Text-to-Multimodal Retrieval with Bimodal Input Fusion
in Shared Cross-Modal Transformer

Pranav Arora, Selen Pehlivan, Jorma Laaksonen
Aalto University, VTT Technical Research Centre of Finland, Aalto University
Espoo Finland, Oulu Finland, Espoo Finland
pranav.arora@aalto.fi, selen.pehlivantort@vtt.fi, jorma.laaksonen@aalto.fi

Abstract

The rapid proliferation of multimedia content has necessitated the development of effective multimodal video retrieval
systems. Multimodal video retrieval is a non-trivial task involving retrieval of relevant information across different
modalities, such as text, audio, and visual. This work aims to improve multimodal retrieval by guiding the creation of a
shared embedding space with task-specific contrastive loss functions. An important aspect of our work is to propose
a model that learns retrieval cues for the textual query from multiple modalities both separately and jointly within a
hierarchical architecture that can be flexibly extended and fine-tuned for any number of modalities. To this end, the
loss functions and the architectural design of the model are developed with a strong focus on increasing the mutual
information between the textual and cross-modal representations. The proposed approach is quantitatively evaluated
on the MSR-VTT and YouCook2 text-to-video retrieval benchmark datasets. The results showcase that the approach
not only holds its own against state-of-the-art methods, but also outperforms them in a number of scenarios, with a
notable relative improvements from baseline in R@1, R@5 and R@10 metrics.

Keywords: text-to-video retrieval, multimodal retrieval, modality fusion, transfer learning, contrastive learn-
ing, multimodal transformers, cross-modality

1. Introduction

' Text-to-video Retrieval (TVR)\

The exponential growth of multimedia content has
accentuated the need for robust text-to-video re-
trieval systems with practical applications including
web search engines and personal media indexing
(Lew et al., 2006; Hu et al., 2011; Liu et al., 2021;
Zhu et al., 2023; Qiu, 2022). Specifically, the main
user expectation from these systems, which seek to
locate specific video files based on text queries, is
to enhance the user experience by delivering more
relevant search results and addressing also queries
where mere textual information might be lacking.
With the presence of various input modalities, solely
relying on cross-modal understanding between text
and vision (Zhao et al., 2022) is sub-optimal. Lever-
aging multimodal retrieval ensures richer content
representation, adept handling of ambiguity, and
a contextual understanding of user queries. This
results in a more precise and contextually accurate
media retrieval, fulfilling nuanced user expectations
in the vast multimedia landscape.

Particularly, audio, being the most prevalent third
modality alongside textual and visual, warrants
further exploration in cross-modality applications
(Zhao et al., 2022; Shvetsova et al., 2022; Chen
et al., 2023a). For instance, as illustrated in Fig-
ure 1, the absence of clear visual cues for the
"...inviting his colleagues to join him" part of the
textual description can hinder the accurate learning
of the required text-to-video associations. However,
a trimodal embedding that also incorporates the "in-
vitation" in the audio modality can enhance retrieval

[Text }4—) Video

/Text-to-audio Retrieval (TAFQ

"a video of a young
man in a white shirt
inviting his colleagues

\___tojoin him"

Text-to-multimodal Retrieval (TMR)

"a video of a young
man in a white shirt
inviting his colleagues
to join him"

Text

e

Audio «———— Video

Text «—— Audio

Pttt -t

“a video of a young
man in a white shirt
inviting his colleagues
to join him”

Figure 1: An example of a textual query and a video
target that can be retrieved with multimodal but not
with unimodal associations.
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outcomes. Similarly, a user searching for "roman-
tic scene with a sunset and a soft song" expects
the system to recognize both the visual beauty of
the sunset and the auditory cue of a soft song to
retrieve the right video. In such cases, multimodal
learning that integrates text, audio, and visual be-
comes indispensable for accurate retrieval.
Fusion techniques are essential to multimodal
learning, ensuring effective integration of informa-
tion across modalities for a unified model (Chen
et al., 2020; Bao et al., 2022). These techniques
are categorized by Nagrani et al. (2021) as early,
mid, and late fusion. While early fusion exchanges
cross-modal information at the outset, /ate fusion
waits until after the classifier for exchange. Recog-
nizing the potential of mid fusion, the hierarchical
fusion approach we propose in this paper initially
processes each modality with its dedicated encoder.
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This is then followed by a multimodal fusion trans-
former that reveals shared embedding represen-
tations among the modality pairs. This process
mirrors the human tendency to process individual
information before integrating it, thereby enhancing
text-to-multimodal retrieval (TMR) efficacy.

