,
we adopt an off-the-shelf LLM to perform schema-
agnostic pre-extraction of entities and relations in
the unlabeled samples using TableIE. Second, we
calculate the similarities between these unlabeled
samples based on the pre-extracted triples via av-
erage Pompeiu-Hausdorff distance. Third, we train
an efficient sample retrieval model in ICL for RTE.
During testing, we calculate the similarities between
test samples and unlabeled samples. Then we
select and annotate B samples by three different
strategies and treat them as the few-shot demon-
strations. Below we present each stage in detail.

3.2.1. Zero-shot Prompting

To obtain the impartial triple-level semantic features
inside large unlabeled data, we utilize the capability
of LLMs on zero-shot learning to extract all the
relational triples including predicates, subject types,
subjects, object types and objects. Specifically, we
have the following TableIE in zero-shot prompting
format:

Extract the relational triples from the sentence below.
<Sentence>
|step|predicate|subject type|subject|object type|object|

Typically, any valid zero-shot prompting format is
compatible with this stage. Unfortunately, existing
prompting such as TextIE and CodeIE can only

be applied to few-shot prompting, where they are
unable to provide precise instructed signals similar
to table header in TableIE for RTE.

3.2.2. Distance Calculation

After pre-extracting, we need to measure the sim-
ilarities between the unlabeled samples on pre-
extracted triple sets level. Specifically, we first trans-
form each triple containing predicate p, subject type
st, subject s, object type ot and object o as the nat-
ural language form z:

z = st ⊕ s⊕ p⊕ ot ⊕ o (1)
where ⊕ indicates simple concatenation of strings.
The intuition behind our method is that the types of
entities and relations are important manifestations
of triplet-level semantics, rather than just consid-
ering the span of entities. Formally, we define the
distance between the triples zi and zj as:

d(zi, zj) = ||Encoder(zi)− Encoder(zj)||2 (2)
where Encoder(·) denotes the encoder-only pre-
trained language model such as Sentence-
BERT (Reimers and Gurevych, 2019) and || · ||2
denotes the Euclidean distance. Suppose we have
two samples with triple setsZi andZj , we aim to ob-
tain the Pompeiu-Hausdorff distance between them
to measure the similarities by considering all the
relational triples simultaneously. As the standard
Pompeiu-Hausdorff distance is highly sensitive to
outliers, we use the average Pompeiu-Hausdorff
distance (Schutze et al., 2012):

D(Zi,Zj) =
1

|Zi|
∑
zi∈Zi

min
zj∈Zj

d(zi, zj)+

1

|Zj |
∑

zj∈Zj

min
zi∈Zi

d(zi, zj)
(3)

where the triple sets distance D(Zi,Zj) serves as
the distance of two unlabeled samples in RTE task.
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3.2.3. Model Training

After obtaining the similarities between all unla-
beled samples pairwise, we aim to train an effi-
cient sample retriever for test samples in ICL for
RTE. Apparently, we are able to extract the entities
and relations from each test sample via LLMs as
before, and measure the similarities between unla-
beled samples and test samples for selective anno-
tations. However, it is very inconvenient and costly
to extract triples from each test sample in advance
when new test data arrives, especially with a large
number of test samples. To this end, we train an
encoder-based model fθ(·) which considers solely
surface natural language features as inputs but
pays more attention to learn the internal relational
triple patterns between different samples. Specifi-
cally, we fine-tune a Sentence-BERT (Reimers and
Gurevych, 2019) on the similarities calculated unla-
beled data which aims to approximately obtain the
distance between samples xi and xj via:

L =
∑

(xi,xj)∈X

(D(Zi,Zj)−||fθ(xi)−fθ(xj)||2)2 (4)

where fθ(x) denotes the sentence representation
of unlabeled sample x. We minimize the differ-
ences between the values of Pompeiu-Hausdorff
distances and sentence representation distances.
During testing, we adopt the fine-tuned model to
calculate the distances between each test sample
and unlabeled sample so as to obtain the pairwise
distance set P = {p(i,j)}N×M

(i,j)=(1,1) between unla-
beled samples X and test samples T :

P = {p(i,j) | p(i,j) = d(xi, tj), xi ∈ X , tj ∈ T } (5)

where d(xi, tj) = ||fθ(xi)− fθ(tj)||2.

3.2.4. Sample Selection

In sample selection, we select and annotate sam-
ples from unlabeled data with annotation budget
B. We propose three different sample selection
strategies based on the pairwise distance set P.

