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Abstract
Pre-trained language models (PLMs) are widely used for various tasks, but fine-tuning them requires sufficient
data. Data augmentation approaches have been proposed as alternatives, but they vary in complexity, cost,
and performance. To address these challenges, we propose STAGE (Simple Text Data Augmentation by Graph
Exploration), a highly effective method for data augmentation. STAGE utilizes simple modification operations such as
insertion, deletion, replacement, and swap. However, what distinguishes STAGE lies in the selection of optimal
words for each modification. This is achieved by leveraging a word-relation graph called the co-graph. The co-graph
takes into account both word frequency and co-occurrence, providing valuable information for operand selection. To
assess the performance of STAGE, we conduct evaluations using seven representative datasets and three different
PLMs. Our results demonstrate the effectiveness of STAGE across diverse data domains, varying data sizes, and
different PLMs. Also, STAGE demonstrates superior performance when compared to previous methods that use

simple modification operations or large language models like GPT3.
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1. Introduction

Text classification is a basic task that can solve
many problems in NLP. There are various types of
text classification, such as sentiment analysis, sub-
jectivity classification, question classification, and
pro-con classification. Recently, pre-trained lan-
guage models (PLMs) (Clark et al., 2020; He et al.,
2020; Lan et al., 2019; Wu et al., 2020a) based
on the transformer have been widely used to solve
the text classification problems (Dai and Le, 2015;
Matthew, 2018; Radford et al., 2018; Howard and
Ruder, 2018). PLMs show superior performance
than any other existing models just by fine-tuning
with the dataset for the target task.

A common challenge with PLM is that it needs
enough data to perform downstream tasks. Data
augmentation (DA) is one of the alternatives to
solve the problem (Chen et al., 2023; Kumar et al.,
2020; Sahin, 2022). Text DA approaches can be
divided into two types: text generation and text
modification. The text generation is an approach to
generate sentences by deep learning (DL) models
(Dong et al., 2019; Zhang et al., 2019). An easy
example is back-translation (Edunov et al., 2018a),
where a model trained on various languages can
generate many sentences with similar meanings
to the original sentence. However, it requires a lot
of computation to generate sentences, and the di-
versity of generated sentences may be relatively
limited.

On the other hand, text modification is a cost-
effective method to generate a diverse set of sen-
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Figure 1: Augmentation performance by replace.
It shows the relative performance and the similarity
between the replaced word and its replacement. If
replacement words are carefully chosen, the per-
formance can be more improved.

tences based on modification operations. However,
in many previous approaches, the focus was pri-
marily on developing new modification operations,
with little consideration given to the selection of
operands. Most of them randomly chose operands
for the operations. While these approaches were
capable of generating a variety of sentences, their
performance suffered due to the random selection
of operands, resulting in relatively low performance
(Niu and Bansal, 2018). It is crucial to not only con-
sider the modification operations themselves but
also the selection of operands (words) to which the
operations will be applied.

Figure 1 shows the significance of operand selec-
tion. We conduct augmentation using the replace
operation for the text classification task with SST-2
(Socher et al., 2013). We generate new sentences
by replacing a word. The replacement word is cho-
sen based on the similarity by Word2Vec. Figure
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1 shows the relative performance with respect to
the similarity of the replacement word to the origi-
nal word. It is very interesting that the performance
varies much depending on which word is chosen for
replacement despite utilizing the same operation.
When a word is replaced by a word with a similar-
ity of about 0.9, the augmentation performances
are the best. We can observe similar patterns with
other modification operations. We present more
experimental observations in Figures 3 and 4 in the
Appendix A. This shows the operand selection is
also crucial.

When selecting operands, it is important to con-
sider various factors such as importance, seman-
tics, relations, and frequency. Since each modifica-
tion operation injects a different type of noise, we
need to choose operands considering such charac-
teristics. For instance, in the delete operation, the
importance of words can be a significant consider-
ation, while in the replace operation, the semantic
relationship of words needs to be taken into ac-
count.

To select suitable operands for each modification
operation, we generate a word-relation graph from
a corpus, considering term frequency and word
co-occurrence. Based on this, we develop various
methods to recommend operands suitable for each
operation. We evaluate those and select the best
ones. Finally, we propose our DA technique called
STAGE (Simple Text Data Augmentation by Graph
Exploration) by combining the chosen methods.
Our STAGE is a a simple and novel text modification
DA, and enables the selection of diverse operands
by utilizing word importance, semantics, relations,
and frequency information obtained from the word-
relation graph.