Another important factor for effective cross-
modal integration is how transformers for multi-
modal fusion are designed. It has been shown that
dual-encoders behave superior to fusion-encoders
(Lu et al., 2019) for bimodal retrieval tasks. In these
setups, modality interactions are jointly encoded
via similarity scores for retrieval tasks, e.g. image-
to-text retrieval (Radford et al., 2021; Li et al., 2021;
Bao et al., 2022). Although bimodal architectures
are well studied, an increasing number of modali-
ties comes with design challenges. For instance,
the multimodal fusion transformer for trimodality in
(Shvetsova et al., 2022) causes exponential growth
with the increasing number of modalities, unless
additional training strategies, such as random drop-
ping in modality combinations, are used. As Figure
2 demonstrates, we formulate in this paper a cross-
attention mechanism within a scalable architecture
to encode shared embeddings among all modality
pairs. We believe that this is further extendable to
even more modalities without changing the multi-
modal fusion transformer.

Our proposed approach employs cross-attention
to process multiple modality pairs simultaneously,
facilitating effective multimodal learning. In the con-
text of trimodality, merging audio and visual modal-
ities presents challenges. However, when these
modalities are meticulously aligned in a shared
space, they can together yield powerful retrieval
cues. In summary, our contributions are:

1. For multimodal retrieval, we present a hier-
archical architecture’ that initially cultivates
modal-specific unimodal experts. This is
then complemented by a dedicated cross-
attention fusion transformer to establish a
modal-agnostic multimodal space.

2. We highlight the potential of fine-tuning loss
variations to boost performance in text query
based multimodal retrieval tasks.

3. We demonstrate the efficacy of audio-video
fusion in enhancing text-based retrieval.

4. We assess the impact of text query length on
the efficacy of retrieval systems.

2. Related Work

In the realm of deep learning, the evolution of multi-
modal retrieval research can be categorized in three

1https ://github.com/Pranav260/TMR

main areas: vision-language (Bain et al., 2021;
Arnab et al., 2021), vision-audio (Rouditchenko
et al., 2020; Chung et al., 2019), and multimodal
learning (Miech et al., 2019; Shvetsova et al.,
2022; Chen et al., 2021). The development strides
in the transformer architecture (Vaswani et al.,
2017) and contrastive learning (Oord et al., 2018)
have pushed the research. Transformers, having
shown prowess in unimodal NLP, vision, and au-
dio tasks like (Kenton and Toutanova, 2019; Arnab
et al., 2021), naturally led to their adoption in multi-
modal learning as evidenced by nhumerous studies
(Radford et al., 2021; Li et al., 2021; Bao et al.,
2022). This trajectory inspired our exploration of
transformer-based architectures for enhanced mul-
timodal retrieval.

Pretrained backbones, like CLIP (Radford et al.,
2021), excel in feature extraction and create a uni-
fied text and visual space, proving effective in mul-
timodal research (Xue et al., 2022; Nagrani et al.,
2022; Shvetsova et al., 2022; Bain et al., 2021).
For video tasks, architectures like CLIP4CLIP (Luo
et al., 2022) showcase their adaptability in the field.

A popular approach in vision-language and
vision-audio is bimodal learning, where two
transformer-based models are jointly pretrained
to create a shared space (Bain et al., 2021; Rou-
ditchenko et al., 2020), bridging the modalities. Be-
sides fine-tuning, utilizing frozen pretrained mod-
els is also gaining traction. This approach not
only saves computational resources, but also lever-
ages the rich feature representations learned by
the base models. Works such as (Luo et al., 2020;
Xue et al., 2022) extend the transformer-based pre-
trained backbones, such as CLIP, trained on image-
text pairs using transformers for text-to-video re-
trieval. However, while various methodologies for
bimodal learning are being explored, video data
contains a wealth of cues within its audio modal-
ity, which must be harnessed to develop robust
retrieval systems.

Pioneering the domain of multimodal learning,
(Aytar et al., 2016) introduced an innovative ar-
chitecture trained on image-text and image-audio
pairs. This marked one of the earliest endeavors
to seamlessly integrate text and audio modalities in
multimodal learning. In the context of multimodal
retrieval tasks, recent works, such as (Chen et al.,
2021; Akbari et al., 2021; Shvetsova et al., 2022;
Chen et al., 2023a), have delved into diverse ap-
proaches to derive effective multimodal representa-
tions using text, visual, and audio modalities. A spe-
cific method (Radford et al., 2021) employs embed-
dings or tokens from unfrozen pretrained backbone
networks to compute a similarity matrix. However,
it's more common for the obtained input tokens
to be processed using transformer-based models,
like (Nagrani et al., 2022), to enhance performance.
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Figure 2: Our proposed model’s end-to-end training pipeline for the text-to-multimodal retrieval (TMR)
task. Our model uses three separate transformer-encoders as unimodal experts and a multimodal fusion
transformer with shared parameters among modality pairs. The objective function for TMR is based on
contrastive loss components between text ¢ and cross-modal representations, tv, va, ta, respectively.

