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Abstract
Low-Rank Adaptation (LoRA) is a widely used Parameter-Efficient Fine-Tuning (PEFT) method that updates an initial
weight matrix W0 with a delta matrix ∆W consisted by two low-rank matrices A and B. A previous study suggested
that there is correlation between W0 and ∆W . In this study, we aim to delve deeper into relationships between W0

and low-rank matrices A and B to further comprehend the behavior of LoRA. In particular, we analyze a conversion
matrix that transform W0 into low-rank matrices, which encapsulates information about the relationships. Our analysis
reveals that the conversion matrices are similar across each layer. Inspired by these findings, we hypothesize that
a single linear layer, which takes each layer’s W0 as input, can yield task-adapted low-rank matrices. To confirm
this hypothesis, we devise a method named Conditionally Parameterized LoRA (CondLoRA) that updates initial
weight matrices with low-rank matrices derived from a single linear layer. Our empirical results show that CondLoRA
maintains a performance on par with LoRA, despite the fact that the trainable parameters of CondLoRA are fewer
than those of LoRA. Therefore, we conclude that "a single linear layer yields task-adapted low-rank matrices." The
code used in our experiments is available at https://github.com/CyberAgentAILab/CondLoRA.
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1. Introduction

In natural language processing (NLP) area, it is
common practice to fine-tune pre-trained language
models (PLMs) (Devlin et al., 2019; Lewis et al.,
2020; Brown et al., 2020) using task-specific data.
As the scale of these PLMs has grown consider-
ably, the computational resources required for fine-
tuning all parameters have escalated, presenting
a substantial computational challenge. In recent
years, parameter-efficient fine-tuning (PEFT) meth-
ods, which use a limited number of additional pa-
rameters, have been proposed to address this is-
sue. PEFT methods include prompt-tuning (Lester
et al., 2021), prefix-tuning (Li and Liang, 2021),
and low-rank adaptation (LoRA) (Hu et al., 2022),
etc. These methods reduce computational costs to
fine-tune PLMs while achieving comparable perfor-
mance to fine-tuning all of the parameters.
Among the PEFT methods, LoRA has been

prominent in NLP area because it shows stable
and good performance across various NLP tasks
and PLMs (Pu et al., 2023). LoRA fixes an ini-
tial weight matrixW0 and updatesW0 with a delta
matrix ∆W consisting of trainable low-rank matri-
ces A and B, significantly reducing the number
of trainable parameters compared to fine-tuning
all parameters. Subsequent studies (Zhang et al.,
2023; Valipour et al., 2023) have analyzed several
aspects of LoRA to achieve potentially more effec-
tive and efficient PLM fine-tuning. Hu et al. (2022)
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performed an analysis of the relationship between
W0 and trained ∆W (= BA), and they revealed
that there is a correlation between W0 and ∆W .
This finding implies the existence of certain rela-
tionships between the initial weight matrixW0 and
the low-rank matrices A and B.

In this study, we conduct an in-depth analysis of
the relationships between initial weight matricesW0

and low-rank matrices A and B to gain a deeper
understanding of LoRA behavior. Specifically, we
analyze a conversion matrix that transforms W0

into A or B under the assumption that it roughly
represents their relationships. Our analysis shows
that similarities between each layer’s conversion
matrix are very high. This empirical observation
implies a commonality in the relationships between
the initial weight matrices and low-rank matrices
regardless of layers. Inspired by the results, we
hypothesize that a single linear layer, which takes
each layer’sW0 as input, can produce task-adapted
low-rank matrices of each layers.
To confirm our hypothesis, we design a method

named Conditionally Parameterized LoRA (Cond-
LoRA) that fine-tune PLMs with low-rank matrices
derived from a single linear layer (Figure 2). Our
experiments demonstrate that CondLoRA achieves
competitive performance compared to LoRA in
GLUE tasks. Notably, CondLoRA can reduce the
number of trainable parameters compared to LoRA,
because its parameters are constant regardless of
target layers. The success of CondLoRA suggests
potential avenues for further minimization of train-
able parameters in LoRA variants. Our contribu-
tions in this study are twofold:

https://github.com/CyberAgentAILab/CondLoRA
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(a) W value,l
0→A (b) W value,l

0→B (c) Random matrix

Figure 1: Normalized subspace similarities between each layer’s conversion matrices and randommatrices.
Average similarity refers to the average of elements excluding the diagonal elements.

Hyperparameters Value
Batch Size 16
Optimizer Adam
Scheduler Linear
Target Modules {query, value}
Target Layers {1, 2, ..., 12}
LoRA r 8
LoRA α 8
Max Seq. Len. 512

Table 1: Hyperparameters used in our experiments.

1. We reveal that conversion matrices that trans-
form initial weight matrices into trained low-
rank matrices are similar across each layer,
which means that there is similar relationship
regardless of layers.