To evaluate the performance, we apply STAGE
to seven text classification tasks and three PLMs
on various amount of train data. Compared to the
previous methods, STAGE is generally effective.
Especially, it shows an improvement up to 47%
when the data is too small. Furthermore, STAGE
offers the advantage of low computational cost and
the ability to augment input data, making it suitable
for low-resource settings and easily applicable in
various environments.

2. Related Works

There are two main categories of Text DA ap-
proaches: text generation and text modification.
Text modification is a DA approach employing mod-
ification operations such as deletion, insertion, etc.
Some were token-level which modified individual
tokens by applying simple operations to randomly
chosen words (Karimi et al., 2021; Shou et al., 2022;
Kolomiyets et al., 2011; Kobayashi, 2018; Luo et al.,
2021; Sahin and Steedman, 2019; Zhong et al.,

2020). One popular method is EDA (Wei and Zou,
2019). EDA generated sentences by applying sim-
ple operations on randomly chosen words. These
methods are simple and effective, but the improve-
ments were limited due to the randomness in select-
ing operands. As mentioned in Section 1, operands
play a crucial role, yet they are often given little con-
sideration in the previous methods.

Some methods focused on modifying a span of
the sentence, rather than tokens (Wu et al., 2020b;
Miao et al., 2020; Yu et al., 2019; Yoon et al., 2021).
They chose an important span of sentences with
additional information such as saliency, and modi-
fied the span. However, sentences were modified
too much by span modification, resulting in perfor-
mance degradation. There are also text modifica-
tion methods that utilize graphs. AMR-DA (Shou
et al., 2022) augmented text data by AMR parser
and AMR graph. This method generated better
samples than EDA, but the process was extremely
complex and expensive.

Unlike text modification, the text generation aims
to generate natural sentences (Lee et al., 2021; Kim
and Kang, 2022; Zhao et al., 2017; Xie et al., 2020;
Wu et al., 2019; Malandrakis et al., 2019). A repre-
sentative method is back-translation (Edunov et al.,
2018a; Sennrich et al., 2015; Edunov et al., 2018b),
which generates sentences by re-translating sen-
tences that had been translated into other lan-
guages using a pre-trained translation model. It
requires a lot of computation because it has to go
through two inference processes for DA. There are
approaches which generate sentence representa-
tions, such as Text Smoothing (Wu et al., 2022),
WordMix (Guo et al., 2019), and TMix (Chen et al.,
2020). Since they generated new sentence repre-
sentations instead of new sentences, they are not
model-transparent, and hard to apply to fine-tuning
of pre-trained LMs. Recently, there has been a
significant amount of research on augmentation
methods that utilize GPT-3 to specify templates
and generate sentences accordingly like GPT3Mix
(Yoo et al., 2021) and AugGPT (Dai et al., 2023).

3. Co-graph

Our method, STAGE, is a text modification ap-
proach using four simple operations: ‘Delete’, ‘Re-
place’, ‘Insert, and ‘Swap’. In order to choose their
operands, we build a graph of word co-occurrence,
abbreviated as co-graph, from text data, which can
model the characteristics of words and word to word
relations. Most existing modification methods de-
pended on mainly randomness, but our method
utilizes additional information about importance,
semantic, relation, term frequency obtained from
the co-graph.

15239



3.1. Co-graph generation

We build the co-graph based on term frequency and
co-occurrence to model the collocation information.
All sentences in the training dataset are tokenized,
and the unique tokens are used as nodes. We
count if two words appear together within a window
size of w in a sentence. We connect them if the
count is higher than a threshold, =. There can
be some isolated nodes in the co-graph without
any edges. We refer to the nodes that are not
isolated in the co-graph as edge-nodes or edge-
words. The nodes connected to a node in the co-
graph is referred to as neighbor-nodes or neighbor-
words of the corresponding node.

We also build sentence graphs (sen-graphs) for
single sentences. A sen-graph is a sub-graph of the
co-graph. The nodes of a sen-graph are the tokens
in the corresponding sentence, and two nodes in
the sen-graph is connected if they are connected
in the co-graph.

3.2. Understanding Co-graph

Co-graph may represent two kinds of information.
We can obtain strongly associated words in seman-
tic and grammatical viewpoints. If an edge exists
between two nodes in the graph, two words may
be highly correlated because they appear together
more than 7 times. They may have a lexical and
grammatical collocation. For example, the word
‘movie’ is connected with words like ‘star’, ‘horror’,
‘making’, ‘'seen’, ‘great’, ‘kind’, and so on in movie
review datasets. These lexical and grammatical
collocations have important roles in fluency and
idiomatic language production.

