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Abstract
KEPLMs are pre-trained models that utilize external knowledge to enhance language understanding. Previous
language models facilitated knowledge acquisition by incorporating knowledge-related pre-training tasks learned from
relation triples in knowledge graphs. However, these models do not prioritize learning embeddings for entity-related
tokens. Moreover, updating the entire set of parameters in KEPLMs is computationally demanding. This paper
introduces TRELM, a Robust and Efficient Pre-training framework for Knowledge-Enhanced Language Models. We
observe that entities in text corpora usually follow the long-tail distribution, where the representations of some
entities are suboptimally optimized and hinder the pre-training process for KEPLMs. To tackle this, we employ a
robust approach to inject knowledge triples and employ a knowledge-augmented memory bank to capture valuable
information. Furthermore, updating a small subset of neurons in the feed-forward networks (FFNs) that store factual
knowledge is both sufficient and efficient. Specifically, we utilize dynamic knowledge routing to identify knowledge
paths in FFNs and selectively update parameters during pre-training. Experimental results show that TRELM
reduces pre-training time by at least 50% and outperforms other KEPLMs in knowledge probing tasks and multiple
knowledge-aware language understanding tasks.
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1. Introduction

Pre-trained language models (PLMs) such as
BERT (Kenton and Toutanova, 2019) and
RoBERTa (Liu et al., 2019) learn language rep-
resentations from large-scale text corpora and sig-
nificantly improve the performance of various NLP
tasks (Xu et al., 2021; Chang et al., 2021). Yet,
they often lack methods for incorporating exter-
nal knowledge for language understanding (Colon-
Hernandez et al., 2021; Cui et al., 2021). Since
knowledge graphs (KGs) can provide rich struc-
tured knowledge facts (Yang and Mitchell, 2017;
Zaremoodi et al., 2018; Han et al., 2018), the
performance of PLMs can be enhanced by inject-
ing external knowledge triples from KGs, known
as Knowledge-Enhanced PLMs (KEPLMs). KE-
PLMs (Zhang et al., 2019; Wang et al., 2021b;
Sun et al., 2020; Zhang et al., 2022b) incorporate
knowledge-related tasks, such as denoising entity
auto-encoder (dEA) and knowledge embedding
learning, to facilitate knowledge understanding in
the models. Figure 1 summarizes the distinctions
between PLMs without external knowledge integra-
tion and KEPLMs.

Despite the success of KEPLMs, two main prob-

Work done when Junbing Yan was doing an intern-
ship at Alibaba Group. Correspondence to Chengyu
Wang and Wei Zhang.

lems still remain. (1) Most of the previous KE-
PLMs indiscriminately inject knowledge into PLMs,
which can introduce noisy knowledge such as re-
dundant or irrelevant information, potentially de-
grading model performance (Peters et al., 2019).
These methods (Zhang et al., 2019; Liu et al., 2020;
Wang et al., 2021b; Sun et al., 2020) inject corre-
sponding knowledge triples or pre-trained knowl-
edge embeddings into each entity in the context.
However, some entities appear frequently in texts,
leading to redundant knowledge injection. Irrele-
vant knowledge arises when some entities or their
corresponding sub-graphs have little connection to
the meanings of the underlying sentences; hence,
they contribute minimally to the improvement of
model performance. (2) Some methods modify
model backbones with additional knowledge en-
coders, leading to inflexibility (Zhang et al., 2022b).
Furthermore, optimizing these encoders can ad-
versely affect the model’s computational efficiency.
Recently, some works (Sundararajan et al., 2017;
Hao et al., 2021) use attribution to explain the
mechanism of the Transformer. Most regard the
self-attention layers as key-value pairs, while the
study (Dai et al., 2022) views feed-forward net-
works (FFNs) as key-value memories and points
out that some neurons in FFNs relate to knowledge
expressions, motivating us to explore a similar spirit
in KEPLMs.
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Figure 1: Comparison between TRELM and other models. (a) Plain PLMs usually utilize masked language
modeling as the pre-training objective. (b) Some KEPLMs utilize external knowledge sources (e.g., KGs)
and design knowledge-aware tasks which need additional knowledge encoders. (c) During pre-training,
TRELM uses a BERT-style shared encoder and a knowledge-augmented memory bank to inject factual
knowledge. Moreover, we only need to update partial FFN parameters in Transformer blocks with a
dynamic knowledge routing method.

