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Abstract

This paper describes how we train BERT models to carry over a coding system developed on the paragraphs
of a Hungarian literary journal to another. The aim of the coding system is to track trends in the perception of
literary translation around the political transformation in 1989 in Hungary. To evaluate not only task performance
but also the consistence of the annotation, moreover, to get better predictions from an ensemble, we use 10-fold
crossvalidation. Extensive hyperparameter tuning is used to obtain the best possible results and fair comparisons.
To handle label imbalance, we use loss functions and metrics robust to it. Evaluation of the effect of domain
shift is carried out by sampling a test set from the target domain. We establish the sample size by estimating the
bootstrapped confidence interval via simulations. This way, we show that our models can carry over one annotation
system to the target domain. Comparisons are drawn to provide insights such as learning multilabel correlations
and confidence penalty improve resistance to domain shift, and domain adaptation on OCR-ed text on another
domain improves performance almost to the same extent as that on the corpus under study. See our code at
https://codeberg.org/zsamboki/bert—annotator—ensemble.
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1. Introduction

1.1. Objective of the Large Pilot Project
Providing the Broader Context of the
Present Paper

From the aspect of cultural policy, transition from
the Socialist Kadar era (1956—1989) to democ-
racy in Hungary was a crucial period in time. Cul-
ture, particularly literature and by extension, literary
translation had been heavily funded by the state
before the so-called political transformation in 1989,
until which literary translators, consequently, had
enjoyed a much higher status than in the period
since.

This large pilot project chooses a data-driven
path to examine this change and blends qualita-
tive and quantitative methods in order to provide
a closer look at how literary translators were per-
ceived in the two decades surrounding the regime
change. It utilizes a new coding system (we also
refer to this as annotation system in our paper) tai-
lored to the domain, state-of-the-art classification
technology, quantitative and qualitative analysis
and network analysis. Background of the project
in literary translation studies as well as a more de-
tailed account of the manual coding process and
results are discussed in the doctoral dissertation of
Galambos (2024).

1.2. Scope of the Present Paper, Main
Contributions

The present paper details the classification technol-
ogy that we use. Since their discovery, transform-
ers (Vaswani et al., 2017) have been dominating
the Natural Language Processing (NLP) field. For
classification, the BERT architectures (Devlin et al.,
2019) are widely and successfully used. We train
BERT models on a manually annotated dataset to
apply the coding system to another domain, which
we call the target domain.

Our main contributions discussed in this paper
are as follows:

1. We show that with extensive hyperparameter
tuning both in pretraining (§3.1) and finetuning,
and with loss functions robust to label imbal-
ance in the latter (§3.2), we can teach BERT
models complex and highly imbalanced se-
quence labelling systems. This is verified via
10-fold crossvalidation, the resulting models
forming model ensembles for prediction.

2. To evaluate the resistance of our models to do-
main shift, we select a test set from the target
domain for manual validation. We introduce
a method to estimate confidence intervals of
test results with various sample sizes. We ver-
ify that our models can carry over one coding
system to the target domain (§4).
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3. In addition to finetuning off-the-shelf Hungar-
ian BERT models, and ones pretrained on the
corpus under study, we also finetune models
pretrained on OCR-ed text of similar layout and
typography from the same time period but with
very different subject matter. We show that
adaptation to the peculiarities of the OCR-ed
text without the domain knowledge gives al-
most as much improvement on an off-the-shelf
model as adaptation to the corpus under study
(§5.2.2).

4. We run further comparisons with different loss
functions, and numerous low-cost baseline
methods (§5). First of all, we show that trans-
formers have a clear advantage over low-cost
baselines based on bag-of-words and word
embedding. We point out further tendencies
such as a multilabel classifier is more resistant
to domain shift than individual binary classi-
fiers, and adding confidence penalty to the
BERT finetuning loss also has a beneficial ef-
fect in domain change.

1.3. Related Work

Training word embeddings on a corpus from the
journal Pdrtélet, the official journal of the governing
party in Hungary in the K&dér era, Ring et al. (2020)
study trends in the semantic changes of notions
related to decisions and control, while Szabd et al.
(2021) perform a similar study for notions related
to agriculture and industry.

BERT has been successfully used to learn and
predict complex sequence labelling systems in sev-
eral domains. Bressem et al. (2020) train mod-
els on an annotated set of chest radiology reports.
They show that their best model can then predict
labels on CT reports. Grandeit et al. (2020) train
models on counselling reports. They conclude that
out of A) the labels predicted by their best model, B)
the labels given by an expert annotator and C) the
labels given by a novice annotator, A) and B) are
the most similar pair. Limsopatham (2021) trains
models on legal documents. Out of the solutions he
tested, Longformer (Beltagy et al., 2020) is shown
to give the best results when being taught on long
sequences. Mehta et al. (2022) train models on
therapist talk-turns. They show that even when
their best model cannot always correctly classify
the approach used in each talk-turn, it can still reli-
ably tell which approaches have been used during
a therapy session.