We also obtain the importance of words by the
number of edges. If a word have few edges, such
as isolated words, they may not be important be-
cause they have very weak association with other
words. If an edge-word have a large number of
edges, they may be also less important. Most of
such words can be stop words because stop words
are frequently used with various words (Silva and
Ribeiro, 2003). Edge-words have with a modest
number of edges can be considered important be-
cause they have strong associations with specific
words.

We design our method based on these two as-
pects of co-graph. Since we can obtain word to
word relations and importance of each word, we
can choose better words for text modification based
on these features. For example, in replace, we
choose a word to be replaced based on the im-
portance, and choose a word to replace among
the collocated words. Through this, we can modify
sentences while adjusting the degree of similarity.

4. Proposed Operations

The operations used in STAGE are ‘Delete’, ‘Re-
place’, ‘Insert’, and ‘Swap’, which are frequently
used in previous text modification. As mentions in
Introduction, we need to carefully select operands
for text modification. We suggest a various way to
choose operands based on the co-graph for each
operation, because we can obtain various informa-
tion on words from the co-graph has information on
relations between words. Based on this, we pro-
pose sophisticate modification methods for each
operations by combining operations and how to
choose operands. We evaluate all methods and
choose the optimal method for each operation. Fi-
nally, we combine them to propose STAGE. We
describe proposed methods for each operation in
the section, and the evaluation and combination of
them in the next section. We present the summary
of all the proposed modification operations in Table
12 in the Appendix B.

4.1.

We propose four methods for delete: D-RE, D-RI,
D-ME, and D-LE. For delete operations, we focus
on edge-words which are frequently used together
with another words. Thus, deleting such a word
can effectively disrupt some frequent patterns, and
create a significant change in the sentence. We
also aim to select important or unimportant edge-
words based on the number of edges.

D-RE deletes a random edge-word, and D-RI/
deletes an isolated word. They are simple delete
methods and will be used as baselines. D-ME
deletes the edge-word with the most edges in the
sentence. A word with many edges means that it is
frequently used with many other words regardless
of patterns such as stop-words. D-LE deletes the
edge-word in the sentence with the least edges. It
may be a token frequently used in some special
patterns, such as idioms. We aim to delete unim-
portant and important edge-word through D-ME
and D-LE.

Delete operation

4.2. Replace operation

We propose six methods for replace: R-RC, R-RS,
R-RDS, R-MC, R-MS, and R-MDS. The replace
operation selects two words: one from the sen-
tence and the other from the corpus. In previous
approaches, a word was usually replaced with one
of synonyms (Wu et al., 2020b; Wei and Zou, 2019;
Shou et al., 2022). However, it is difficult to see this
method as effective on performance, and there are
cases where it degrades (Zhang et al., 2015). We
choose two words based on the co-graph because
the co-graph represents word-word relations. If
two words are connected, they may have a lexical
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Figure 2: Overview of STAGE. A sentence is augmented by a combination of these operations basic
operations such as ‘Delete’, ‘Replace’, ‘insert’ and ‘Swap’. We can obtain 5 samples for one input sentence.

and grammatical collocations. We can generate
sentences while adjusting the degree of similarity
using the co-graph.

R-RC, R-RS and R-RDS randomly select one
of edge-words in the sentence, and replaces it
with one of its neighbor-words in the co-graph. R-
RC replaces the chosen edge-word with a random
neighbor-word. R-RS and R-RDS replace the cho-
sen edge-word with the most similar neighbor-word
and with the most dissimilar neighbor-word, respec-
tively. R-RS may generate a sentence with a similar
meaning because it chooses the most similar one,
and R-RDS may generate a sentence with a differ-
ent meaning because it chooses the most dissimilar
one.

In R-MC, R-MS, and R-MDS, we try to replace
the most important words in the sentence. To
choose important words, we use the sen-graph.
We choose the word with the most edge in the sen-
graph. We can say that such words are important
words in the sentence because those words fre-
quently appear together with most of other words
in the sentence. R-MC, R-MS, and R-MDS replace
the chosen word with a random, the most simi-
lar, and the most dissimilar word among neighbor-
words in the co-graph, respectively.

4.3. Insert operation

We propose four methods for insertion: [-EE, I-
REN, I-MEN, I-LEN. The insert operation selects a
word from a corpus and insert it into the sentence
at certain position. Previous approaches usually
inserted a random word into a random position. A
random word may change sentences too much in
grammatically and semantically, and is limited to
generate various sentences. In order to generate
various sentences close to the original sentence,
we use co-graph to select words.