• Top-k based strategy We select the most sim-
ilar u unlabeled samples for each test sample
t, resulting in a total of M × u unlabeled sam-
ples. Then we count the frequency of each
unlabeled sample occurrence and sort it in
descending order of frequency. Finally, we di-
rectly select and annotate the first k unlabeled
samples for ICL. In this case, we have k = B.

• Balance-based strategy The top-k method is
simple but may cause imbalanced labeling, es-
pecially when B is relatively small, which may
result in a lack of samples of some specific
entity or relation types. If the test data con-
tains R relation types, we select and annotate

B samples with R-way ⌊B/R⌋-shot style in the
sorted unlabeled samples. Note this strategy
possibly increases the annotation cost, espe-
cially under the adverse effects of imbalanced
unlabeled data distribution in relation types.

• Coverage-based strategy The above two
strategies cannot guarantee that the selected
unlabeled samples are similar to all the test
samples. We thus propose a coverage-based
sample selection strategy that ensure the par-
ticipation of all test samples in selective annota-
tion process, which is described in Algorithm 1.
We first select the nearest ⌈M/B⌉ test sam-
ples for each unlabeled sample x based on
pairwise distance set P (line 1-8). Then the
unlabeled sample xb with the minimum sum
of pairwise distances is selected to annotate
(line 9-10). Subsequently, we discard the un-
labeled sample xb and its nearest ⌈M/B⌉ test
samples in pairwise distance set P (line 11-12).
We iterate through the above process until all
the test samples are discarded.

Algorithm 1 Coverage-based strategy for sample
selection
Input: The unlabeled samples X = {xi}Ni=1, test sam-

ples T = {ti}Mi=1 and pairwise distance set P =
{p(i,j)}N×M

(i,j)=(1,1).
Output: The selective annotation subset S ⊂ X with

annotation budget B = |S|.
1: S = ∅
2: for s← 1 to B do
3: if ∀tj ∈ T , p(∗,j) /∈ P then
4: return S
5: else
6: for xi ∈ X , p(i,∗) ∈ P do
7: Pi = {p(i,∗) | p(i,∗) ∈ min(P, ⌈M/B⌉)}
8: end for
9: xb = argminxi∈X

∑⌈M/B⌉
∗ p(i,∗) where p(i,∗) ∈

Pi

10: S ← S ∪ xb

11: Discard p(i,∗) in P where xi = xb

12: Discard p(∗,j) in P where p(b,j) ∈ Pb

13: end if
14: end for

3.2.5. Few-shot Prompting

After selecting and annotating S = {(xi, yi)}Bi=1,
we adopt standard few-shot prompting for ICL in
RTE. We convert the samples in S to correspond-
ing table-style pairs {(x̂i, ŷi)}Bi=1. Then we concate-
nate them as a string to compose the in-context
demonstrations x̂1,...B = I ⊕ x̂1 ⊕ ŷ1...x̂B ⊕ ŷB,
where I denotes the prompt instructions as Ex-
tract the relational triples from the sentences below.
Note that we arrange these demonstrations in as-
cending order of similarities to the test samples T .
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Given a specific test sample ti, after feeding the
constructed input into the LLMs, we are expected
to get an output that is formatted as the same as
y1, ..., yB which retains the integral table structural:

oi = LLMs (x̂1,...,B ⊕ ti) (6)

where x̂1,...,B⊕ti is the prompt for each test sample
ti ∈ T and oi is the extracted relational triples.

4. Experiments

4.1. Experimental Design
4.1.1. Datasets

We evaluate our proposed TableIE and I2CL in
RTE task with benchmarks CoNLL04 (Roth and Yih,
2004) and NYT (Riedel et al., 2010) where Table 1
shows the dataset statistics. We follow Lu et al.
(2022) and Li et al. (2023c) to preprocess all these
datasets. Then we remove all annotated labels
from the training set and treat them as unlabeled
data. We select and annotate the fake unlabeled
training set based on its test set in each dataset.