With regards to measuring the impact of OCR-ed
text on NLP task performance: Jiang et al. (2021a)
and Jiang et al. (2021b) compare BERT contex-
tual token embeddings on pairs of the cleaned text
(Guthenberg) and OCR-ed text (HathiTrust) of the
same books. Both studies find that pretraining ei-

ther on clean or OCR-ed text helps performance.
Labusch and Neudecker (2020) perform Named
Entity Recognition and Linking on OCR-ed docu-
ments kept at the Berlin State Library. They find
that pretraining BERT on historical text worsens
task performance on contemporary text.

2. Dataset

2.1. Corpus: Alféld and Nagyvilag, Two
Hungarian Literary Journals from
the Period under Examination

When it comes to examining the status of literary
translators and translation, Nagyvildg is the single
most significant journal of the Kadar era its primary
focus being on world literature and related articles.
On the other hand, its scope makes any in-depth
longitudinal analysis a resource-intensive task to
carry out. Which is why the training set was re-
trieved from the journal Alféld, that is somewhat
less relevant to literary translation, as it predom-
inantly features Hungarian literature and related
articles. The page scans of these journals, as
well as those used in the domain adaptation com-
parisons (§5.2.2) were downloaded from the Ar-
canum database (Arcanum Adatbazis Kiaddé Mag-
yarorszag, 2023).

2.2. Manual Annotation of Alfold

The training set consists of a manually annotated
database listing all paragraphs from Alféld (with
the exception of pieces of or excerpts from liter-
ary works) that mention translation to any extent
thematically annotated with two kinds of labels.

1. Content labels indicate what implications, con-
notations, themes or topics are touched upon
in each paragraph in reference to translation.
Each paragraph may be coded with several
content labels (multilabel coding). 38 content
labels are used.

2. Context labels however signal what it is in the
context that warrants mentioning translation
(e.g. the paragraph is about the author of a
book that was translated, etc.). Each para-
graph may be coded with only one context
label (multiclass coding). 11 context labels are
used.

It is important to clarify here that even though the
two labeling systems hold some similarly named
labels, the two systems are drastically different in
principle. Content labels show what themes are
mentioned in a paragraph relating to translation and
context labels show why translation is mentioned
in a paragraph in the first place. As examples and
because we use them in the qualitative analysis
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(§5.4), we give the definitions of the content label
author as translator and the context label franslator
in Subsection A.1.

The project being in its pilot phase, the system
and list of codes are developed and annotation is
conducted by Galambos to create the training set
during the first phase of the project. Content analy-
sis and certain features of thematic analysis (Braun
and Clarke, 2022) are combined to achieve as accu-
rate and unbiased results as possible considering
that all coding system adjustments and annotation
are implemented by a single researcher. For this
purpose, annotation is performed twice with a sig-
nificant time gap between the two iterations. This
helps finetuning the coding system and eliminat-
ing inconsistencies and other mistakes. Deploying
only one annotator at this phase is also one of the
reasons for seeking rigorous validation options, as
seen in Sub-subsection 3.2.1 and Section 4.

Despite its obvious advantages regarding robust-
ness, at this stage, using several annotators was
not an option, mainly due to the project’s experimen-
tal nature and given that creating the coding system
was an ongoing part of the annotation process itself
to test certain hypotheses about eliminating biases
by not establishing a fixed set of labels beforehand
but rather making the identification of labels part of
the annotation phase. A potential next stage would
involve further changes to the method and again,
working from the bottom up with improved condi-
tions and, undoubtedly, more annotators, heavily
building on the conclusions of the pilot stage to
eliminate disadvantages we have identified.

2.3. Preprocessing Pipeline: from Page
Scans to Paragraph Texts

We need to transform the Alféld and Nagyvildg jour-
nal scans and the annotated paragraphs from Alféld
to a form that a Large Language Model (LLM) can
process. To this end, the scanned journal pages
first need to be transformed to a sequence of para-
graph texts.

We use the Tesseract (The Tesseract Authors,
2023) OCR engine via the Python Tesseract (The
Python Tesseract Authors, 2022) interface. It can
accurately split pages to paragraphs. However, we
also need to recognize cases when a page break
is also a paragraph break.

For that purpose, we apply the DBSCAN cluster-
ing algorithm (Ester et al., 1996) via its Scikit-learn
(Pedregosa et al., 2011) interface to bounding box
statistics. We can use this to determine

1. the type of a paragraph such as main text,
footnote, and heading, and

2. whether the horizontal coordinates of a line
suggest that it is the first or last line of a para-
graph.

We then match the paragraphs resulting from this
pipeline with the quotes in the annotation dataset
using a bag-of-words-based distance. It is verified
by hand that the only matching errors come from
occasionally incorrectly separating paragraphs.

2.4. Dataset Statistics and Further
Transformations

2.4.1. Paragraph and Word Counts

Via the preprocessing pipeline described in Sub-
section 2.3, we collect 9,619,240 words in 206,921
paragraphs from the Alféld issues of 1980—1999,
and 11,622,881 words in 322,970 paragraphs from
the Nagyvildg issues of 1980-1999. Therefore,
for domain adaptation we can use a dataset with
21,242,121 words.