In this paper, we present our contributions in
the form of our novel KEPLM training paradigm,
namely TRELM, which enables the pre-training of
more robust and efficient KEPLMs. To address
the issue of excessive knowledge noise introduc-
tion, we propose identifying important entities as
targets for knowledge injection. To facilitate the
learning of improved representations, we construct
a knowledge-augmented memory bank, which is
vital in guiding the pre-training process and expedit-
ing convergence. Moreover, to optimize computa-
tional resource utilization, we introduce a technique
called dynamic knowledge routing. This involves
selective parameter updates within Transformer
blocks. By identifying knowledge paths based on
knowledge attribution, we enable partial updates
of model parameters, focusing on the FFNs. Con-
sequently, this results in a more efficient utilization
of computing resources.

We conduct extensive experiments to verify
the robustness and effectiveness of our TRELM
framework over multiple NLP tasks. Our results
show that TRELM outperforms strong baselines
in knowledge-related tasks, including knowledge
probing (LAMA) (Petroni et al., 2019), relation ex-
traction, and entity typing. The pre-training time
is also significantly reduced by over 50%. In sum-
mary, the contributions of this paper are as fol-
lows: 1

• New Pre-training Paradigm. We intro-
duce a more robust and efficient knowledge-
enhanced pre-training paradigm (TRELM).

• Knowledge-augmented Memory Bank. We

1Source codes will be publicly available in the
EasyNLP framework (Wang et al., 2022a). URL: https:
//github.com/alibaba/EasyNLP

detect important entities in pre-training cor-
pora and construct a knowledge-augmented
memory bank, which guides the pre-training
process and accelerates convergence.

• Dynamic Knowledge Routing. We propose
a novel knowledge routing method that dy-
namically finds knowledge paths in FFNs and
selectively updates model parameters.

• Comprehensive Experiments. We conduct
extensive experiments and case studies to
show the effectiveness and robustness of
TRELM over various NLP tasks.

2. Related Work

In this section, we survey literature relevant to our
study, encompassing three primary domains: KE-
PLMs, attribution methods in Transformer architec-
tures, and the application of attribution to KEPLMs.

2.0.1. KEPLMs

KEPLMs incorporate external knowledge to en-
hance language understanding abilities of PLMs
(Sun et al., 2019; Zhang et al., 2019; Peters et al.,
2019; Xiong et al., 2020; Wang et al., 2021a;
Liu et al., 2020; Wang et al., 2021b; Sun et al.,
2020; Zhang et al., 2022b; Ye et al., 2022; Yu
et al., 2022; Zhang et al., 2022a; Zhang et al.,
2021b). For instance, ERNIE-Baidu (Sun et al.,
2019) introduces entity and phrase level masking
strategies to capture semantic information, while
ERNIE-THU (Zhang et al., 2019) integrates entity
embeddings into contextual representations using
knowledge encoders. K-BERT (Liu et al., 2020)
and CoLAKE (Sun et al., 2020) exploit knowledge
graphs (KGs) to augment the language model with

https://github.com/alibaba/EasyNLP
https://github.com/alibaba/EasyNLP
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Figure 2: Model overview. (1) Input: Detecting important entities and long-tail words to reduce the
knowledge noises. (2) Knowledge-augmented Memory Bank: Querying the important knowledge
learned previously through a “cheat sheet” that contains semantic information of entities and words. (3)
Dynamic Knowledge Routing: Finding the knowledge paths related to the knowledge-aware task, and
selectively update the model’s parameters.

graph structures, and DKPLM (Zhang et al., 2022b)
employs shared encoders to unify texts and enti-
ties within a single semantic space. Despite these
advancements, KEPLMs face ongoing challenges
that limit their effectiveness and versatility. These
challenges form the basis of our study and drive
our exploration into novel methods for enhancing
PLMs with external knowledge.

2.0.2. Attribution Methods in Transformers

Integrated gradients, a technique for attributing the
model’s output to its input features, has been in-
creasingly adopted (Hao et al., 2021; Dai et al.,
2022). For instance, Hao et al. (2021) applied
integrated gradients to the self-attention mecha-
nism, elucidating the importance of specific atten-
tion heads in the model’s computations. More re-
cent discussions by Wu et al. (2019) and Dong
et al. (2021) have expanded the focus beyond self-
attention, highlighting the significant role of FFNs
within Transformers. Dai et al. (2022) employed
integrated gradients to investigate the “knowledge
neurons” in FFNs, providing insights into how these
models process and store factual knowledge.