Table 1: Statistics of the datasets. # Ents and #
Rels denote the number of entity types and relation
types. # Train, # Valid and # Test denote the sample
number in each split.
Dataset # Ents # Rels # Train # Valid # Test
CoNLL04 4 5 922 231 288
NYT 3 24 56,196 5,000 5,000

4.1.2. Settings

For prompting formats of TextIE (Ma et al., 2023),
CodeIE (Li et al., 2023c) and our TableIE, we use
the same backbone of LLMs including the variant of
GPT-3 (Brown et al., 2020) “text-davinci-003”,
ChatGPT 2 “gpt-3.5-turbo” and GPT-4 (Ope-
nAI, 2023) “gpt-4”. Note that CodeIE performs
well on Codex (Chen et al., 2021), but unfortunately
Codex is deprecated by OpenAI. Typically, we get
model predictions by querying OpenAI API in few-
shot prompting manner. The hyper-parameters of
LLMs with three promptings are keep consistent.

In I2CL, we train the sample retriever fθ(·) for
5 epochs with batch size 16 and learning rate 2e-
5 on the pre-extracted unlabeled data using the
AdamW (Loshchilov and Hutter, 2019) optimizer.
And 10% of samples in unlabeled data are regarded
as the validation data to select the best model fθ(·).
For the annotation budget B, we experiment with
5, 15 and 25 on CoNLL04, respectively. Due to

2https://openai.com/blog/chatgpt

the context length limit, we are unable to experi-
ment above LLMs with a large budget. Thus we
adopt the “gpt-3.5-turbo-16k” model to sup-
port larger budget 24, 48 and 72 on NYT, respec-
tively. With the same budget, we experiment with
our proposed three sample selection strategies:
top-k (u = 5), balance and coverage with pro-
posed TableIE. For TextIE and CodeIE, we ran-
domly sampling k training samples for each relation
type to construct a k-shot demonstration set. We
also test the TableIE with randomly selected sam-
ples and replace the sample retriever fθ(·) with
original Sentence-BERT 3 (Reimers and Gurevych,
2019) to verify the effectiveness of I2CL framework.

Following previous work (Lu et al., 2022; Li et al.,
2023c), we use the relation strict F1 as the eval-
uation metrics for the results of RTE. Specifically,
a relational triple prediction is correct only if the
relation type is correct and the corresponding off-
sets and types of its entities are correct. Due to
the high variance of few-shot prompting with the
random selection method, we conduct three runs
with different random seeds for each experiment
and report the mean values.

4.2. Main Results
As shown in Table 2, TableIE outperforms other
prompting formats and equipping I2CL with TableIE
in various LLMs (GPT-3, ChatGPT and GPT-4) con-
sistently achieve superior performance over typical
ICL under few-shot settings on CoNLL04, demon-
strating the effectiveness of our proposed TableIE
prompting and I2CL framework. On the one hand,
TableIE outperforms TextIE under different exper-
imental settings and achieves competitive or su-
perior performance compared to CodeIE, which
highlights the importance and beneficial of incorpo-
rating explicit structure information into RTE task.
On the other hand, I2CL with balance and cover-
age delivers significantly improvement compared
to TableIE with random selection, which indicates
that appropriate sample selection strategies pro-
vide instructive suggestions for annotating repre-
sentative samples in ICL for RTE. Concretely, bal-
ance and coverage achieve similar performance
while the latter is suitable for larger annotation bud-
gets. However, top-k fails to achieve promising
results on CoNLL04 especially when the annotation
budget is relatively small. We provide a concrete
example to analyze this phenomenon. Intuitively,
top-k is highly affected by the distribution of test
data relation types, where 47 relational triples in
CoNLL04 test data belongs to relation Kill and 105
belongs to OrgBased_In. Empirically, we discover
that there are no relational triples belonging to Kill
with annotated budget 5. With the increase of anno-

3all-mpnet-base-v2
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Table 2: Experimental results on CoNLL04 bench-
mark. Best results with different budgets and mod-
els are in bold.

Model Method CoNLL04
B=5 B=15 B=25

GPT-3

TextIE 19.85 32.83 40.35
CodeIE 36.23 41.29 49.98
TableIE 37.36 42.90 50.77
+ I2CLtop-k 25.97 ↓ 39.49 ↓ 47.71 ↓
+ I2CLbalance 39.30 ↑ 46.77 ↑ 54.97 ↑
+ I2CLcoverage 36.21 ↑ 45.41 ↑ 55.36 ↑

ChatGPT

TextIE 23.55 37.53 42.95
CodeIE 36.83 42.87 49.78
TableIE 37.29 43.15 50.31
+ I2CLtop-k 27.70 ↓ 43.56 ↑ 49.72 ↓
+ I2CLbalance 40.18 ↑ 47.24 ↑ 55.33 ↑
+ I2CLcoverage 36.35 ↑ 47.38 ↑ 56.45 ↑