2.4.2. Pruning Alféld for the Finetuning Set

Out of the 206,921 paragraphs in the Alféld issues
from the years 1980-1999, only 1515, thatis 0.73%
concern translation. On the other hand, out of these
1515 paragraphs, 1467, that is 96.83% contain the
subword “fordi” (a fragment of the word “transla-
tion” in Hungarian which is “forditas”). Therefore,
by restricting the train set to the 3994 paragraphs
that contain the subword “fordi”, we can discard a
vast amount of unneeded data while losing only a
handful of relevant entries.

A further restriction comes from the architecture:
in January 2023, when setting up training, there is
no Hungarian LLM to our knowledge that was pre-
trained on suitably long sequences. Based on our
preliminary experiments, we choose PULI-BERT-
Large (Yang et al., 2023), which we use via the
Huggingface Transformer library (Wolf et al., 2020).
This model has a maximum token size of 512.
Therefore, we restrict the train set to sequences
of 512 tokens at most. This results in a finetuning
train set of 3134 sequences. Out of these 3134
paragraphs, 1975 do not concern translation. The
main reason should be the fact that the Hungarian
word for translation also has other unrelated mean-
ings. To handle these cases, we use an “unrelated”
context label.

2.4.3. Label Statistics

Both the content and context labels are highly im-
balanced. The mean imbalance ratio (Charte et al.,
2013, §3.1), that is the average ratio of the maxi-
mal label count to label counts, is 27.34 for content
labels and 36.31 for context labels. For content la-
bels, there is further imbalance in the imbalance
ratios of concurrent labels: the SCUMBLE score
(Charte et al., 2014, §3.2), that is the mean Atkin-
son index (Atkinson, 1970) of imbalance ratios of
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Figure 1: Dataset statistics and evaluation results. (a) Content label counts. (b) Context label counts.

The context label with index 0 refers to paragraphs that contain the subword “ford

but are unrelated

to translation. (c) Content label correlations expressed as conditional probabilities. (d) Content label
evaluation results by label (ROC AUC). (e) Context label evaluation results by label (accuracy). In (d) and
(e), 10-fold crossvalidation results are dark blue, and test set results are orange.

labels present in a paragraph, is 0.3290. For more
details, see Figure 1a-c.

2.4.4. 10-fold Stratification

We use stratification to get both the content and
context label 10-folds. This is straightforward in the
case of context labels, but not so for content labels.
Following (Sechidis et al., 2011), we seek to find a
partition where the individual label frequencies ap-
proximate those on the full dataset. Making use of
GPU parallelization, we draw millions of partitions
and choose one that is minimal in the reverse lexi-
cographical ordering of individual label frequency
error rates normalized by individual label frequen-
cies.

2.4.5. Pruning and Truncating Paragraphs
from Nagyvilag for the Target Domain

As for forming the target domain from the prepro-
cessed Nagyvildg corpus, out of its 322,970 para-
graphs, we select the 12,712 that contain the sub-
word "fordi". The dataset is further filtered by dis-
carding (i) tables of contents, (ii) references at the
end of quotations, literary texts or other articles
that only consist of “translated by <translator>” and
(iii) literary texts. This way, we end up with a tar-
get domain of 4589 sequences. We truncate the
tokenized sequences at 512 tokens in front. See
Section 4 to see how we use importance sampling
to get a test set from this, which we then use to
check the resistance of our models to domain shift.
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3. Training
3.1.

We perform domain adaptation with Masked Lan-
guage Modelling on the 21,242,121-word Alféld—
Nagyvildg dataset described in Sub-subsection
2.4.1. The batch size is set to the largest value
that fit in the NVIDIA A100 40GB GPU that we
are using, and following Ma and Yarats (2021), the
number of warmup steps is set to =5 train steps,
where 3, denotes the second momentum in the
AdamW optimizer (Loshchilov and Hutter, 2019).
See Table 2 in the Appendix for the hyperparame-
ters tuned. Training with the best hyperparameters
that has been found brings down the perplexity
score of 43.07 of the original PULI-BERT-Large
model to 2.88. The cause of the magnitude of this
decrease could be that the 21 million-word domain
adaptation corpus is rather small in comparison
to the 86 billion-word corpus the model was origi-
nally pretrained on (Yang et al., 2023, Table 1 (“1.
tablazat”)).

Pretraining: Domain Adaptation

3.2. Finetuning: Imbalanced Label
Classification

As described in Subsection 2.4, we work with a
3134-sequence finetuning train set with two highly
imbalanced label sets: 38 content labels that are
multilabel, and 12 context labels that are single
label.