Delving deeper into transformer-based techniques,
(Akbari et al., 2021) proposed a trimodal structure
encompassing text, audio, and video. This model
operates on a modality-agnostic, single-backbone
Transformer by sharing weights across the three
modalities. The authors of (Li et al., 2021; Chen
et al., 2023a) emphasize the importance of align-
ment between unimodal representations to estab-
lish a robust multimodal space. Specifically, (Chen
et al., 2023a) acknowledges the impact of align-
ment and adapts its use for various tasks, like re-
trieval and captioning, by adjusting the loss function
to suit each task’s requirements. A recent study
(Ibrahimi et al., 2023) demonstrates promising per-
formance using text-conditioned audio and visual
features, without the need for pretraining on large-
scale datasets.

Closest to our work, (Shvetsova et al., 2022)
emphasizes the importance of immediate interac-
tion and integration of modalities, ensuring that the
cross-modal model captures the intricate interplay
between them. However, it might not be able to
capture the nuanced representation of single and
fused representation, which offers an advantage
as described in (Nagrani et al., 2021). Further us-
ing multiple contrastive losses between different
modality pairs in a combinatorial manner can help
in the pretraining stage but for certain tasks, spe-
cific fine-tuning strategies such as picking differ-
ent combinations of losses can serve very well.
These observed drawbacks serve as a foundation
for building our architecture.

3. Model Architecture

Our trimodal retrieval model draws its inspiration
from multimodal fusion transformers presented in
recent studies such as (Xue et al., 2022; Shvetsova
et al., 2022; Nagrani et al., 2022). The proce-
dure initiates with quite standard, state-of-the-art
modality-specific token generation processes. A

significant enhancement in the proposed architec-
ture is then the integration of separate transformers
for each modality as unimodal experts. The uni-
modal experts are responsible for generating robust
representations for text, audio, and video, respec-
tively, complemented by the explicit cross-attention
computation central to the multimodal fusion trans-
former, as depicted in Figure 2.

Our model’s hierarchical structure facilitates
learning retrieval cues from multiple modalities in
a flexible and extensible manner. Flexibility is in-
herent in our approach, as we do not need to alter
the existing setup to add new modalities such as
depth data or haptics — simply adding another uni-
modal transformer suffices. We can then select the
best combination to minimize contrastive losses
between modalities for the desired task.

3.1. Token and Feature Extraction

Following the common practice, the inputs of all
data modalities, i.e., text, audio, and video, are
initially processed through backbone networks to
extract features as illustrated in Figure 2. The CLIP
backbone (Radford et al., 2021) is used for text and
video and a trainable CNN backbone (Shvetsova
et al., 2022; Rouditchenko et al., 2020) is used for
audio. Subsequently, the extracted features un-
dergo modality-specific linear projections through
the token projection layers. Following the initial pro-
cessing, each modality’s tokens undergoes layer
normalization (LN), essentially L2 normalization.
The output of each LN is a three-dimensional ten-
sor of tokens, [B, N, C], where B is the batch size,
N is the number of tokens, and C'is the channel
dimensionality. Tokens for text, audio, and video
are represented as [11, T2, ..., Tn), [Q1, 2, . . ., Q]
and [v1,vs, ..., ;). Due to the variability in token
dimensionalities across modalities, especially from
the differing lengths of video clips, token normaliza-
tion is employed to make the number of tokens in
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each video constant, facilitating batch processing
during training. To ensure consistency with prior re-
search (Shvetsova et al., 2022; Miech et al., 2019),
the same configuration in terms of input size, learn-
ing rate, and batch size is used.

3.2. Unimodal Transformers

The initial part of the model consists of three uni-
modal vanilla transformer-encoders for text, video,
and audio as shown in Figure 2. The main aim
behind using separate encoders is to generate a
better representation and attune the embedding to
each particular modality effectively. This enables
better performance across unimodal tasks mean-
while also serving as input to the fusion transformer
where these high-dimensional inputs can be really
exploited in modelling cross-modal relationships.

Given tokens for text, video, and audio, each
is processed by designated modality-specific uni-
modal transformers. The transformed representa-
tions are subsequently paired and organized as ta,
tv, and va. These combinations are sequentially
channeled into a fusion transformer. The outputs
from the three merged modalities, in conjunction
with individual outputs ¢, a, and v, undergo token-
wise averaging and are projected into a shared
embedding space.

3.3. Multimodal Fusion Transformer

The most important design decision is to craft an
effective strategy for integrating any two modali-
ties. In achieving such a fused representation, we
employ a transformer-encoder that shares weights
across all modality pairs. Noteworthy in this ap-
proach, and deviating from (Shvetsova et al., 2022),
is the incorporation of a distinct cross-attention
block as a multimodal fusion transformer. This
block allows for bidirectional attention computations
leveraging two cross-attention units. In this setup, a
query from one modality can interact with the keys
and values of another modality, and the other way
around, e.g. text-to-video and video-to-text. Given
the three unimodal ¢, a, v inputs, all bimodal inputs,
i.e., ta, tv, and va, use the same cross-attention
block. Our model thus has one cross-attention
block shared by all modality pairs to prevent expo-
nential growth in the number of model parameters
as the number of modalities increases.