2.0.3. Attribution for KEPLMs

In the realm of KEPLMs, the challenge of filtering
out knowledge noise has emerged as a critical con-
cern. Several studies (Peters et al., 2019; Petroni
et al., 2019; Cao et al., 2021; Sun et al., 2020;
He et al., 2021; Zhang et al., 2022b; Wang et al.,
2021b; Zhang et al., 2023) have demonstrated that
the presence of knowledge noise can significantly
impair model performance. Our research posits
that the concept of knowledge paths, which are se-
quences of knowledge neurons within FFN layers
of a Transformer, is instrumental to the effective-
ness of KEPLMs.

3. TRELM: The Proposed Framework

We first state some basic notations. Denote an in-
put token sequence as x = (x1, · · · , xi, · · · , xn),
where n is the sequence length. The hidden
representations of input tokens are denoted as
(h1, h2, . . . , hn) and hi ∈ Rd1 , where d1 is the di-
mension of the representations. Furthermore, a
knowledge graph is denoted as G = (E ,R). Here,
E and R are the sets of entities and relation triples,
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respectively. In the KG, a relational knowledge
triple (eh, r, et) comprises the head entity eh, the
relation r, and the tail entity et. The overall frame-
work of TRELM is illustrated in Figure 2. We aim
to address three key research questions:

• RQ1: How can we select useful positions and
design more effective techniques for knowl-
edge injection?

• RQ2: How can we ensure that our model re-
tains the injected knowledge?

• RQ3: How can parameters of TRELM be effi-
ciently updated during the pre-training knowl-
edge learning process, while preserving down-
stream task performance?

3.1. Noise-aware Knowledge Injection

Important Entity Infusion. As shown by Petroni
et al., 2019, Broscheit, 2019, Wang et al., 2020,
and Cao et al., 2021, the semantics of high-
frequency and common relation triples are already
captured by plain PLMs. In this section, we aim
to detect important entities for robust knowledge
injection and knowledge noise reduction. In our
work, selecting important entity positions in pre-
training sentences for knowledge injection is vital.
Inspired by Zhang et al. (2022b), we define the
Semantic Importance (SI) score of the entity e in
the sentence as SI(e), indicating the semantic sim-
ilarity between the representation of the original
sentence and that of the sentence with e being
replaced. We select our desired entities with high
SI(e) scores as target injection positions:

SI(e) =
∥ho∥ · ∥hrep∥

ho · hrep
. (1)

Contrastive Knowledge Assessing. Knowing
where to inject knowledge is insufficient, as knowl-
edge constraints are only applied to the input layer.
It is also necessary to verify whether the model
truly acquires the knowledge. For model optimiza-
tion, in addition to the Masked Language Modeling
(MLM) task (Kenton and Toutanova, 2019), we pro-
pose Contrastive Knowledge Assessing (CKA) as
an additional pre-training task.

The basic idea is that, given the representations
of a head entity in the pre-training sentence and
a relation at the input layer, the model needs to
determine at the output layer whether it detects
whether a given entity is the correct tail entity or
not, and vice versa. Specifically, for the predicted
i-th tokens of the tail entity hi

d (Zhang et al., 2022b),
we employ deep contrastive learning to encourage
the model to capture the knowledge. Let f(hi

d, ·) be
a matching function between hi

d and a result token.

The token-level CKA loss function is as follows:

L = − log
exp(f(hi

d, yi))

exp(f(hi
d, yi)) +

∑
y
′
i∼Q(yi)

exp(f(hi
d, y

′
i))

(2)
where yi is the ground-truth token, and y

′

i is a
negative token sampled from a negative sampling
function Q(yi). Hence, the total loss function of
TRELM is:

Ltotal = θ · LMLM + (1− θ) · LCKA (3)

where θ is the hyper-parameter, and LCKA is the
contrastive loss with respect to target entities.