I-EE randomly selects an edge-word in the sen-
tence and one of its neighbor-words. It inserts the
neighbor-word next to the edge-word in the sen-
tence. While /-EE first select a position, and then
select a word to be inserted considering the po-
sition, the others select a word and insert it at a

random position. -REN, I-MEN and I-LEN select
a word from the co-graph words connected to the
edge-words in the sentence. I-REN selects one
at random, I-MEN selects the word connected to
the most edge-words in the sen-graph, and I-LEN
selects the word connected to the least edge-words
in the sen-graph. I-MEN selects operand that are
highly related to the entire sentence, and I-LEN
selects lowly related one.

4.4. Swap operation

We propose three methods for swap: S-RP, S-SP,
and S-DSP. If we swap two randomly chosen words,
it may inject too much noise into the sentence. To
decrease noise, we use two words connected in
the sen-graph. If there is an edge in the graph,
words often appear close to each other within a
window size of w, frequently. If we swap such a pair,
we can minimize noise. S-RP randomly selects a
word pair. S-SP and S-DSP choose a pair based
on word similarity. S-SP chooses the pair with
the maximum similarity, and S-DSP chooses the
pair with the minimum similarity. We evaluate the
word similarity based on vector similarity. S-DSP
has major impact, and S-SP minor impact on the
meaning of sentence. S-RP may have an average
of them.

5. STAGE: Combination of Operations

We propose STAGE (Simple Text Data Augmenta-
tion by Graph Exploration) by combining the pro-
posed delete, replace, insert, and swap methods.

We have introduced several methods for each op-
eration. However, utilizing a single operation alone
has limitations in effectively augmenting text data.
To address this, we aim to appropriately combine
these four operations, leading to more effective DA.
Figure 2 shows how text data can be augmented
through various operations by STAGE. STAGE ef-
fectively enhances the diversity of text data by in-
corporating four operations.

To determine the optimal combination, we first
evaluate the effectiveness of the proposed four
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Method | How to augment data

D-Random Delete the word randomly
D-TF-IDF high Delete the highest TF-IDF score word
D-Word2Vec Delete the most similar word with sentence
R-Random Replace the word with other randomly
R-Word2Vec Replace the word with synonym
I-Random Insert the word randomly
I-Word2Vec Insert the most similar word with sentence
S-Random Swap the word pair randomly
S-Word2Vec Swap the most similar word pair

Table 1: Simple data augmentation methods

Training subset size ratio
1% 10% | 50% | 100%
BERT 55.7 | 86.7 | 89.7 91.2 80.8

D-Random 70.3 | 86.8 | 89.1 90.8 84.3
D-TF-IDF high | 75.3 | 87.9 | 89.5 90.4 85.8
D-Word2Vec 727 | 875 | 89.3 90.9 85.1

D-RE (ours) | 74.4 | 883 | 89.9 | 913 | 86.0
D-Rl(ours) | 704 | 872 | 89.2 | 90.9 | 84.4
D-ME (ours) | 75.4 | 88.4 | 901 | 914 | 86.3
D-LE (ours) | 741 | 882 | 90.2 | 91.6 | 86.0

Method Avg

Table 2: Evaluation of delete methods

deletion, six replacement, four insertion, and three
swap operations. We evaluate the performance of
each method using 4 subsets of the training dataset,
each of which has 1%, 10%, 50% and 100% of the
training dataset, respectively. The performance is
measured in terms of accuracy. For the co-graph,
we set the threshold = to 10, and the parameter w
to 2.

The evaluation is conducted on the SST-2
dataset (Socher et al., 2013). SST-2 exhibits var-
ious characteristics and is primarily considered a
prominent dataset. It is used for assessing the ef-
fectiveness of sentiment analysis and text classifica-
tions. Although the dataset size is relatively small
with 6,920 samples compared to other datasets,
the high corpus-to-sentence ratio makes it a valu-
able resource for conducting experiments involving
corpus handling.

With the evaluation results, we choose two most
effective methods from each operation consider-
ing the performance for small corpora and large
corpora respectively. We construct 16 STAGE can-
didates by combining them. We also evaluate 16
candidates with SST-2, and choose the best as
STAGE.