The proposed bidirectional interaction via our
cross-attention block is visually represented in Fig-
ure 3. lts input and output are the stacked represen-
tation of two particular modalities, e.g. here the red
and yellow blocks of tokens denoting the text and
audio modalities ¢ and a, respectively. While one
cross-attention computes similarities using queries
of t with keys of a, the other cross-attention com-
putes similarities in opposite direction.

ta _ta ta _ta
[m*, 72", o

ia ta
T a0, Qg e ey |

—
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Figure 3: Detailed illustration of the cross-attention
block as one layer of the multimodal fusion trans-
former (see Figure 2). For bimodal input, the cross-
attention block jointly extracts bidirectional embed-
dings across modalities.

3.4. Fusion in Shared Embedding Space

Ultimately, given dedicated unimodal transformers
for each modality, our model generates representa-
tions ¢t for text, v for video, and « for audio. In con-
trast, the multimodal fusion transformer produces
three combined representations: ta for text-audio,
tv for text-video, and va for video-audio. Upon
deriving the six representations, each one under-
goes averaging across the token dimension N re-
sulting in averaged dimensionality of [B, C]. The
stacked representations are de-stacked and then
individually averaged after which they are individ-
ually projected in a higher dimensionality using a
modality-specific projection layer. Mathematically
this is expressed for the text-video tv pair as:

[Titf7"'77—7;t711)’1/72;f7"'7Vit]g]’ (1)

where

Using the above averaged representations, these
modalities are finally normalized and projected into
a shared space. The projections are then element-
wise added, resulting in:

) = o) + o), @)

where o, and o, are the projection operations.
Here, projection operations are linear layers that
transform the input embedding into a shared higher-
dimensional space across all modalities. Similarly

15%26



the other two stacked representations, i.e., ta and
va, are converted into fused representations.

Altogether, these constitute six distinct represen-
tations, ¢, v, a tv, ta and va that are subsequently
used for defining the contrastive loss pairs for the
training.

3.5. Loss Function

As the main objective is to improve the inter-modal
representations, one requires a loss function which
is able to guide the model to find correlations be-
tween the modalities. In this work, we prioritize
the enhancement of mutual information between
textual and cross-modal representations. As a so-
lution, we formulate the loss upon the concept of
contrastive loss (Oord et al., 2018), which encour-
ages the learning of discriminative representations
by leveraging both positive and negative pairs.

Given two representations X and Y, where the
similarity function used is cosine similarity between
X and Y, the contrastive loss Lxy can be com-
puted bidirectionally using the Noise Contrastive
Estimation (NCE) (Oord et al., 2018) with tempera-
ture ¢ and batch size B as:

:7721
WZ /¢)

Following (Shvetsova et al., 2022), a combination
of multiple contrastive loss functions between differ-
ent modalities is formulated to guide the model to
convergence. However, we here focus on the TMR
task and the final objective can be represented as:

t- ¥

XCMQ,
YCM,
Mg M=

eXp (sim(X;,Y5)/¢)

Yoy exp(sim(X;,Y;)/C)
9)
Y:)

eXp (sim(X;, Y)/

> i1 exp(sim(X;

AxyLxy, (5)

where A xy is a weight coefficient for each loss com-
ponent L xy between two modalities. It is observed
that M, = {¢t} and M, = {ta, tv,va} are powerful
among various loss alternatives for the TMR task.
We will study and discuss the choices and implica-
tions of these observations in detail (see Figure 4
for more insights).

4. Experimental Evaluation

4.1. Datasets and Statistics

In the pursuit of advancing multimodal learning, the
choice of dataset plays a pivotal role. Our model
has used the pretained weights by (Shvetsova
et al., 2022) over HowTo100M dataset, and the
YouCook2 and the MSR-VTT for text-to-multimodal

retrieval evaluation. Note, we use the train-test
split approach from (Shvetsova et al., 2022; Miech
et al., 2019) for a fair comparison.

HowTo100M (Miech et al.,, 2019) serves as a
pretraining dataset, encompassing instructional
videos spanning 23,000 distinct activities and over
100 million samples, with a significant portion
dedicated to cooking videos. Detailed annotations
including textual descriptions and the inclusion of
audio components further enhances its multimodal
nature, paving the way for tasks like audio-visual
retrieval.