3.2. Enhancing Representations with
Knowledge-augmented Memory
Bank

We have explored knowledge injection for impor-
tant entities. Yet, since entities in the corpus typi-
cally follow a “long-tail” distribution (Wu et al., 2020;
Zhang et al., 2022b), some representations can
still be poorly optimized. Here, we further construct
a Knowledge-augmented Memory Bank (KMB),
which acts as a “cheat sheet” to ensure the model
consistently captures important knowledge learned
previously.
KMB Construction with Global and Local Mem-
ory Enhancement. Wu et al. (2020) discovered
that learning representations for rare tokens during
pre-training is challenging. It is reasonable to ex-
tend this hypothesis to knowledge-enhanced learn-
ing. However, their study focuses only on the local
memory of infrequent tokens without considering
the global memory of tokens. When encountering
an important entity in a sentence, we can treat
the contextual representations of its surrounding
words as its “local memory.” In detail, we construct
a KMBM. For an entity e present in both sentence
x andM, we denote the span boundary of e in x
as (l, r), with l and r being the starting and ending
positions, respectively. The “local memory” of e for
x is defined as:

M(e,x)
local =

1

2k + r − l

r+k∑
i=l−k

hi, (4)

where hi ∈ Rd1 is the output at position i of the
Transformer encoder, serving as the contextual
representation of x. Here, k is half the window size
and controls the number of surrounding tokens.

Since entity e may appear multiple times in the
pre-training corpus, inM, the “local memory” for
entity e in KMB (denoted asM(e)

local) is updated us-
ing a moving average of everyM(e,x)

local that we ob-
tain. We initializeM(e)

local using the pre-trained em-
beddings of RoBERTa (Liu et al., 2019). Therefore,
at any occurrence of entity e during pre-training,
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its contextual information from all previous occur-
rences can be leveraged. We updateM(e)

local as:

M(e)
local ← (1− γ) · M(e)

local + γ · M(e,x)
local (5)

where γ ∈ (0, 1) is the discount factor. Since the
local memory contains localized information sub-
ject to isolation, we propose aggregating repre-
sentations of e across multiple contexts as the
“global memory”. Let T (m) be the collection of
contexts involving entity e, i.e., T (m) = {Tn|n ∈
{1, · · · , N}, e ∈ Tn}, and let hcls be the output for
the special <cls> classification token by the last
Transformer layer. The “global memory” of entity e
can be denoted as follows:

M(e)
global =

1

|T (m)|
∑

Tn∈T (m)

hcls. (6)

Leveraging KMB for Pre-training. We leverage
the stored representations of entities in KMB as
part of the input to the encoder. For any token se-
quence x = {x1, · · · , xi, · · · , xn}, we first identify
all important entities e appearing in x. Assum-
ing that there are n important entities, they are
denoted as {(ei, li, ri)}ni=1 where (li, ri) are the
boundaries of ei in x at the i-th position respectively.
If li ≤ p ≤ ri, at position p, the input embeddings
to the model are defined as follows:

Ip = (1− λ) · hei +
λ

2
· (M(ei)

local +M
(ei)
global) (7)

Otherwise, we have: Ip = Ep where Ep is the token
embedding at position p, hei is the knowledge injec-
tion embedding for ei, and λ is a hyper-parameter
controlling the degree to which our KEPLM relies
on KMB for contextual representations of impor-
tant entities. We empirically set λ to 0.5 initially. To
mitigate bias between pre-training and fine-tuning
(which does not involve KMB), λ gradually decays
to 0 towards the end of pre-training, i.e.:

λq =
1

βq
· λ, q = 0, 1, 2, · · · (8)

where β is a hyper-parameter that controls the
decay rate of λ, and q is the pre-training epoch.

3.3. Learning with Dynamic Knowledge
Paths

After determining the model inputs and outputs, we
proceed with the parameter optimization process.
Building upon the hypothesis by Dai et al. (2022),
which suggests that factual knowledge is stored
in the FFN layers of Transformers, we introduce
a dynamic knowledge routing algorithm to identify
critical knowledge paths for TRELM updates during
knowledge acquisition. Given an input sequence x,
we define Px(v̂

(l)
i ) as the probability of producing

the correct response according to the knowledge
assessing objective:

Px(v̂
(l)
i ) = p(y∗|x, v(l)i = v̂

(l)
i ) (9)

where p represents the Sampled SoftMax function;
y∗ is the correct response; v(l)i is the i-th neuron
in the l-th FFN layer; and v̂

(l)
i is a specific value

of v(l)i . As v
(l)
i varies from 0 to its upper bound

v
(l)
i , we calculate the neuron’s attribution score by

integrating the gradients of Px(αv
(l)
i ):