GPT-4

TextIE 24.92 38.35 46.53
CodeIE 36.77 43.25 50.19
TableIE 37.80 43.81 51.38
+ I2CLtop-k 28.41 ↓ 44.11 ↑ 50.44 ↓
+ I2CLbalance 40.51 ↑ 48.93 ↑ 57.54 ↑
+ I2CLcoverage 37.63 ↑ 48.70 ↑ 58.12 ↑

tated budget, the adverse effects brought by top-k
have been significantly alleviated, but it is still infe-
rior to random selection on CoNLL04. Moreover,
when using the same kind of prompting and compar-
ing the used LLMs, gpt-4 demonstrates stronger
extraction capability than the other two LLMs text-
davinci-003 and gpt-3.5-turbo, but the per-
formance gap between the three is not notable,
especially when experiment with less annotated
data and random selection strategy. Generally, the
sample selection strategies improve final ICL per-
formance by 4.59% on text-davinci-003 and
6.74% on gpt-4 compared to random. Without
sample selection, only 0.44%, 0.91% and 0.61% im-
provement gained compared to text-davinci-
003 for gpt-4 with B = 5, 15 and 25, respec-
tively. Thus we argue that I2CL provide instruc-
tive sample annotation and treat these represen-
tative samples as few-shot demonstrations stim-
ulates LLMs stronger capability of understanding
relational triples.

We further compare these approaches under
different annotation budget on NYT. As shown
in Table 3, we can see that the discovered phe-
nomenons on CoNLL04 still hold except for the
differences in performance among the three sam-
ple selection strategies. We notice that top-k
can achieve much better performance compared
to its counterparts especially with larger annota-
tion budget, while balance only deliver similar

Table 3: Experimental results on NYT benchmark.
Best results with different budgets and models are
in bold. The results are all based on the gpt-3.5-
turbo-16k.

Model Method NYT
B=24 B=48 B=72

ChatGPT

TextIE 18.85 18.88 19.44
CodeIE 28.23 28.75 29.78
TableIE 29.31 29.84 30.45
+ I2CLtop-k 32.28 ↑ 34.92 ↑ 35.66 ↑
+ I2CLbalance 29.23 ↓ 30.24 ↑ 30.42 ↓
+ I2CLcoverage 31.44 ↑ 32.21 ↑ 32.89 ↑
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Figure 4: Performance of different retrieval mod-
els on two benchmarks. We use text-davinci-
003 on CoNLL04 and gpt-3.5-turbo-16k on
NYT. BERT denotes the original Sentence-BERT
without fine-tuning. Gold denotes the fine-tuned
model on annotated training data, while Silver de-
notes the fine-tuned model on training data with pre-
extraction results. And B, T, C represent balance,
top-k, and coverage strategies, respectively.

results compared to random selection. Here we
provide the empirical analysis. Specifically, NYT is
an extremely imbalanced dataset where the im-
balance of samples belonging to different rela-
tions makes it difficult to select samples with ap-
propriate proportions of different relations in ICL.
Note that /location/location/contains is the most
frequently appearing relation in NYT test data,
where total 3,827 of 8,110 relational triples be-
longing to this relation. In contrast, some rela-
tions such as /people/person/ethnicity and /peo-
ple/ethnicity/geographic_distribution correspond to
very few samples (i.e., only one sample) in whole
test data. When selecting demonstrations in ICL
for such extremely imbalanced test data, it is un-
reasonable to sample k samples for each relation
to construct a k-shot demonstration set. Typically,
we cannot know in advance the proportion of each
relation in the test set, and using balance may not
necessarily achieve good results. Therefore, we
should choose the best strategy based on the distri-
bution of test data, where coverage is stabler and
better than other two strategies and consistently
achieves satisfactory results with insensitivity to
test data distribution.
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Table 4: Model generalization results on CoNLL04
and NYT. Best results are in bold. Results that
have improved compared to the original ones are
marked with underline.