3.2.1. 10-fold Training and Evaluation

The small size of the train set is taken advantage
of by using techniques requiring several train runs.
One of these is 10-fold training. It offers 3 main
benefits:

1. Consistency of evaluation scores across itera-
tions confirm consistency of annotation.

2. More robust evaluation scores can be
achieved with confidence intervals.

3. The 10 models acquired from training can be
used for inference as an ensemble.

3.2.2. Population-Based Training

The other technique with several runs we use is the
application of Population-Based Training (Jader-
berg et al., 2017) for hyperparameter optimization.
Its benefits are 2-fold:

1. It adapts hyperparameters on the fly and this
way finds hyperparameter schedules on its
own.

2. Since it trains the samples in parallel, it is
highly scalable.

We perform this algorithm by training 100 models
in parallel, epoch by epoch. We train them for
30 epochs for the content labels, and at least 30
epochs until there is no improvement for 10 epochs
for the context labels. In our version of selection:

1. the top 10% elite is kept unchanged, and

2. roulette wheel selection is used for the rest
with hyperparameter perturbation.

In contrast to Jaderberg et al. (2017), in perturba-
tion, we do not choose between the multipliers 0.8
and 1.2, but pick a multiplier uniformly from the
interval [0.8,1.2]. We make these changes to have
less rigid heuristics.

See Table 2 in the Appendix for the hyperparam-
eters tuned.

3.2.3. Content Label Finetuning

In order to avoid fixing a threshold, and for its robust-
ness to label imbalance, we use macro averaged
ROC AUC as evaluation metric. Moreover, we use
focal loss (Lin et al., 2017) as train loss. This re-
sults in a very satisfactory average ROC AUC of
0.952440.0114 (we report all of the confidence inter-
vals with confidence level 95%). See more detailed
evaluation results in Figure 1d. Note that the less
frequent labels do not get lower scores. We use
the unweighted version (Lin et al., 2017, Equation
4), as the weighted one (Lin et al., 2017, Equation
5) does not bring any improvement.

3.2.4. Context Label Finetuning

The focus being resistance to label imbalance here
as well, we use balanced accuracy as evalua-
tion metric. As training loss, we combine label
distribution-aware margin loss (Cao et al., 2019)
with a penalty for confident output distributions
(Pereyra et al., 2017). This gives a balanced accu-
racy of 0.6357 + 0.1266. See Figure 1e for more de-
tailed evaluation results, and Sub-subsection 5.2.3
for comparisons with other loss functions.

Note that separate model ensembles are trained
in the content and the context label case. We ex-
periment with training combined models for the two
label sets, but with significantly worse results.

4. Evaluation on the Target Domain

To measure if our model ensemble can success-
fully carry over the two coding systems to the target
domain, we draw a sample from it. Manually anno-
tating this, we get a test set. Note that our models
never see the labels on the test set.
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4.1. Deciding the Size of the Test Set

As manual validation is highly resource-intensive,
when deciding on how many samples we should
draw for the test set from the target domain, for a
prospective sample size, we seek to estimate what
confidence interval is to be expected. To that end,
simulations are run on the results of the 10-fold
crossvalidation: for both content and context labels,
sample_ size = 50,60, ...,300 and each fold eval-
uation set, 100 times, we draw a random sample
of sample_size from the fold evaluation set, and
via bootstrapping with size 10,000 the standard de-
viation of the relevant metric is approximated, see
Figure 2. This we can use to estimate what con-
fidence interval we would get from what sample
size. Based on this data, we determine that going
from 50 samples to 100 for a confidence interval de-
crease of about 20% is worthwhile, however, going
up to 150 for a further confidence interval decrease
of about 10% is not. Therefore a decision is made
to draw 100 samples from the target domain for
manual validation.

Sample size increase to confidence interval decrease simulation

—— content ROC AUC
—— context balanced accuracy

e e = = g
o @ =} [N} kS
L L L

Ratio to confidence interval at sample size 50

b
S

T T T T T T
50 100 150 200 250 300
Sample size

Figure 2: Sample size increase to confidence inter-
val decrease simulation via bootstrap.

4.2. Importance Sampling on the Target

Domain

As we naturally do not have labels for the target
domain, only model prediction probabilities, a strat-
ified sample for the test set cannot be used. There-
fore, to address label imbalance, we opt for an
importance sampling approach, that draws para-
graphs with less frequent label prediction probabili-
ties with higher probability.

4.3. Validation Results

On the content label set, we achieve a ROC AUC of
0.875740.0252 (to get confidence intervals and box

plots for the validation results, we use bootstrapping
on 10,000 samples). For more detailed scores, see
Figure 1d. This means that the model ensemble is
capable of reliably carrying over the labeling to the
target domain.

On the other hand, on the context label set, we
only reach a balanced accuracy of 0.3287 & 0.1297.
For more detailed scores, see Figure 1e. We per-
form a preliminary investigation on the possible rea-
sons for misclassification in Subsection 5.4. Based
on this result, from Nagyvildg, only content labels
are used in the findings.

5. Comparisons

5.1. Baseline Methods

We test baseline methods with low computational
cost. We discuss transforming paragraphs to tabu-
lar data in Sub-subsection 5.1.1, resampling algo-
rithms in Sub-subsection 5.1.2, gradient boosted
tree algorithms in Sub-subsection 5.1.3 and All of
the options are extensively tuned using the Blend-
Search algorithm.