Attr(v
(l)
i ) = v

(l)
i

∫ 1

α=0

∂ Px(αv
(l)
i )

∂v
(l)
i

dα. (10)

The attribution score, Attr(v
(l)
i ), quantifies the im-

pact of v(l)i on the output probabilities using inte-
grated gradients as α spans from 0 to 1. However,
directly calculating the continuous integral is chal-
lenging; thus, we use the Riemann approximation:

˜Attr(v
(l)
i ) =

v
(l)
i

m

m∑
k=1

∂ Px(
k
mv

(l)
i )

∂v
(l)
i

(11)

where m is set to 20 based on empirical testing.
Neurons with high Attr(v

(l)
i ) scores are indica-

tive of a strong association with the understanding
of knowledge within FFN layers. We define the
knowledge path in the T -th FFN layer as the se-
quence:

(T
v
(i)
input
→ T

v
(j)
inter
→ T

v
(k)
output

) (12)

where T
v
(i)
input

, T
v
(j)
inter

, and T
v
(k)
output

represent the
i-th, j-th, and k-th neurons associated with knowl-
edge in the FFN’s input, intermediate, and output
layers, respectively. These connections are crucial
to the factual knowledge present in KEPLM. By
selectively updating the model parameters based
on the gradients of these knowledge paths, we
can significantly reduce the computational cost of
pre-training. Our experiments confirm that this
technique not only accelerates pre-training conver-
gence but also improves the model’s understand-
ing capabilities.
Remarks. During pre-training, we efficiently iden-
tify knowledge paths for each batch in parallel by
utilizing distinct knowledge decoding labels. Al-
though the detection of knowledge paths adds
some overhead, the reduction in back-propagation
time during model pre-training far outweighs this
initial cost. This streamlined approach not only
enhances efficiency but also contributes to effec-
tiveness in capturing relevant knowledge.

3.4. Summarization of Pre-training
Process

We provide a summary of the entire pre-training
procedure below.
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Datasets PLMs KEPLMs

ELMo RoBERTa CoLAKE KEPLER DKPLM KP-PLM KALM TRELM △

Google-RE 2.2% 5.3% 9.5% 7.3% 10.8% 11.0% 10.2% 11.5% +0.5%
UHN-Google-RE 2.3% 2.2% 4.9% 4.1% 5.4% 5.6% 5.2% 5.9% +0.3%

T-REx 0.2% 24.7% 28.8% 24.6% 32.0% 32.3% 29.8% 33.0% +0.7%
UHN-T-REx 0.2% 17.0% 20.4% 17.1% 22.9% 22.5% 22.6% 23.3% +0.4%

Table 1: The performance on knowledge probing. △ represents the absolute improvements over the best
results of existing KEPLMs compared to our model.

Datasets BERT TRELMBERT △

Google-RE 11.4% 15.3% +3.9%
UHN-Google-RE 5.7% 9.8% +4.1%

T-REx 32.5% 36.7% +4.2%
UHN-T-REx 23.3% 27.9% +4.6%

Table 2: The performance on knowledge probing
based on BERT. △ represents the absolute im-
provements over BERT compared to TRELM.

Input. We identify important entities and long-tail
words throughout the corpus. Entity embeddings
are replaced with those generated by the KG em-
bedding algorithm discussed in Section 3.1. Em-
beddings of important entities and long-tail words
are then updated in the Knowledge-augmented
Memory Bank (KMB).
Forward Pass. During each FFN layer, we calcu-
late the attribution scores for the neurons. These
scores allow us to evaluate the importance level
of knowledge neurons and establish knowledge
paths. Following a forward pass, KMB values are
updated based on the output from the model’s final
Transformer layer.
Back Propagation. In the final step, we selectively
update the parameters along the identified knowl-
edge paths during back propagation, focusing the
training on the most relevant aspects of the model’s
knowledge representation.

4. Experiments

In this section, we comprehensively evaluate the
effectiveness of TRELM and compare it against
state-of-the-art approaches.