YouCook2 (Zhou et al., 2018) aligns closely with
the domain of the HowTo100M, primarily focusing
on cooking related instructional content with 1
description per video. Although it serves as a
benchmark for evaluating retrieval performance
in comparison with works like (Shvetsova et al.,
2022), it does not provide good insights on
domain-agnostic capabilities of the model due
to domain similarity with the pretraining dataset,
HowTo100M.

MSR-VTT (Xu et al., 2016) is recognized as a
benchmark for video retrieval and captioning, while
it contrasts well with instructional datasets such as
HowTo100M. The dataset encompasses 10,000
diverse video clips, from movie snippets to music
and sports, each enriched with up to 20 human-
generated descriptions. Different to the other two
datasets, only approx 4% of MSR-VTT videos con-
tain cooking and a total of 11% are instructional.
Due to the diverse nature of its video contents, we
consider the MSR-VTT dataset as a good represen-
tative for real-world retrieval scenarios. Following
the earlier multimodal evaluations, we have used
only those 968 videos that contain also audio.

4.2. Retrieval Setup and Metric

Consistent with previous studies (Rouditchenko
et al., 2020; Nagrani et al., 2022; Shvetsova et al.,
2022), it is assumed that there exists 1-to-1 cor-
respondences between the query texts and the
video files to be retrieved. This standard assump-
tion means that in automatic performance evalu-
ation only one video is considered as the correct
retrieval result despite the fact that a human as-
sessor could regard more than one video as cor-
rect. Correspondingly, the reported performance
measures can be regarded as lower limits of the
methods’ human-observed performance.

The different ways of using trimodal data for TMR
are defined and denoted as follows:

*t — v : Videos are retrieved based on a
text query. The representations of the text
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and video modalities are both obtained from
their respective unimodal experts. Audio is not
used.

* t — v+a: The text representation is obtained
from the unimodal expert, whereas the video-
audio fused feature is obtained as the element-
wise sum of the respective unimodal experts.

* t — va : Now, the fused feature is f(v??, a??)

and obtained via the modality pair va from the
cross-attention block (see Eq. (3)).

Each mechanism focuses on visual-based
retrieval, but the feature retrieved varies based on
the type of interaction with audio.

Evaluation Metric. A commonly-used metric for
video retrieval evaluations is the recall R@K, where
K represents the number of top-ranked videos that
are considered when measuring retrieval accuracy.
The performance is reported for Kiin {1, 5,10} for
gauging the model’s recall across different retrieval
depths. The higher the value of R@K, the more
accurate the retrieval system is and the desired
video is found within a smaller set of top retrieved
videos.

4.3. Training Setting

We start our model training from the pre-
trained weights of the Everything at Once (EAQ)
(Shvetsova et al., 2022) model. We keep the
weights for layers which overlap with EAO and ini-
tialize the others from scratch. After this, we fine-
tune the model with the task-specific MSR-VTT and
YouCook?2 data.

All the experiments are conducted based on the
CLIP backbone (Radford et al., 2021) for the tex-
tual and visual representations. CLIP, pre-trained
on the extensive Wikipedia-based image-text WiT
dataset (Srinivasan et al., 2021), employs the ViT-
B/32 model for its visual backbone and a BERT-like
text encoder for its text backbone. This configura-
tion extracts a 512-dimensional features for both
video and text. The CLIP backbone is frozen with
no updates while training the main architecture.
For the audio, a trainable CNN is used as an au-
dio backbone for a fair comparison to (Miech et al.,
2019; Shvetsova et al., 2022). The audio backbone
produces a 4096-dimensional feature per second.

In our architecture, the unimodal transformers
and multimodal fusion transformer consist of only
one block, also illustrated in Figure 2. The hid-
den size is set to 4096 with 64 attention heads.
For projections of Eq. (3), the dimensions for the
token and embedding space are 4096 and 6144,
respectively (Shvetsova et al., 2022). For the loss
function given in Eq. (5), the weights are set as
Atwa = Atto = Arta = 1 With a temperature value
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Figure 4: Loss variant Cases A to F. The color
coding of the modalities follows that in Figure 2.

of ¢ = 0.05. All the experiments are conducted
for 25 epochs using the Adam optimizer (Kaiser
et al., 2017) with a learning rate of 5- 10> and an
exponential decay of 0.9. We have conducted our
experiments using a computer featured by AMD
Instinct GPUs and a node with eight parallel GPUs.

4.4. Loss Variants for Retrieval

The first aim of our study is to find the loss function
that is optimal for performance in TMR tasks. For
maintaining comparability with (Shvetsova et al.,
2022), the experiments are conducted with pre-
trained setting. We always employ bidirectional
losses as shown in Eq. (4). However, the subtler
challenge lies in identifying the bidirectional con-
trastive loss pairs that are the most effective for
TMR. Figure 4 showcases six alternative combina-
tions, labeled A to F, of loss functions for Eq. (5)
that we studied.