2. We demonstrate that CondLoRA achieves
performance comparable to the already
parameter-efficient LoRA with fewer parame-
ters. This outcome suggests that task-adapted
low-rank matrices can be yielded by a single
linear operation.1

2. Preliminaries for LoRA

A diff-planing method (Guo et al., 2021) updates
an initial weight matrix Wm,l

0 ∈ Rd1×d2 using an
trainable matrix ∆Wm,l ∈ Rd1×d2 . Where m ∈
{m1, ...,mk} and l ∈ {1, 2, ..., N} are target mod-
ule (e.g., query, value, etc.) and layer, respectively,
and N is a total number of layers. Hu et al. (2022)
proposed a PEFT method named LoRA, which de-
compose ∆Wm,l into two low-rank weight matrices:

Wm,l
0 + ∆Wm,l = Wm,l

0 +Bm,lAm,l (1)

1We will publish the code used in our experiments.

where Am,l ∈ Rr×d1 and Bm,l ∈ Rd2×r with r �
d2, d1. Am,l and Bm,l are trained by downstream-
task data. Their experiments demonstrated that
LoRA achieves comparable or even better perfor-
mance than full fine-tuning while reducing the num-
bers of trainable parameters.
In addition, they analyzed several aspects of

trained Am,l, Bm,l, and ∆Wm,l using normalized
subspace similarity. They defined normalized
subspace similarity φ(·) between matrices X ∈
RdX

1 ×d
X
2 and Y ∈ RdY

1 ×d
Y
2 as:

φ(X,Y, i, j) =
‖U i>

X U j
Y ‖2F

min(i, j)
∈ [0, 1] (2)

where UX is a left or right unitary matrix and U i
X

is top-i singular vectors of UX . Therefore, when
φ(X,Y, i, j) is close to 1, it means the singular vec-
tor spaces between X and Y are similar. Hu et al.
(2022) measured subspace similarities between
eachWm,l

0 and ∆Wm,l, and showed that the simi-
larities are higher than those of random Gaussian
matrices. This result suggests there are relation-
ships between an initial weight matrix Wm,l

0 and
low-rank matrices Am,l and Bm,l.

3. Commonality of Relationships
across Layers

In this study, we conduct an in-depth analysis of
the relationships between initial weight matrices
W0 and low-rank matrices A and B to comprehend
LoRA behavior. To analyze the relationships, we
use a conversion matrix that transform Wm,l

0 to
Am,l or Bm,l, under the assumption that it roughly
represents their relationships. The analyses of the
conversion matrix are expected to provide a deeper
understanding of the relationship.
Conversion matrices Wm,l

0→A and Wm,l
0→B satisfy

Wm,l
0 Wm,l

0→A = (Am,l)> and Wm,l
0 Wm,l

0→B = Bm,l,
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MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
LoRA 86.6 93.7 86.2 61.2 92.0 90.5 74.3 89.3 83.38
CondLoRA 86.5 93.8 86.6 61.1 91.8 90.1 74.2 90.3 83.42
∆ -0.1 0.1 0.4 -0.1 -0.2 -0.4 -0.1 1.0 0.04

Table 2: Evaluation on GLUE tasks. These scores are the average of three models.

respectively.2 (Am,l)> is a transposed matrix of
Am,l. Therefore, the conversion matrices are:

Wm,l
0→A = (Wm,l

0 )−1(Am,l)> ∈ Rd2×r (3)

Wm,l
0→B = (Wm,l

0 )−1Bm,l ∈ Rd2×r (4)
where (Wm,l

0 )−1 is an inverse matrix ofWm,l
0 .

In this study, we investigate the similarity of con-
version matrices across layers. Specifically, we
measure normalized subspace similarities (Equa-
tion 2) between conversion matrices of each layer.
When the similarities are high, it suggests there is a
similar relationship between initial weight matrices
Wm,l

0 and low-rank matrices Am,l and Bm,l across
layers.

3.1. Experimental Settings
We used RoBERTa base (Liu et al., 2019) as a
base model and HuggingFace Transformers (Wolf
et al., 2020).3 We used PEFT library4 and a sin-
gle NVIDIA A100 40GB for LoRA tuning. We fine-
tuned the model using GLUE (Wang et al., 2018)
dataset. We set the hyperparameters except for
learning rates following Hu et al. (2022) as shown
in Table 1. We fine-tuned the models using only
90% of training set. We allocated the remaining
10% for development and used the official GLUE
development set as our test data because GLUE
dataset does not provide an official test set. We
set max epochs to 50 in MNLI and QQP and 100
in other tasks, respectively. Based on evaluation
scores in development data, we searched learning
rates through Optuna (Akiba et al., 2019)5 and se-
lected the best checkpoint. For evaluation metrics,
we used the overall (matched and mismatched) ac-
curacy for MNLI, Matthew’s correlation (Matthews,
1975) for CoLA, Pearson correlation for STS-B, and
accuracy for other tasks. To measure the normal-
ized subspace similarity (Equation 2), we used a
left unitary matrix and set i and j to be 8 (= r).