4.1. Experimental Setup

Pre-training Data. For pre-training TRELM, we
utilize the English Wikipedia dated 2020/03/012

as our data source. We align entities in the pre-
training texts, recognized by entity linking tools
such as TAGME (Ferragina and Scaiella, 2010),

2https://dumps.wikimedia.org/enwiki/

with the Wikidata5M (Wang et al., 2021b) knowl-
edge graph. Wikidata5M provides a large-scale
dataset that includes relation triples and entity de-
scription texts. Additional pre-processing and filter-
ing steps are consistent with those used by ERNIE-
THU (Zhang et al., 2019). As a result, our KG com-
prises 3,085,345 entities and 822 relation types,
and we have prepared 26 million text sequences.
Baselines. We compare TRELM with the following
state-of-the-art KEPLM approaches:

1. ERNIE-THU (Zhang et al., 2019): Integrates
knowledge embeddings by introducing a new
pre-training objective that aligns mentions with
knowledge entities.

2. KnowBERT (Peters et al., 2019): Enhances
language representations with structured
knowledge through knowledge attention.

3. KEPLER (Wang et al., 2021b): Encodes enti-
ties alongside text within Transformer blocks
to create a joint semantic space.

4. CoLAKE (Sun et al., 2020): Utilizes a knowl-
edge graph and adjacency matrices to guide
the information flow.

5. DKPLM (Zhang et al., 2022b): Detects long-
tail entities and uses a shared encoder for the
injection of knowledge triples.

6. KP-PLM (Wang et al., 2022b): Uses continu-
ous prompts and introduces two knowledge-
aware self-supervised tasks for pre-training.

7. KALM (Feng et al., 2022): Incorporates exter-
nal knowledge into three levels of document
contexts for language understanding.

4.2. Knowledge-aware Tasks

TRELM was evaluated on three knowledge-aware
tasks: knowledge probing (in the zero-shot set-
ting), relation extraction, and entity typing. Due
to space constraints, the primary experiments uti-
lized RoBERTaBASE as the underlying architecture.
The results demonstrate TRELM’s transferability to
larger models.
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Model MNLI (m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE AVG.

RoBERTa 87.5 / 87.3 91.9 92.8 94.8 63.6 91.2 90.2 78.7 86.4
KEPLER 87.2 / 86.5 91.5 92.4 94.4 62.3 89.4 89.3 70.8 84.9
CoLAKE 87.4 / 87.2 92.0 92.4 94.6 63.4 90.8 90.9 77.9 86.3

TRELM 87.9 / 87.3 92.2 92.6 94.9 63.9 91.5 91.2 79.1 86.7

Table 3: GLUE results on dev set. KEPLER, CoLAKE and TRELM are initialized with RoBERTaBASE.

Model Precision Recall F1

BERT 76.4±1.2 71.0±1.4 73.6±1.3
RoBERTa 77.4±1.8 73.6±1.7 75.4±1.8

ERNIEBERT 78.4±1.9 72.9±1.7 75.6±1.9
ERNIERoBERTa 80.3±1.5 70.2±1.7 74.9±1.4
KnowBERT 77.9±1.3 71.2±1.5 74.4±1.3
KEPLERWiKi 77.8±2.0 74.6±1.9 76.2±1.8
CoLAKE 77.0±1.6 75.7±1.7 76.4±1.5
DKPLM 79.2±1.3 75.9±1.2 77.5±1.2
KP-PLM 80.8±1.7 75.1±1.6 77.8±1.7
KALM 78.9±1.5 75.3±1.6 77.1±1.6

TRELM 80.2±1.3 76.0±1.4 78.0±1.2

Table 4: Model performance on Open Entity (%).

Knowledge Probing: The LAMA (Petroni et al.,
2019) probes use cloze-style tasks (e.g., "Arroyo
died at [MASK] in 1551.") to assess whether PLMs
encapsulate factual knowledge. The LAMA-UHN
(Pörner et al., 2019) subset presents a more chal-
lenging set of questions by removing samples that
are easier to answer. TRELM’s performance on
these tasks was quantified using macro-averaged
mean precision (P@1), which gauges the model’s
ability to retrieve correct facts accurately.