Table 1 reports the retrieval results in the fine-
tuning setting with the MSR-VTT data on the pro-
posed and the original EAO model, which intro-
duced only the loss Case A. For the t — v re-
trieval mechanism, Case E loss results in the high-
est performance among all cases. However, for
the ¢ — v + a mechanism, Case C and E losses
compete, and for the ¢ — va mechanism, Case C
loss outperforms others. Overall, we achieve the
best retrieval performance using the combination
of t — va and Case C loss, both for the proposed
and the original EAO model.
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EAO Arch. Ours

Retrieval |C R@1 R@5 R@10|R@1 R@5 R@10

[©)

28.2 58.7 68.4 |27.5 59.8 69.7
33.4 632 742 [31.2 639 743
271 571 69.7 |284 57.7 711
29.6 60.5 723 |24.3 54.2 66.5
35.5 63.9 74.2 |[34.8 643 73.6
329 634 73.7 [30.5 60.5 72.0

t—v

26.2 56.8 67.4 (254 57.4 654
31.1 60.6 72.6 |[26.4 56.4 70.8
28.0 58.7 70.7 [34.9 66.0 76.1
30.1 59.6 71.0 [22.0 51.2 64.6
35.3 644 74.8 |35.1 63.8 743
28,5 584 714 |26.2 56.4 70.1

t—=v+a

31.8 624 743 (324 60.4 69.8
37.3 66.5 77.9 |33.1 64.1 771
38.3 67.3 77.6 |36.8 67.3 77.6
36.9 65.7 76.9 [27.0 57.2 70.4
34.6 635 73.8 |33.4 625 724
22.8 52.3 66.0 [15.8 38.7 52.3

t — va

MMOO@WX>TMMOUO®>»TMOOIW >

Table 1: Results on MSR-VTT using the original
EAO and our architectures with various loss vari-
ants (shown in Figure 4) in different TMR retrieval
mechanisms (i.e.,t — v, t = v+ a, t — va). The
grayed results are the only ones reported in the
original EAO work. Note, our architecture uses par-
tial weights, while EAO uses all weights pretrained
on HowTo100M.

Retrieval | Architecture R@1 R@5 R@10
3xUmt 316 614 738
1xCaft 29.1 605 715
t 3xUmt+3x Caft 22.7 409 537
EAO 271 571 69.7
1xUmt+1xCaft 28.8 57.4 69.0
3xUmt+1xCaft(Ours) | 28.6 57.4 70.5
3xUmt 33.5 624 749
1xCaft 315 614 726
f s vta 3xUmt+3x Caft 295 619 733
EAO 28.0 58.0 70.7
1xUmt+1xCaft 33.6 63.6 74.6
3xUmt+1xCaft(Ours)| 34.9 66.0 76.1
1x Caft 34.7 63.8 745
3x Umt+3 x Caft 30.3 61.4 74.8
¢ - va EAO 38.3 67.3 77.6
1xUmt+1 x Caft 35.2 66.8 76.7
3xUmt+1xCaft (Ours) | 36.8 67.3 77.6

Table 2: Comparison between architectural variants
using loss Case C on the MSR-VTT dataset. Umt
stands for unimodal transformers and Caft stands
for cross-attention fusion transformer.

We can see that, by strategically leveraging con-
trastive loss, Case C loss effectively increases mu-
tual information between text and other modalities,
correlating them more cohesively in the TMR task.
This is especially clear when compared with the
EAO model’s original Case A loss.

4.5. Architectural Variants for Retrieval

In addition to our main architecture depicted in Fig-
ure 2, we also explored a number of other archi-
tectures for TMR tasks. The variants rely on vari-
ous transformer-block combinations, including uni-
modal transformers, i.e., Umt, and cross-attention
fusion transformers, i.e., Caft, to identify the most
effective architecture. Table 2 summarizes the per-
formance of each architecture trained with Case C
loss on the MSR-VTT dataset.

Notably, our model consistently outperforms
other architectural variants across all retrieval sce-
narios. Our model outperforms the EAO architec-
ture in Case C loss, excelling in R@1, R@5, and
R@10 for the — v + @« mechanism. Meanwhile, it
maintains comparable performance in R@5 and
R@10 for t — wa. It is worth noting that our model
uses partial weights from EAQ pretrained on the
HowTo100M and a fully pretrained model is ex-
pected to achieve better performance. Moreover,
unlike the fusion transformer we designed, the fu-
sion transformer designed by the EAO grows expo-
nentially as the number of modalities increases.

Additionally, the architectural variant with a single
Umt and Catft, i.e., 1xUmt+1xCaft, is the clos-
est competitor to our model. While our model
consistently outperforms this variant across all re-
trieval tasks, the difference in performance is rel-
atively marginal. This observation suggests that
the 1xUmt+1x Caft combination could be a strong
contender, especially in scenarios where there is a
need to reduce the number of model parameters.