2Notably, we assume that d1 and d2 are the same
value in our experiments, because we used RoBERTa
base and target modules are query and value. If d1 and
d2 are different values, it is necessary to apply some
extensions for calculating a conversion matrix.

3https://huggingface.co/roberta-base
4https://github.com/huggingface/peft
5https://optuna.org/

Figure 2: An overview of CondLoRA.

3.2. Experimental Results
Figure 1 shows normalized subspace similarities
between conversion matrices (Equations 3 and 4)
of each layer and those of random Gaussian matri-
ces. Due to the limited number of pages, we only
show the similarities of conversion matrices from a
model fine-tuned by MNLI dataset and value mod-
ules. The similarities of conversion matrices were
higher than those of random matrices. This result
implies a commonality in the relationships between
the initial weight matricesWm,l

0 and low-rank ma-
trices Am,l and Bm,l regardless of layers. Inspired
by this result, we hypothesize that a single linear
layer, which takes each layer’sWm,l

0 as input, can
produce task-adapted low-rank matrices Am,l (or
Bm,l) of each layer.
In addition, this analysis reveals another note-

worthy observation that the similarities between
the deeper layers are extremely high. We would
like to investigate the underlying causes in future
work (See Section 5 for details).

4. Can a Single Linear Layer Yield
Task-Adapted Low-Rank Matrices?

In this section, to confirm our hypothesis (Section 3),
we design a method named Conditionally Param-
eterized LoRA (CondLoRA) that fine-tune PLMs

https://huggingface.co/roberta-base
https://github.com/huggingface/peft
https://optuna.org/
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l-th layer
X Y 1 2 3 4 5 6 7 8 9 10 11 12

Avalue,l Avalue,l
cond 0.05 0.05 0.06 0.04 0.04 0.08 0.03 0.04 0.03 0.06 0.05 0.07

Bvalue,l Bvalue,l
cond 0.04 0.03 0.03 0.05 0.05 0.04 0.04 0.03 0.02 0.07 0.08 0.10

∆W value,l ∆W value,l
cond 0.04 0.03 0.03 0.05 0.05 0.05 0.04 0.03 0.02 0.07 0.09 0.12

Table 3: Normalized subspace similarity between matrices from LoRA and CondLoRA.

Trainable
parameters

Speed
(examples/s)

LoRA 294,912 39.652
CondLoRA 24,576 40.303

Table 4: Trainable parameters and speed during
training.

with low-rank matrices derived from a single linear
layer. CondLoRA finds low-rank matrices Am,l

cond

and Bm,l
cond using linear layers as follows:

Am,l
cond = Linear(Wm,l

0 ; θmA )> ∈ Rr×d1 (5)

Bm,l
cond = Linear((Wm,l

0 )>; θmB ) ∈ Rd2×r (6)

∆Wm,l
cond = Bm,l

condA
m,l
cond (7)

where θmA ∈ Rd2×r and θmB ∈ Rd1×r are trainable
parameters. CondLoRA train θmA and θmB using
downstream task data. We provide an overview of
CondLoRA as shown in Figure 2.

One of the advantages of CondLoRA is its ability
to decrease the numbers of trainable parameters.
LoRA requires (d1 × r + d2 × r)× k ×N trainable
parameters. However, CondLoRA requires (d1 ×
r+d2×r)×k trainable parameters regardless ofN ,
because it use a linear layer per target modules and
low-rank matrices. To substantiate our hypothesis,
we conduct a comparative analysis of LoRA and
CondLoRA based on their performance in GLUE
tasks.

4.1. Experimental Results
Table 2 shows the evaluation scores of validation
data in each task.6 The average scores (Avg.)
across all the tasks are nearly equal between LoRA
and CondLoRA. Furthermore, CondLoRA outper-
forms LoRA in SST-2, MRPC, and STS-B tasks.
We also performed a pairwise t-Test to measure
the statistical significance of the performance dif-
ference. The p-values were over 0.01 in all the

6We used the same settings in Subsection 3.1.

tasks, indicating that CondLoRA achieves compet-
itive performance compared to LoRA. From the
experimental results, we conclude that “a single
linear layer yields task-adapted low-rank matrices”.

4.2. Analysis
The numbers of trainable parameters. As ex-
plained at Section 4, the numbers of trainable pa-
rameters of CondLoRA is constant regardless of
the number of target layers. We show the numbers
of trainable parameters of CondLoRA and LoRA in
Table 4. Table 4 shows that CondLoRA reduces the
numbers of trainable parameters to 1

12 compared
to LoRA, because RoBERTa base is consisted by
12 layers and we targeted all layers.