5.1.1. Transforming Paragraphs to Tabular

Data

As most low-cost machine learning methods work
on tabular data, we first need to transform the para-
graphs to numerical vectors. For a bag-of-words-
based approach, we test using TF-IDF vectors, via
the scikit-learn (Pedregosaetal., 2011) imple-
mentation. For a low-cost word embedding-based
approach, we test using the sentence vectors out-
put by the fastText word representation model (Bo-
janowski et al., 2017), pretrained on Hungarian
Common Crawl and Wikipedia, that is available on
their webpage (fastText Authors, 2020). In both
cases, dimension reduction is performed using the
TruncatedSVD (Halko et al., 2011) algorithm. We
also test the built-in fastText classifier (Joulin et al.,
2017).

5.1.2. Resampling the Train Set to Make it
more Balanced

To make the train set more balanced, we use re-
sampling. On the context label dataset, we test the
ADASYN (He et al., 2008) and SMOTE (Chawla
et al., 2002) synthetic oversampling algorithms, via
their imbalanced-learn (Lemaitre et al., 2017)
implementation. On the content label dataset, we
test the REMEDIAL-HwWR (Charte et al., 2019) and
MLSOL (Liu and Tsoumakas, 2020) synthetic re-
sampling algorithms. We change both algorithms:

REMEDIAL-HwR is in fact the composition of the
REMEDIAL (Charte et al., 2019, Algorithm 4) and
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Content labels (ROC AUC)

Context labels (balanced accuracy)

10-fold
crossvalidation

test set

10-fold
crossvalidation

test set

Based on TF-IDF vectors

0.8144 £+ 0.0535
0.8100 £ 0.0496

0.8530 £ 0.0255

0.6822 £ 0.0376

0.6937 £0.0375

0.6703 £ 0.0347

0.3372 £0.0719

0.3469 £ 0.0951
0.3433 £ 0.0873
0.3454 £ 0.0720

0.3629 £+ 0.0761

0.3500 £ 0.1025

0.1365 £+ 0.1027

0.1188 £0.1015
0.1180 £ 0.0876
0.1737 £ 0.1068
0.1939 £ 0.1156
0.1432 £ 0.0951

Based on fastText vectors

0.8475 £ 0.0418
0.8412 £ 0.0396

0.7330 £ 0.0383

0.8702 £ 0.0256

0.7594 £ 0.0313

0.7797 £0.0318

0.6753 £ 0.0439

0.7176 = 0.0363

0.3309 £ 0.0495

0.3345 £ 0.0605

0.2536 £ 0.0607
0.3157 £ 0.0462
0.3274 £ 0.0855
0.3333 £ 0.0983
0.3162 £ 0.0816

0.1573 £0.1014

0.1430 £+ 0.1029
0.1780 £ 0.1204
0.1308 £ 0.0821
0.1530 £ 0.0937
0.1336 £ 0.0677
0.1330 £ 0.0971

BERT training methods

Content label results
with Focal Loss

Context label results
with LDAM + CP loss

0.9503 £ 0.0175
0.9468 £ 0.0064
0.9478 £ 0.0113
0.9093 £ 0.2135
0.9524 +£0.0114

0.9534 + 0.0065

0.9481 £ 0.0139
0.9193 £ 0.0673

0.8727 £ 0.0268
0.8702 £ 0.0362
0.8737 £ 0.0268
0.8711 £ 0.0263
0.8757 £ 0.0252

0.8767 £ 0.0252
0.8513 £ 0.0280

0.6173 £ 0.0872
0.6187 £ 0.0486
0.6004 £ 0.1147
0.5584 £ 0.1227
0.6357 £ 0.1266

0.8808 £0.0312 0.6410 = 0.0481

0.6265 £ 0.0842
0.5545 £ 0.1422

0.3032 £ 0.1422
0.3255 £ 0.1285
0.2788 £ 0.1175
0.3671 £ 0.1355
0.3287 £ 0.1297
0.2672 £ 0.1332
0.3560 £ 0.1487
0.2752 £ 0.1416

0.5985 £ 0.0991
0.6263 £ 0.0938

0.3428 £ 0.1431
0.2382 £ 0.1356

Double Context Length Domain Adapted Model

0.6048 £ 0.0318

0.3460 £ 0.1312

Single Model with no Domain Adaptation

Classifier Re-
sampler
CatBoost'  ADASYN
CatBoost MLSOL
CatBoost R-HwR?
CatBoost SMOTE
LightGBM  ADASYN
LightGBM SMOTE
XGBoost®  ADASYN
XGBoost SMOTE
CatBoost  ADASYN
CatBoost MLSOL
CatBoost R-HWR
CatBoost SMOTE
fastText
LightGBM  ADASYN
LightGBM SMOTE
XGBoost ADASYN
XGBoost SMOTE
Domain
Model Adaptation
huBERT Corpus
huBERT Extended
huBERT OCR
huBERT None
PULI* Corpus
PULI Extended
PULI OCR
PULI None
Domain
Adapted Loss
Model
PULI Focal
PULI LDAM
huBERT
huBERT
PULI
Llama 2