4.6. Comparison with State-of-the-Art

Table 3 shows a comparison of our proposed model
with a number of other TMR models pretrained
on the HowTo100M data and tested on the MSR-
VTT and YouCook2 datasets. It can be seen that
our model consistently outperforms existing meth-
ods, emphasizing its prowess in multimodal re-
trieval tasks. Specifically, when juxtaposed with
the EAO* (replicated EAO) results, our approach
demonstrates significant advancements in both the
t - v+ aandt — wva retrieval tasks. For the
t — v + a task, our model on MSR-VTT demon-
strated a remarkable 33.2% relative improvement
in R@1, a 16.2% rise in R@5, and a 12.9% boost
in R@10. Similarly, for the ¢ — va task, we noticed
a 15.7% increase in R@1, a 7.9% enhancement in
R@5, and a 4.4% growth in R@10. These results
not only underscore the effectiveness of our fusion
style, architecture, and loss selection, but also so-
lidify our model’s superiority in the TMR task.
Table 3 also shows the impact of the pretrain-
ing dataset on the performance. HowTo100M fo-
cuses on human speech and has less diverse
audio, with textual descriptions from ASR and a
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YouCook2 MSR-VTT
Method Pretrain. Data | Retrieval | R@1 R@5 R@10 | R@1 R@5 R@10
VAST (Chen et al., 2023b) VAST27M t—v+a| 504 743 808 | 63.9 843 896
VALOR (Chen et al., 2023a) VALOR1M t—v+a - - - 544 798 87.6
LAV (Nagrani et al., 2022) VideoCC3M |t —v+a - - - 35.8 65.1 76.9
AVL (Rouditchenko et al., 2020) | HowTo100M | ¢t »wv+a | 30.2 55.5 66.5 225 50.5 64.1
EAO* HowTo100M | ¢ —>wv+a | 29.7 586 694 | 262 56.8 674
LAV (Nagrani et al., 2022) HowTo100M | t v +a - - - 33.1 623 72.3
Ours HowTo100M | ¢ —v+a | 327 63.7 743 | 349 66.0 76.1
EAO (Shvetsova et al., 2022) HowTo100M t — va - 62.7 75.0 - 62.1 72.9
EAO* HowTo100M t— va 32.3 62.1 729 | 31.8 624 743
Ours HowTo100M t — va 348 642 756 | 36.8 673 77.6

Table 3: Comparison with state-of-the-art works which used audio with video for the text-to-multimodal
retrieval. EAO shows the results reported in (Shvetsova et al., 2022) whereas EAO* shows our replicated
results. Note, VAST, VALOR and LAV results are shown for the completeness of the study as the
differences in the pretraining prevent direct comparisons of the results.

domain-specific emphasis on cooking videos. In
contrast, smaller datasets like VAST27M (Chen
et al., 2023b), VALOR1M (Chen et al., 2023a), and
VideoCC3M (Nagrani et al., 2022) perform very
well, most probably due to their better quality and
diversity.

4.7. Analysis on Query Length

In this section, we assess the impact of text query
length on the efficacy of retrieval systems. In addi-
tion to the default test query set - MSR-VTT 1k used
by (Shvetsova et al., 2022; Miech et al., 2019), we
build two additional query sets, namely "short" and
"long", that vary in terms of the query text length.
The distributions of query lengths are depicted in
Figure 5. A notable discrepancy exists between the
recommended evaluation query set and the range
of short to long queries present in the dataset.

The results in Table 4 reveal a compelling trend:
as the query becomes lengthier and more detailed,
the system’s proficiency in pinpointing the correct
video improves, evidenced by a significant 16%
enhancement in the R@1 metric, when compared
to the MSR-VTT 1k results. This underscores the
pivotal role of text query length in influencing per-
formance outcomes. Consequently, it raises a per-
tinent question regarding the reliability of MSR-VTT
as a benchmark for gauging retrieval system perfor-
mance. The experiment reinforces the hypothesis
presented in (Rodriguez et al., 2022). Their ap-
proaches provide a promising direction for future
work, potentially leading to the design of improved
TMR benchmarks. This could be of significant im-
portance in the field.

4.8. AQualitative Results with Audio

To show the effectiveness of including the audio
modality, we compare retrieval results between the
t — v and t — va mechanisms. Notably, from 968

Retrieval | Query Length | R@1 R@5 R@10
Short 173 419 549
t—v MSR-VTT 1k | 28.6 574 70.5
Long 375 69.1 80.6
Short 21.0 469 585
t—-v+a| MSR-VIT1k | 349 66.0 76.1
Long 423 73.6 83.6
Short 21.3 47.3 58.9
t — va MSR-VTT 1k | 36.8 67.3 77.6
Long 427 734 837

Table 4: Query length vs. TMR performances on
the MSR-VTT dataset with our proposed architec-
ture and loss Case C.