Method CoNLL04 NYT
B=5 B=15B=25B=24B=48B=72

TableIE 37.3642.9050.7729.3129.8430.45
+ I2CLtop-k 28.9740.7149.3131.3632.6233.79
+ I2CLbalance 37.8844.3753.1229.1030.1430.20
+ I2CLcoverage 35.7843.4053.2631.4331.5633.21

4.3. Different Retrieval Results
To verify the effectiveness of retrieval model in I2CL,
we evaluate the impact of different retrieval models
on final ICL performance. Besides the proposed
retrieval model (Silver), we also adopt the original
Sentence-BERT model (BERT) and train a new
retrieval model (Gold) based on the original anno-
tated training data. As shown in Figure 4, consider-
ing relational triple features and adopting Pompeiu-
Hausdorff distance as similarity metric bring better
retrieving results. Consistent with the conclusion of
the main experiment, balance and coverage per-
form better on CoNLL04 while top-k is more suit-
able for NYT. Intuitively, retrieval model based on
ground truth would achieve the best results. How-
ever, Gold is only slightly better than BERT and
worse than Silver on two benchmarks. This counter-
intuitive phenomenon is likely due to two reasons.
One is that there are many samples with incorrect
annotation or incomplete annotation in the training
set of datasets, especially the NYT which is com-
pletely constructed by distant supervision (Mintz
et al., 2009). These inaccurate noise signals can
degrade the final performance of retrieval model.
Another is that we force the model to learn to re-
trieve the samples that similar to test samples in
triple-level semantics from the perspective of LLMs
rather than annotators. Compared to previous ap-
proaches, our metric serves as a more accurate
proxy for evaluating the utility of a training sample
during testing. In contrast, BERT solely retrieves
samples with similar sentence semantics but ignore
the subtle semantics of entities and relations inside
samples, where the improvement of using BERT
as retrieval model is modest compared to random
selection without any retriever.

4.4. Model Generalization Ability
In this section we explore the retrieval generaliza-
tion ability. Specifically, we use the retrieval model
trained on unlabeled data of NYT on CoNLL04,
simulating cases where a retrieval model is directly
deployed in a new scenario to test model gener-
alization. We are able to experiment in this man-

Table 5: Costs and efficiency results. # Total de-
notes the total number of characters in LLMs out-
puts, and # Avg., # Min. and # Max. represent the
average, minimum and maximum values of charac-
ter lengths of all samples, respectively.
Method # Total ↓ # Avg. ↓ # Min. ↓ # Max. ↓
TextIE 28,473 98.86 38 527
CodeIE 71,431 248.02 131 2456
TableIE 24,976 86.72 30 460

ner because the pre-extraction process using zero-
shot prompting is schema-agnostic. In other words,
we expect the retrieval model to learn the objec-
tively semantic information and can be adapted
to new datasets. We conduct experiments with
text-davinci-003 on CoNLL04 and gpt-3.5-
turbo on NYT both with TableIE, showing results
in Table 4. With the exchangeable retrieval model,
the improvement from random selection to strategic
selection is less than 3%, indicating the data drift
issue degrading the model performance to some
extent. Under different budget settings, however,
I2CL still enjoys obvious advantages regardless
of diverse LLMs as backbones. Note that the ex-
changeable retrieval model also improves the per-
formance of top-k on CoNLL04 and coverage
on NYT, which indicates that our method achieves
moderate generalization ability across datasets.

4.5. Costs and Efficiency
Specially, we compare the costs and efficiency
of three different prompting formats using text-
davinci-003 on CoNLL04. The experimental
results are illustrated in Table 5. Since we are un-
able to access the specific tokenizer in LLMs, we
estimated the characters generated using different
methods. Generally, generating more characters
(i.e., more tokens) means spending more response
time and consuming more computing resources,
suffering from very low efficiency. Specifically, the
total number of characters generated using CodeIE
is around 2.9 × as TableIE, which is not surprising
because it requires to generate redundant tokens
such as the keys in Python dictionaries. Moreover,
the minimum and maximum values of character
lengths is 4.37 - 5.34 × as TableIE. Compared
with TextIE, our TableIE only generates results
with less than 0.88 × average character length, but
achieves significantly better performance in ICL for
RTE, demonstrating the superior of TableIE.

4.6. Discussions on Settings
Obviously, the proposed method needs to obtain
the test set in advance to select instances. We
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acknowledge that the setting defined in this work is
not very common. Generally, we will assume that
the test samples are unknown, and then design
corresponding algorithms to select ICL samples in
advance, as defined in previous work (Su et al.,
2023). However, in a lot of practical scenarios,
selecting and annotating samples in advance is so
ideal and typically brings suboptimal results.