The results for the LAMA and LAMA-UHN tasks
can be found in Table 1 and Table 2. BERT-
based models were separated from RoBERTa-
based ones due to the significantly smaller vocab-
ulary size of BERT, as per insights from (Wang
et al., 2021a). The primary findings are as follows:
(1) Our model, built on RoBERTa-base, attains
state-of-the-art results across four datasets. (2) To
ensure a balanced comparison, TRELM was also
trained on the BERT-base model. As displayed
in Table 2, TRELM significantly surpasses BERT-
base, with an average improvement of +4.2%, re-
inforcing that TRELM is an effective pre-training
framework adaptable to various architectures.
Entity Typing: This task requires predicting the
semantic type of a specified entity within a given
context. To ensure a fair comparison, we adhere to
the training settings used in (Zhang et al., 2022b)
and evaluate TRELM on the Open Entity dataset
(Choi et al., 2018). Consistent with prior studies,
we report micro-averaged precision, recall, and F1
metrics. As Table 4 shows, KEPLMs generally out-

Model Precision Recall F1

BERT 67.23±0.7 64.81±0.6 66.00±0.6
RoBERTa 70.80±0.5 69.60±0.6 70.20±0.5

ERNIE 70.01±0.8 66.14±0.7 68.09±0.7
KnowBERT 71.62±0.7 71.49±0.6 71.53±0.8
DKPLM 72.61±0.5 73.53±0.4 73.07±0.5
KP-PLM 72.60±0.8 73.70±0.7 73.15±0.7
KALM 72.52±0.8 73.38±0.9 72.95±0.8

TRELM 72.89±0.5 73.84±0.4 73.36±0.4

Table 5: Model performance on TACRED (%).

perform plain PLMs due to additional knowledge
enhancements, with our TRELM model demon-
strating superior performance through the integra-
tion of knowledge paths and memory.
Relation Extraction: The TRELM model was eval-
uated on the TACRED benchmark dataset (Zhang
et al., 2017), which includes 42 types of seman-
tic relations. We utilized both micro-averaged and
macro-averaged metrics to assess performance.
As shown in Table 5, TRELM achieved state-of-
the-art performance, confirming the benefits of
noise-aware knowledge injection and memory-
augmented pre-training for Relation Extraction.

4.3. Language Understanding Tasks

TRELM was also tested on the General Lan-
guage Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2018). According to the
results in Table 3, TRELM slightly outperforms
RoBERTa and shows an average improvement of
0.4% over CoLAKE. Overall, the experiments vali-
date TRELM’s marked enhancement in knowledge-
aware tasks and its competitive edge in general
natural language understanding tasks.

4.4. Analysis of Pre-training Efficiency

Pre-training was conducted on a server equipped
with eight NVIDIA Tesla A100-80G GPUs for both
TRELM and DKPLM to ensure a fair compari-
son. The pre-training loss and F1 scores on
Open Entity and TACRED, as illustrated in Fig-
ure 4 and Figure 5, demonstrate the efficiency of
both models over time. As depicted in Figure 4,
TRELM’s loss converges more rapidly than that
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Figure 3: Injection method efficiency over Open
Entity and TACRED.

of DKPLM, suggesting that the incorporation of a
memory bank and dynamic knowledge routing con-
tributes to faster model training. The loss curves
for TRELM also exhibit greater smoothness, po-
tentially reflecting the evolving quality of memory
bank embeddings with continued training. By eval-
uating models using checkpoints saved at intervals
of {0.25, 0.5, 0.75, 1, 1.5, 2} days for TRELM and
{0.5, 1, 1.5, 2, 2.5, 3} days for DKPLM, we observe
from Figure 5 that TRELM consistently outperforms
DKPLM in terms of F1 scores. Notably, TRELM’s
performance within the first 0.75 days is compara-
ble to that of DKPLM after 2 days, indicating that
TRELM requires at least 50% less pre-training time
to achieve similar results. In summary, TRELM
reaches convergence in approximately one day,
whereas DKPLM necessitates around two days, un-
derscoring TRELM’s greater pre-training efficiency.

4.5. Influence of Entities with Different
Frequencies

We examined the impact of different knowledge
injection strategies on TRELM, focusing on treat-
ments involving only long-tail entities, only high-
frequency entities, and a combination of the two.
Utilizing the TACRED and Open Entity datasets,
we measured the F1 score to assess the effec-
tiveness of our noise-aware knowledge injection
method. Figure 3 presents several key insights: (1)
Injecting knowledge into long-tail entities yields bet-
ter results than limiting it to high-frequency entities,
suggesting a greater benefit in enriching represen-
tations for entities with sparse occurrences. (2)
Superior performance can be achieved by selec-
tively incorporating knowledge into specific subsets
of entities, rather than indiscriminately targeting all
available entities. (3) Our observations are con-
sistent with the findings of Zhang et al., 2021a
and Zhang et al., 2022b, which suggest that an
overabundance of knowledge injection may detri-
mentally affect the model’s effectiveness. These
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Figure 4: The curves of the pre-training loss.
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Figure 5: F1 score on Open Entity and TACRED for
models trained under the same experiment setting.

findings underscore the advantages of our method
and the significance of strategic knowledge selec-
tion and injection in enhancing model performance.