Histogram of Short Queries = Histogram of Long Queries  Histogram o MSR-VTT-1k Queri

Samples
Samplgs o
Samples

Lgngtqu (NB. ofwcha;act'érs) Len‘éth'(‘r\lo.’vbf égar';cte‘:s) Ler/;gtlr: (’l“\lo.mofmch‘érgétgrs

Figure 5: Histograms of query lengths of the three
test query sets from MSR-VTT text descriptions.

videos (the number of videos with audio in MSR-
VTT test set), the ¢t — va mechanism retrieved 44
more R@1-correct videos than t — v in the test set.
Figure 6 provides examples that appeared only in
the t — wva retrieval results. On inspecting these
videos, the benefits of audio integration are in some
cases evident whereas some other cases appear
more coincidental. In particular, even though the
speech of the man in the first clip is not explicitly
recognized, the overall multimodal context is hinting
towards invitation. Also, in the cases of the video
game and dancing videos, the audible modality is
indeed strongly supporting the retrieval. On the
other hand, both the chair and duck examples are
correct retrievals, but the audible contents cannot
be credited for that.
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a women preparing a duck to roast
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Figure 6: Examples retrieved with ¢ — va but not
with ¢ — v on the MSR-VTT-1k test set.

5. Discussion

Many recent studies have utilized vision-language
models based on self- or cross-attention mecha-
nisms to enhance downstream tasks, including text-
to-video retrieval. However, video data contains not
only visual but also audio information. Moreover,
the integration of even more modalities (e.g., hap-
tics, 3D) into transformer architectures for retrieval
tasks still remains as a very seldom addressed
research question.

Specifically, there are a few recent works that
incorporate the audio modality into multimodal
transformer-based architectures (see Table 3).
While these models (e.g., the EAO model) already
face increased data complexity due to the additional
audio modality, the models require further design
considerations in terms of multimodal fusion with
transformers. Overall, this introduces new research
questions and applications, where multiple modali-
ties can be efficiently utilized and fused to enrich
representations in shared multimodal embedding
spaces.

Our primary motivation has been to introduce
a scalable and flexible text-to-multimodal retrieval
(TMR) architecture, open for future expansion with
other modalities. The cross-attention mechanism
used in our model is the same for every modality.
One can further extend our model by incorporat-
ing state-of-the-art architectures in the backbones
and adding processing steps with minimal changes.
Covering a new modality requires adding an uni-
modal transformer with an effective loss combina-
tion to the existing objective function, without train-
ing the model from scratch. Each modality’s unique
pipeline allows us to tailor the obtained shared em-

bedding space for interaction of modalities in the
multimodal transformer. The results of our experi-
ments have shown that, in addition to architectural
advantages, our architecture is on par with the lat-
est technology studies.

One can finally observe from the results in Ta-
ble 3 that our model performed even better on the
MSR-VTT dataset than on YouCook?2 despite the
larger domain gap from the HowTo100M pretrain-
ing dataset. We can thus conclude that the dis-
crepancy between the different domains of the pre-
training and fine-tuning datasets does not seem to
negatively affect the effectiveness of our model.

The information embedded within the textual con-
tents plays a pivotal role in multimodal retrieval
tasks with text queries. Particularly, the quantity
and quality of these queries significantly influence
the performance of applications. We have ana-
lyzed the impact of query length, showing that
longer descriptions benefit the retrieval task (see
Table 4). This highlights the importance of future
work, such as the integration with large language
models (LLMSs), to enrich text queries.

Multimodal retrieval assessments often prioritize
the text-to-video retrieval task, which is crucial for
efficient web and personal media searches. At the
same time, the challenge of integrating text with
other modalities through cross-modal representa-
tions is central to the design of many multimodal
models. Therefore, our study has aimed to improve
text-to-multimodal retrieval of videos by leveraging
all available data modalities, i.e., text, audio and
visual, while maintaining their integrity. Our primary
focus has been on retrieval, but our architecture is
versatile and could be applied to other text-related
tasks involving multiple modalities, such as caption-
ing and visual question answering.

6. Conclusions and Future Work

In this work, we proposed a novel hierarchical
approach for the text-to-multimodal retrieval task.
Our model architecture is based on the mid-fusion
strategy and is easily applicable and scalable for
other tasks that require multimodal interaction. Our
work also bolsters the concept of task-specific fine-
tuning to tailor the generic multimodal represen-
tation space for text-to-multimodal retrieval. Tar-
geted combination of loss functions significantly
enhanced task performance compared to using a
non-targeted combination. One persistent limita-
tion is the impact of pretraining dataset selection,
which can severely affect the performance in all mul-
timodal tasks. Exploiting large multimodal domain-
agnostic pretraining datasets holds immense po-
tential for the improvement and further applicability
of our model in real-world scenarios.
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