For example, imagine we are developing a sys-
tem to extract relational triples from news articles.
We start with a set of unlabeled news articles.
These articles cover various topics, including poli-
tics, sports, and entertainment. But we are aware
that the model may not perform well on specific
and niche topics that are not well-represented in
the training data (e.g., the new test samples belong
to military topic). As new articles are published, we
receive a stream of unlabeled test samples. These
test samples may cover emerging events, new per-
sonalities, or unique scenarios not present in the ini-
tial training data. Instead of pre-annotating a fixed
set of demonstrations, we dynamically annotate
a few examples from each batch of test samples
based on their topics. These annotations serve as
in-context demonstrations.

A very important question is: why do we have
to choose unchanging samples in advance for ICL
when targeting future unknown test samples? We
argue that a reasonable solution is selecting then
annotating a few good samples as demonstrations
for specific test samples in a specific scenario and
time. Annotating samples in advance has potential
risks: we do not know in advance what entity and
relation types test samples will contain, which can
lead to pre-annotated samples deviating from test
samples in terms of type distribution. In our setting,
training a triple-level similarity retriever in a spe-
cific domain is valuable, because we can provide
personalized demonstrations for every time new
test samples in this domain arrive compared to un-
changing samples. Specifically, the setting in Su
et al. (2023) works well with small distribution devia-
tion between test samples and annotated samples.
Our setting expects to determine the distribution of
annotated samples based on test samples. In sum-
mary, we argue that in a lot of practical scenarios,
it is reasonable and sometimes necessary to an-
notate a few high quality samples with less human
labor for potentially massive test samples to be pre-
dicted, considering the performance requirements
in real-world scenarios.

4.7. Beyond GPT-Series Models
Besides the OpenAI GPT-Series LLMs, we also
consider other LLMs such as LLaMA (Touvron et al.,
2023), T5 (Raffel et al., 2020), OPT (Zhang et al.,
2022) etc. However, we empirically find these open-
source LLMs basically cannot perform zero and

few-shot prompting in RTE similar with the find-
ings in Li et al. (2023a) perhaps due to the LLMs
are not large enough to perform ICL. For exam-
ple, we tried to experiment LLaMA-7B on RTE task
with several demonstrations via few-shot prompt-
ing paradigm. However, we observe that LLaMA
cannot understand the instructions and is unable to
recover the expected triples based on demonstra-
tions, and LLaMA just starts to completely repeat
the input sentences. Current ICL research in infor-
mation extraction (IE) only focuses on very large
models (Li et al., 2023c; Ma et al., 2023; Li et al.,
2023a) because smaller foundation models are un-
able to perform ICL in IE just like simpler NLP tasks
such as sentiment analysis.

4.8. Why TableIE Works
Foremost, TEXIE and CODEIE cannot guaran-
tee the structural integrity under zero-shot prompt-
ing because there is no explicit prompt (i.e., table
header) to guide them in generating valid triples
without few-shot demonstrations. Since prompting
is a brittle process wherein small modifications to
the prompt can cause large variations in the model
predictions, we are unable to theoretically judge the
effectiveness of a prompting other than through em-
pirical results. But we can provide some relevant
inspiring works to enhance our conclusion. As the
output of RTE is structured, incorporating explicit
structured information into ICL tends to benefit the
final RTE performance (Li et al., 2023c). Besides,
reasoning and extracting answers step by step in
such tabular format is effective in other downstream
tasks (Ziqi and Lu, 2023). And LLMs such as GPT-
3 (Brown et al., 2020) and CodeX (Chen et al.,
2021) have the capability of reasoning over tabular
structured data, because such models are trained
on massive tabular formed data.

5. Conclusion

In this work, we devise a tabular prompting TableIE,
framing the RTE task to a table generation task and
achieving promising performance in ICL. We pro-
pose I2CL, an instructive in-context learning frame-
work for RTE, which is more effective and realistic in
zero or low-resource scenarios. I2CL leverages the
capability of LLMs on zero-shot prompting and nat-
ural language understanding to achieve better few-
shot prompting results with less annotation. We
also propose a novel triple-level similarity metric for
sample retrieval. Besides, three sample selection
strategies are proposed to annotate proper samples
with a few annotation budget, where we may require
to choose the best strategy based on data distri-
bution according to empirical results, encouraging
more effective methods in the future research.
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A. Retrieval with Pompeiu-Hausdorff

We experiment the strategy (we call this strat-
egy “Z+S”) of Zero-shot prompting (extracting
triples from test samples) + Sentence-BERT (using
Sentence-BERT to select unlabeled samples via
Pompeiu-Hausdorff similarities), and this strategy
could achieve similar or sometimes slightly better
results (but typically less than 1%) compared to
our fine-tuned retriever, as shown in Table 6 and
Table 7. This is reasonable because the aim of fine-
tuned retriever is to approximate the selection qual-
ity of this strategy but without extra pre-extraction
on possibly massive test samples as mentioned in
Model Training section. In other words, the fine-
tuned retriever is expected to select good demon-
strations taking solely surface natural language
features as inputs but pays more attention to the
internal relational triple patterns during testing.