Speed. CondLoRA has extra calculations com-
pared to LoRA, because it determines Am,l

cond and
Bm,l

cond based onWm,l
0 (Equations 5 and 6). There is

no difference in inference speed between LoRA and
CondLoRA, since the calculations are performed
only once when loading a model. However, during
training, CondLoRAmay takes extra time compared
to LoRA because the calculations are required per
each iteration. Therefore, we quantified speeds,
the numbers of examples processed per second,
during training of both LoRA and CondLoRA as
shown in Table 4. Contrary to expectations, Cond-
LoRA is slightly faster than LoRA. We consider that
the delay from the calculations for low-rank ma-
trices are offset by the backpropagation process,
because the trainable parameters (i.e. the parame-
ters to be updated by backpropagation) are fewer
than LoRA.

Similarity between low-rank matrices. Finally,
we measured normalized subspace similarity be-
tweenAvalue,l,Bvalue,l andAvalue,l

cond ,Bvalue,l
cond , respec-

tively. We used right and left unitary matrices for
A and B, respectively, and set 8 as i and j. Table
3 demonstrates that while the similarities are not
exceedingly high, they are higher than those of ran-
dom Gaussian matrices.7 A similar trend was also
observed in query modules. This result implies

7The similarities between random matrices are less
than 0.01.
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that LoRA and CondLoRA, to some degree, obtain
similar low-rank matrices.

5. Conclusion and Future Work

In this study, we demonstrated that similar relation-
ships exist between the initial weight matrices and
low-rank matrices regardless of layers. Inspired by
this analysis, we designed CondLoRA, which up-
dates initial weights with low-rank matrices derived
from a single linear layer. We showed that Cond-
LoRA achieves competitive performance compared
to LoRA, while trainable parameters are reduced.
Although out of scope of this study, we believe

that CondLoRA has the potential to reduce the train-
able parameters of other LoRA variants such as
AdaLoRA (Zhang et al., 2023). Therefore, for fu-
ture work, we would like to apply CondLoRA to
other LoRA variants and investigate its effective-
ness (See Section 5 for details).

Limitations

Although our analyses provided novel insights to
achieve more effective and efficient PLMs fine-
tuning, our current work has the following limita-
tions.

Analyses in other models and tasks. We used
RoBERTa base and GLUE tasks to conduct the
analyses of Sections 3 and 4. It is not immediately
clear whether these conclusions would hold true
for other PLMs and tasks. Therefore, for future
work, we are interested in analyzing other PLMs
and various tasks to verify if similar results can be
achieved irrespective of PLMs or tasks.

Analyses of conversion matrices In this study,
we have investigated whether conversion matrices
are similar across each layer. We also observed
that the similarities between the deeper layers are
extremely high. Phang et al. (2021) fine-tuned all of
the PLM’s parameters with task-specific data and
measured similarities between each layer. They
showed that the similarities between the deeper
layers are high compared to others. We would like
to investigate that a causal relationship between
layer similarities of the model fine-tuned all of the
parameters and those of conversion matrices. In
addition, we have not conducted an analysis of the
conversion matrix itself. More detailed analyses
about the conversion matrix will provide further in-
sight into the nature of these relationships.
Additionally, Equations 3 and 4 are not able to

use to matrices where d1 and d2 are different, as
inverse matrices are not able to find for such matri-
ces. Therefore, in order to conduct analyses using
conversion matrices for other modules, such as

feed-forward layers, we aim to devise a more gen-
eralized method for finding conversion matrices in
future work.

Evaluation of CondLoRA with LoRA variants
CondLoRA, a method that finds low-rank matri-
ces for each layer using a linear layer, can also
be applied to other LoRA variants. For instance,
CondLoRA could be applied to AdaLoRA (Zhang
et al., 2023), decomposing ∆Wm,l into the form
of singular value decomposition Pm,lΛm,lQm,l, us-
ing trainable parameters θmP , θmΛ , and θmQ for each
matrix. Therefore, further investigation into the ef-
fectiveness of CondLoRA when applied to other
LoRA variants remains a challenge for future re-
search.

Ethical Consideration

In recent years, bias in data has become an issue.
Training a models, not just on training using Cond-
LoRA, on biased datasets can result in unjustified
predictions or the generation of pejorative content
directed towards specific individuals or groups. In-
tuitively, if the parameters are abundant, the effect
of bias will be distributed across each parameter,
but if they are small, all parameters may be affected
by bias. Since CondLoRA has very small trainable
parameters compared to other fine-tuning methods
(such as full parameter tuning and the other PEFT
methods), it may be more susceptible to the effects
of bias. Therefore, when using CondLoRA, suf-
ficient attention should be paid to the problem of
bias.
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