0.6029
0.5751
0.4009

0.3637 £ 0.1365
0.3471 £ 0.1307
0.2605 £ 0.1296

Table 1: Comparisons on baseline models and BERT training methods. !In the case of CatBoost on
content labels, a single multilabel classifier is tuned. 2Short for REMEDIAL-HwR. 3In the case of XGBoost
on content labels, individual binary classifiers are tuned for each label. “Short for PULI-BERT-Large.
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MLSMQOTE (Charte et al., 2015, Algorithm 1) algo-
rithms. In REMEDIAL, entries with a SCUMBLE
score higher than a tuneable threshold are selected
for decoupling. In MLSOL on the other hand, en-
tries with an IRLbl score larger than the mean are
selected to serve as synthetic instance sources.
We replace the mean IRLbl score with a tuneable
threshold.

The inbalance metric of MLSOL is based on the
local imbalance matrix C;; (Liu and Tsoumakas,
2020, Equation 1). To decide the labels of the
synthetic entries, a threshold 6 is used (ibid., Al-
gorithm 3, line 17). In the paper, this threshold is
determined by hardcoded rules (ibid., lines 12-16).
We let the threshold linearly depend on local label

imbalance: § = £,

5.1.3. Using Gradient Boosted Tree
Algorithms on the Resampled Train Set

Based on their performance in the low-cost domain,
we train CatBoost (Prokhorenkova et al., 2018),
LightGBM (Ke et al., 2017) and XGBoost (Chen and
Guestrin, 2016) models on the resampled context,
that is multiclass dataset. As by 2023 October
only CatBoost has stable multilabel classification
support, we only use that to train multilabel models.
We moreover pick the combination that performs
best on context labels: XGBoost + ADASYN, to
train 38 individual binary classification models on
each content label. Note that in the latter case
tuning is also performed separately for each binary
classifier.

5.1.4. Discussion of Baseline Results

On content labels, we see an advantage of word
embedding (fastText) vectors over bag-of-words
(TF-IDF) ones. This could be attributed to the fact
that content labels are based on more local informa-
tion. On the other hand, on context labels, we have
a somewhat better result using bag-of-words. This
could be due to the tendency that the information
expressed in a bag-of-words vector, albeit more
reduced, is more balanced in terms of influence by
individual words.

As content labels are multilabel, one can also
compare training individual binary classifiers, one
for each label, to training only one multilabel clas-
sifier. We use XGBoost and CatBoost for the two
respective approaches. Whichever of bag-of-words
or word embedding vector-based feature vectors
we use, on source domain 10-fold crossvalidation,
one can notice a slight advantage of training indi-
vidual binary classifiers, but on the target domain
test set, one can observe a more pronounced ad-
vantage of training a unique multilabel classifier.
Learning label correlations may help robustness.

The fastText classifier has significantly worse
results in all respects besides context label results
on the target domain test set.

5.2. BERT Training Methods

In this subsection, we detail different aspects of
the training that we test with a number of options.
As the best training procedure has already been
described in Section 3, here we discuss results right
after explaining the component that we change, and
not in a separate sub-subsection.

5.2.1. Pretrained Models

We test two Hungarian pretrained models. The
earlier model, huBERT (Nemeskey, 2021) has
a BERT-Base architecture, and it was trained
for 189,000 steps on the Hungarian WebCorpus
2.0 (Nemeskey, 2020), that was built from Com-
mon Crawl and includes a little over 9 billion
words. PULI-BERT-Large (Yang et al., 2023) has
a BERT-Large architecture, and it was trained
for 750,000 steps on a corpus assembled from
the Hungarian WebCorpus 2.0, the Hungarian
Wikipedia and a number of other resources, to-
talling 36,285,941,699 words. The two models
seem to perform very similarly on content labels.
This seems to indicate that for the content label
classification problem a BERT-Base model is big
enough. On context label 10-fold results on the
other hand, we see a slight advantage of the larger
model. The context label test set results appear
noisy, without further study, a clear explanation
does not seem possible.

5.2.2. Domain Adaptation

We evaluate finetuning after four different options
for domain adaptation:

1. No domain adaptation.

2. Domain adaptation on the corpus under
study, that is the 1980-1999 issues of Alféld and
Nagyvildg.

3. A corpus of similar size of OCR-ed journals of
similar layout and typography from the same time
period, but with entirely different subjects. See
Section C for the list of the journals.

4. Domain adaptation on an extended contextual
corpus consisting of the 1960-2021 issues of Alféld
and the 1960-2015 issues of Nagyvildg.

Based on our results, adaptation to domain text
gives the most perfomance boost, in particular,
more contextual data is yet better. However, adap-
tation to the peculiarities of OCR-ed text is almost
as effective, and still significantly better than no
adaptation.
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5.2.3. Context Label Losses

As discussed above, we finetune the domain
adapted PULI-BERT-Large on the content label
set with Focal Loss (Lin et al., 2017), and this gives
a very satisfactory result. On the other hand, on the
context label set we want to see if we can improve
our result. Therefore, we test Label Distribution-
Aware Margin (LDAM) loss (Cao et al., 2019) with
and without a Confident output distribution Penalty
(CP) (Pereyra et al., 2017). Based on our results,
LDAM gives better 10-fold crossvalidation results
already on its own, but CP improves the test set
results significantly. This may indicate that the reg-
ularization effect of CP helps robustness.