Table 6: Experimental results on CoNLL04 bench-
mark. Best results with different budgets and mod-
els are in bold.

Model Method CoNLL04
B=5 B=15 B=25

GPT-3

TextIE 19.85 32.83 40.35
CodeIE 36.23 41.29 49.98
TableIE 37.36 42.90 50.77
+ I2CLtop-k 25.97 ↓ 39.49 ↓ 47.71 ↓
+ Z+Stop-k 25.30 ↓ 40.22 ↓ 48.64 ↓
+ I2CLbalance 39.30 ↑ 46.77 ↑ 54.97 ↑
+ Z+Sbalance 39.38 ↑ 46.96 ↑ 55.60 ↑
+ I2CLcoverage 36.21 ↑ 45.41 ↑ 55.36 ↑
+ Z+Scoverage 36.42 ↑ 45.03 ↑ 55.88 ↑

ChatGPT

TextIE 23.55 37.53 42.95
CodeIE 36.83 42.87 49.78
TableIE 37.29 43.15 50.31
+ I2CLtop-k 27.70 ↓ 43.56 ↑ 49.72 ↓
+ Z+Stop-k 27.24 ↓ 43.50 ↑ 50.48 ↑
+ I2CLbalance 40.18 ↑ 47.24 ↑ 55.33 ↑
+ Z+Sbalance 40.40 ↑ 47.31 ↑ 56.10 ↑
+ I2CLcoverage 36.35 ↑ 47.38 ↑ 56.45 ↑
+ Z+Scoverage 36.42 ↑ 47.67 ↑ 56.37 ↑

GPT-4

TextIE 24.92 38.35 46.53
CodeIE 36.77 43.25 50.19
TableIE 37.80 43.81 51.38
+ I2CLtop-k 28.41 ↓ 44.11 ↑ 50.44 ↓
+ Z+Stop-k 28.75 ↓ 44.39 ↑ 51.04 ↓
+ I2CLbalance 40.51 ↑ 48.93 ↑ 57.54 ↑
+ Z+Sbalance 40.62 ↑ 49.45 ↑ 58.50 ↑
+ I2CLcoverage 37.63 ↑ 48.70 ↑ 58.12 ↑
+ Z+Scoverage 37.98 ↑ 49.64 ↑ 58.53 ↑

Table 7: Experimental results on NYT benchmark.
Best results with different budgets and models are
in bold. The results are all based on the gpt-3.5-
turbo-16k.

Model Method NYT
B=24 B=48 B=72

ChatGPT

TextIE 18.85 18.88 19.44
CodeIE 28.23 28.75 29.78
TableIE 29.31 29.84 30.45
+ I2CLtop-k 32.28 ↑ 34.92 ↑ 35.66 ↑
+ Z+Stop-k 33.12 ↑ 35.64 ↑ 36.27 ↑
+ I2CLbalance 29.23 ↓ 30.24 ↑ 30.42 ↓
+ Z+Sbalance 29.74 ↑ 30.80 ↑ 30.67 ↑
+ I2CLcoverage 31.44 ↑ 32.21 ↑ 32.89 ↑
+ Z+Scoverage 31.48 ↑ 32.94 ↑ 33.30 ↑

B. Comparison with Vote-k

We mentioned the vote-k (selective annotation) in
our related work but not explicitly discussed it in
our experiments because we tend to think this kind
of comparison is neither fair or necessary.

First, vote-k and I2CL are applied in different
practical settings. The vote-k selects samples to
annotate before test time while I2CL selects sam-
ples to annotate when new test samples arrive. In
other words, vote-k finds a few global representa-
tive samples in advance to annotate but may result
in suboptimal results for test samples in the future,
while I2CL finds local optimal demonstrations for
current test samples.