4.6. Ablation Study

To elucidate the contributions of individual compo-
nents, we conducted an ablation study and present
the findings in Table 6. Specifically, the variant
labeled “- Knowledge Injection” demonstrates a
significant decline in the model’s ability to com-
prehend language when noise-aware knowledge
injection is removed, underscoring the importance
of this feature for enhancing the base PLMs’ per-
formance. Similarly, the “- Knowledge Routing”
results indicate not only that this component expe-
dites the pre-training process but also that it makes
a valuable contribution to the model’s overall effi-
cacy. These observations confirm that both knowl-
edge injection and knowledge routing are integral
to achieving the superior results.

4.7. Analysis of Each Module

In order to understand the individual contribu-
tions of each module, we carried out separate ex-
periments to evaluate the specific impact of the
Knowledge-augmented Memory Bank (KMB) and
the Dynamic Knowledge Routing (DKR) on the pre-
training efficiency of TRELM. We focused on quan-
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Model TACRED Open Entity

TRELM 73.34% 78.0%
- Knowledge Injection 72.35% 76.8%
- Memory Bank 72.91% 77.7%
- Knowledge Routing 73.17% 77.6%

Table 6: Ablation study in terms of F1.
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Figure 6: Efficiency of KMB and DKR over Open
Entity and TACRED.

tifying the time saved by each module when used
independently. Our analysis of the data illustrated
in Figure 6 led to the following insights: (1) Both
KMB and DKR enhance the convergence rate of
TRELM in the pre-training phase. (2) KMB exhibits
a more pronounced effect on expediting training in
the early stages, while DKR’s influence becomes
increasingly significant over time, ultimately con-
tributing to a greater overall efficiency. This trend
may be attributed to an initial period where knowl-
edge pathways are not yet fully established. As
the model’s capability to accurately assign knowl-
edge improves, DKR’s role in pinpointing precise
knowledge paths intensifies, thereby boosting its
contribution to training efficiency.

4.8. Hyper-parameter Analysis

We performed a detailed study on the Open Entity
and TACRED datasets, focusing on three critical
hyper-parameters: the balancing coefficients Θ
for the contrastive knowledge-aware (CKA) task in
Eq. 3, the decay rate β, and the half window size k.
Each hyper-parameter was varied individually while
keeping the others constant. As shown in Figure 7,
performance initially improves with an increase in
Θ, peaks at Θ = 0.5, and then diminishes, suggest-
ing an optimal trade-off between the CKA task and
other learning objectives at this value. In Figure 8,
a notable performance boost is observed as the
half window size k rises from 4 to 16. However,
this upward trend reverses when k is increased to
32, implying that an overly broad context window
might introduce irrelevant information that hinders
the model’s learning. Referring to the same figure,
the lowest performance is seen when β = 1, which
corresponds to no decay and a consistent reliance
on the memory bank across all pre-training. The
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Figure 7: Hyper-parameter efficiency of θ over
Open Entity and TACRED.
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Figure 8: Hyper-parameter efficiency of k and β
over Open Entity and TACRED.

model attains its highest performance at β = 2, but
further increases in β lead to diminishing returns.
This decline suggests that a more rapid decrease
in the reliance on the memory bank limits the bene-
ficial integration of knowledge, resulting in reduced
model efficacy.

5. Conclusion

In this paper, we propose TRELM, a robust and
efficient training paradigm for pre-training KEPLMs.
TRELM introduces two innovative mechanisms de-
signed to streamline the integration of knowledge
into PLMs without requiring extra parameters: (1)
a knowledge-augmented memory bank that pri-
oritizes knowledge injection for important entities,
and (2) a dynamic knowledge routing method that
accelerates KEPLMs training and enhances lan-
guage understanding by updating only the knowl-
edge paths associated with factual knowledge. Our
experiments demonstrate that TRELM achieves
state-of-the-art performance on knowledge probing
tasks and knowledge-aware language understand-
ing tasks.
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