5.2.4. Double Context Length

As one of the possible reasons for the inferior per-
formance on context labels is that that task requires
a larger context length, we experiment with domain
adaptation and finetuning with a modified huBERT
model, where instead of the original context length
of 512, we use 1024. As (for an undisclosed rea-
son) BERT models use learned positional embed-
dings, following (Beltagy et al., 2020, §5) to extend
these to positions 512, ...,1023, we copy the 512
embeddings twice. In the end, the results do not
improve.

5.3. Llama?2

Preliminary studies on the performance of the open
family of foundation and chat models Llama 2 (Tou-
vron et al., 2023) are conducted.

5.3.1. Chain-of-Thought Few Shot Learning

As even evaluating examples is resource-intensive,
we only experiment with the content label author
as translator. We prompt the model with the task
description and some randomly chosen examples
with chain-of-thought (CoT) explanations (Wei et al.,
2022), and tell it to do the same for an additional
paragraph.

It does generate its answers according to the
CoT pattern it received, but the linguistic and fac-
tual knowledge required to answer questions of
this complexity seem to be missing. We do not
observe a difference in this respect between the
chat models of different sizes. Again, this is an
exploratory experiment. It is quite possible that for
example with instruction finetuning, better results
can be achieved by a generative model.

5.3.2. Finetuning on the Context Label Set

We also try finetuning the smallest, 7-billion-
parameter foundation model on the context label
set. This is computationally very intensive: Even

with QLoRA (Dettmers et al., 2023) and Distributed
Data Parallel in its accelerate implementation
(Gugger et al., 2022) with 5 NVIDIA A100 40GB
GPU an epoch takes 20 times as long as training
PULI on 1 GPU.

Therefore, instead of 10-fold crossvalidation with
Population-Based Training, we opt for BlendSearch
on a single train-validation split. See Table 2 for
the hyperparameter initial distributions. We run the
tuning algorithm for 3 days on the 5 GPUs. For a
fairer comparison, we finetune the original huBERT
and PULI models for 12 hours on 1 GPU the same
way. Still, the BERT models surpass Llama 2.

5.4. AQualitative Analysis

We go through the test set and try to explain from
the text the misclassifications of the content label
author as translator and the context label translator
by the PULI model domain adapted on the main
corpus and finetuned with LDAM+CP loss. Here,
in the main text, we summarize our findings. See
Subsection A.2 for more details.

In several cases, the model’s predictions in-
dicate manual annotation mistakes. Moreover,
some potential sources for model misclassification
are 1. data scarcity 2. inadequate context window
3. some very interesting patterns that — according
to our hypothesis — do not match previous patterns
from the source domain regarding how translators
are represented. Again, see Subsection A.2 for
more details.

6. Conclusion

We study 2 complex coding systems which were
developed on paragraphs of a Hungarian literary
journal to track trends in the social perception of lit-
erary translation: a multilabel content label set, and
a multiclass context label set. Although both label
sets are highly imbalanced, we show that with ex-
tensive hyperparameter tuning and loss functions
robust to imbalance it is possible to teach BERT
models both label sets. This result is verified with
10-fold crossvalidation. We further investigate if
the resulting ensemble of models is capable of car-
rying over the coding systems to another literary
journal. To that end, we introduce a method to esti-
mate the confidence interval of evaluation results
on a test set sampled on the target domain with
a given sample size. With this, we verify that our
ensemble of models can fulfill this task in the case
of content labels. We conduct numerous compar-
isons to low-cost baseline methods and variations
in our BERT training procedure. In particular, we
show that domain adaptation to OCR-ed text of dis-
tinct subject matter already significantly helps task
performance.
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A. Label Examples

Below, we give the definition of two of the labels, the
content label author as translator and the context
label translator. Afterwards, we provide the details
of the qualitative analysis that was described in
Subsection 5.4.

A1l

The content label author as translator means that
in the paragraph, somewhere a translator is men-
tioned who is more known by their work as an au-
thor. There can be many other content labels ap-
plied to the paragraph in question, the part labeled
author as translator can be a minor detail and it is
also important that it is about the fact that the per-
son mentioned is more famous about something
other than translation.

The context label translator on the other hand
means that the reason translation in that paragraph
is mentioned is that the topic is a specific translator
for any reason at all. The depth of the discussion,
other themes or the way translation is mentioned
are irrelevant here.

Definitions

There can be correlation between these two la-
bels but in spite of the similar themes they explore,
they do not necessarily occur together and there is
no overlap in their function.

A.2. Qualitative Analysis Details

A.2.1. Author as Translator

For this binary label, we view a paragraph as pos-
itive if the average label probability by the model
ensemble is larger than 50%. This holds for 18
paragraphs out of 100. Out of these 18 misclas-
sifications, 6 turn out to be a mistake in manual
annotation. This gives a strong indication as to
how helpful our tool can be for annotation.