Second, we empirically find that vote-k obviously
underperform I2CL, shown in Table 8 and Table 9.
But this is not surprising because vote-k is still
based on sentence-BERT similarity calculation, ig-
noring the internal triple semantics in test samples.
For example, the improvements brought by vote-
k become relatively obvious for GPT-4 compared
to TableIE baseline. In text-davinci-3 results, with
the same annotation budgets, vote-k improves the
vanilla TableIE method by typically less than 0.5%
absolute gain or is even worse than our random
selection baseline (e.g., vote-k delivers around
36.42% (-0.94%), 42.17% (-0.73%) and 51.22%
(+0.45%) on CoNLL04 with budget B=5, 15 and
25, respectively). The samples selected by vote-k
lack consideration for entity and relation seman-
tics, resulting in minimal advantage compared to
directly sampling k samples for each relation type.
Despite vote-k is worse than I2CL in our setting, the
purposes and settings of two methods are very dif-
ferent, and this finding does not necessarily demon-
strate the superiority of I2CL.
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Table 8: Experimental results on CoNLL04 bench-
mark. Best results with different budgets and mod-
els are in bold.

Model Method CoNLL04
B=5 B=15 B=25

GPT-3

TextIE 19.85 32.83 40.35
CodeIE 36.23 41.29 49.98
TableIE 37.36 42.90 50.77
+ vote-k 36.42 ↓ 42.17 ↓ 51.22 ↑
+ I2CLtop-k 25.97 ↓ 39.49 ↓ 47.71 ↓
+ I2CLbalance 39.30 ↑ 46.77 ↑ 54.97 ↑
+ I2CLcoverage 36.21 ↑ 45.41 ↑ 55.36 ↑

ChatGPT

TextIE 23.55 37.53 42.95
CodeIE 36.83 42.87 49.78
TableIE 37.29 43.15 50.31
+ vote-k 36.87 ↓ 42.56 ↓ 51.64 ↑
+ I2CLtop-k 27.70 ↓ 43.56 ↑ 49.72 ↓
+ I2CLbalance 40.18 ↑ 47.24 ↑ 55.33 ↑
+ I2CLcoverage 36.35 ↑ 47.38 ↑ 56.45 ↑

GPT-4

TextIE 24.92 38.35 46.53
CodeIE 36.77 43.25 50.19
TableIE 37.80 43.81 51.38
+ vote-k 37.22 ↓ 45.16 ↑ 53.25 ↑
+ I2CLtop-k 28.41 ↓ 44.11 ↑ 50.44 ↓
+ I2CLbalance 40.51 ↑ 48.93 ↑ 57.54 ↑
+ I2CLcoverage 37.63 ↑ 48.70 ↑ 58.12 ↑

Table 9: Experimental results on NYT benchmark.
Best results with different budgets and models are
in bold. The results are all based on the gpt-3.5-
turbo-16k.

Model Method NYT
B=24 B=48 B=72

ChatGPT

TextIE 18.85 18.88 19.44
CodeIE 28.23 28.75 29.78
TableIE 29.31 29.84 30.45
+ vote-k 30.54 ↑ 31.63 ↑ 31.77 ↑
+ I2CLtop-k 32.28 ↑ 34.92 ↑ 35.66 ↑
+ I2CLbalance 29.23 ↓ 30.24 ↑ 30.42 ↓
+ I2CLcoverage 31.44 ↑ 32.21 ↑ 32.89 ↑

C. Clarify of Balanced Strategy

In balanced strategy, we mention that this strategy
possibly increases the annotation cost, especially
under the adverse effects of imbalanced unlabeled
data distribution in relation types. The potentially
higher cost of annotation comes from some of the
top sorted unlabeled samples may potentially be-
long to the same relation type. Suppose we aim
to annotate 15 samples for 5 relations (i.e., 3 sam-
ples for each relation), but we may find that the top

sorted 15 samples only contain 1 or 2 samples for a
specific relation. Then we perhaps require the top
sorted 20-30 samples to complete this balanced
annotation. We call this “higher annotation cost”
because even though we only annotate 15 samples
in the end, we actually checked over 15 samples.
But this potential for more checks will not appear
in other two strategies.

D. Clarify of Term "Annotation"

The “annotation” actually means that the labels
of selected samples are annotated by humans in
practical scenarios, not LLMs. In the context of
this paper, we assume that the labels in the an-
notated datasets are unknown (in fact, the sam-
ples have already been annotated and serve as
benchmarks). We perform our TableIE and I2CL
methods on these “fake” unlabeled samples, then
the selected unlabeled samples are “annotated” by
aligning sentences with golden labels in original
annotated datasets. In other words, we imitated
the process of human annotation of data.
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