Of the rest, in 2 false negative cases we hypoth-
esize that it is mostly the name of the translator
that indicates the validity of the label and it is a rel-
atively less well-known name that might not have
been frequently present in the rest of the corpus.

We also noticed that in 4 false positive cases,
the translator in question is most known for their
work as a translator, however, the discourse ex-
hibits traits rarely displayed without the author as
translator label in the corpus according to our hy-
pothesis based on the train set. These are the
following: 1. details of the translator being famous,
i.e. winning prizes and having a prestigious port-
folio and 2. writing extensively/being interviewed
about themselves or their practice.

What is even more intriguing is that each of these
four instances are about translators who work from
Hungarian. We very tentatively pose the hypoth-
esis that translating from Hungarian is an activity
that could be viewed more important in the Hun-
garian discourse because it leads to the visibility
and representation of Hungarian literature and that
could be a more personal matter in the Hungarian
literary field than the accessibility and representa-
tion of foreign literature in Hungary. This, however,
requires further investigation.

A.2.2. Translator

Here, out of the 15 misclassifications, 2 turned out
to be manual annotation mistakes. Of the rest, in 3
cases, it is possible that the broader context cannot
be inferred from the paragraph and would require
knowledge of a larger or different portion of the
text. In another 3 cases, although the paragraph
does extensively feature the translation activity of
a single individual, the broader context is not about
the translator.

B. Hyperparameter search spaces

In the following table, the hyperparameter initial
distributions used in the domain adaptation Blend-
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Search (§3.1) and finetuning Population-Based
Training (§3.2.2) are provided. For an interval
I C R, let {U denote the log uniform distribution
exp(U log(I)), and let déi4I denote the discrete log
uniform distribution |/ X |.

C. Constituents of the OCR Corpus

The OCR corpus consists of the 1980-1999 issues
of the following journals:

1. Akadémiai K6zIény (later Akadémiai Ertesits)
was the bulletin of the Hungarian Academy of
Sciences during the period under examination.

2. Allam és lgazgatds (later Magyar Kézigaz-
gatds) was a social studies journal specializing
in public administration.

3. Gyermekgydgydszat was the journal of the
Pediatrists Group in the Medical and Sanitary
Workers Union.
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Hyperparameter

Initial Distribution

AdamW first moment, 3, in (Loshchilov and Hutter, 2019, Algorithm 2)123
AdamW second moment, 3, in (Loshchilov and Hutter, 2019, Algorithm 2)123
Complexity, C in (Cao et al., 2019, Equation 11)?

Confidence penalty strength, 3 in (Pereyra et al., 2017, §3)3
Focusing parameter, v in (Lin et al., 2017, Equation 4)?

Learning rate'23
Learning Rate scheduler (after warmup)!

Maximum gradient norm?!23
Maximum train epochs?

Weight decay rate, ) in (Loshchilov and Hutter, 2019, Algorithm 2)123

1 — 1072, 3]

1— 104,107
WU[10-2,10%
U[10-2,10%

w2424
U107°,1072)
U{constant, cosine, linear}
U[10-2,10%
deU[1,101)
U0 1]

Table 2: Hyperparameter initial distributions. *Used in domain adaptation. 2Used in content label finetuning.

3Used in context label finetuning.

16712



	Introduction
	Objective of the Large Pilot Project Providing the Broader Context of the Present Paper
	Scope of the Present Paper, Main Contributions
	Related Work

	Dataset
	Corpus: Alföld and Nagyvilág, Two Hungarian Literary Journals from the Period under Examination
	Manual Annotation of Alföld
	Preprocessing Pipeline: from Page Scans to Paragraph Texts
	Dataset Statistics and Further Transformations
	Paragraph and Word Counts
	Pruning Alföld for the Finetuning Set
	Label Statistics
	10-fold Stratification
	Pruning and Truncating Paragraphs from Nagyvilág for the Target Domain


	Training
	Pretraining: Domain Adaptation
	Finetuning: Imbalanced Label Classification
	10-fold Training and Evaluation
	Population-Based Training
	Content Label Finetuning
	Context Label Finetuning


	Evaluation on the Target Domain
	Deciding the Size of the Test Set
	Importance Sampling on the Target Domain
	Validation Results

	Comparisons
	Baseline Methods
	Transforming Paragraphs to Tabular Data
	Resampling the Train Set to Make it more Balanced
	Using Gradient Boosted Tree Algorithms on the Resampled Train Set
	Discussion of Baseline Results

	BERT Training Methods
	Pretrained Models
	Domain Adaptation
	Context Label Losses
	Double Context Length

	Llama 2
	Chain-of-Thought Few Shot Learning
	Finetuning on the Context Label Set

	Qualitative Analysis

	Conclusion
	Acknowledgements
	Ethical Statement: Carbon Footprint
	Bibliographical References
	Language Resource References
	Label Examples
	Definitions
	Qualitative Analysis Details
	Author as Translator
	Translator


	Hyperparameter search spaces
	Constituents of the OCR Corpus