5.1. Evaluation for each operation

We present the evaluation results of the proposed
methods for each operation on the SST-2 dataset.
We compare each methods with baseline meth-
ods which are based on randomness, TF-IDF, and
Word2Vec. We obtain TF-IDF and Word2Vec val-
ues based on the training dataset. The baseline

Training subset size ratio
1% 10% | 50% | 100%
BERT 55.7 | 86.7 | 89.7 | 91.2 | 80.8

R-Random 70.6 | 86.1 | 89.1 89.9 83.9
R-Word2Vec 70.6 | 87.1 | 89.5 90.5 84.4

R-RC (ours) | 79.6 | 87.8 | 89.4 | 902 | 86.8
R-RS (ours) | 775 | 87.6 | 89.6 | 90.8 | 86.4
R-RDS (ours) | 743 | 86.8 | 89.6 | 911 | 855
R-MC (ours) | 76.2 | 88.0 | 90.4 | 91.7 | 86.6
R-MS (ours) | 76.0 | 881 | 89.9 | 916 | 864
R-MDS (ours) | 725 | 88.0 | 905 | 916 | 85.7

Method Avg

Table 3: Evaluation of replace methods

Training subset size ratio
1% 10% | 50% | 100%
BERT 55.7 | 86.7 | 89.7 | 91.2 | 80.8

I-Random 73.5 | 86.9 | 89.6 90.8 85.2
I-Word2Vec 71.7 | 87.3 | 90.0 91.0 85.1

J-EE (ours) | 75.7 | 87.7 | 901 | 914 | 862
J-REN (ours) | 77.2 | 884 | 90.2 | 916 | 86.9
-MEN (ours) | 795 | 89.2 | 902 | 91.7 | 87.7
I-LEN (ours) | 78.1 | 885 | 90.6 | 91.6 | 87.2

Method

Avg

Table 4: Evaluation of insert methods

methods are shown in Table 1. In Tables 2, 3, 4,
and 5, BERT is the performance of BERT without
DA, and the others are the performance of BERT
with DA by the corresponding methods. Due to
space constraints, we provide a concise analysis.
For a more detailed analysis and the whole exper-
imental results, please refer to Tables 13, 14, 15,
and 16, in the Appendix C.

5.1.1. Evaluation of delete methods

Table 2 shows the performance of delete opera-
tion methods. We can observe that all of our delete
methods are superior to the baseline methods. The
methods deleting edge-words, D-RE, D-ME and
D-LE show higher performances than D-RI which
deletes isolated words. It shows that deleting edge-
words is more effective than isolated words. If we
compare D-ME and D-LE, D-ME shows better per-
formance and results differ depending on the sub-
set size. We choose D-ME and D-LE for STAGE,
which are the top 2 by the average performance.

5.1.2. Evaluation of replace methods

Table 3 shows the performance of replace operation
methods. The proposed replace methods are also
superior to the simple methods. R-RC and R-MC
show higher overall performance than similarity-
based methods, R-RS, R-RDS, R-MS and R-MDS.
It can be noted that choose substitute words by
the co-graph is more effective than by similarity.
We choose R-RC and R-MC for STAGE, with high
average performances.
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Training subset size ratio
1% 10% | 50% | 100%
BERT 55.7 | 86.7 | 89.7 91.2 | 80.8
S-Random 723 | 87.5 | 89.3 90.2 | 84.8
S-Word2Vec | 72.5 | 87.2 | 90.0 90.5 | 85.1
S-RP (ours) 77.7 | 87.7 | 90.0 90.4 | 86.5
S-SP (ours) 79.8 | 87.6 | 89.8 90.3 86.9
S-DSP (ours) | 72.3 | 87.8 | 90.1 91.5 | 854

Method Avg

Table 5: Evaluation of swap methods

5.1.3. Evaluation of insert methods

Table 4 shows the performance of insert operation
methods. The proposed insert methods are also
superior to the simple methods. [-REN, I-MEN,
I-LEN choose a word to be inserted considering
the correlation with all edge-words in the sentence.
They have higher performance than /-EE which
choose a word considering the word at the position
to be inserted. We choose I-MEN and I-LEN for
STAGE, with high average performances.

5.1.4. Evaluation of swap methods

Table 5 shows the performance of swap opera-
tion methods. The proposed methods show better
performance than the others. S-RP shows that
swapping pairs connected by a sen-graph is ef-
fective. Considering similarity S-SP and S-DSP
are more effective depending on the size of the
dataset. We choose S-SP and S-DSP consider-
ing the performance for small corpora and large
corpora, respectively.

5.2. Optimal Combination for STAGE

As mentioned, we select the top 2 methods for each
operation: D-ME and D-LE for delete, R-RC and R-
MC for replace, I-ME and I-LE for insert, and S-SP
and S-DSP for swap. We combine them to create
16 candidate STAGE combinations, and evaluate
them with SST-2. Table 6 shows the performance
of three combinations: the best (STAGE;), the sec-
ond best (STAGE-), and the worst (STAGE¢) com-
binations. The experimental results of the all 16
combinations can be found can be found in Table
17 in the Appendix D.

Finally, the combination of D-ME, R-MC, I-MEN,
and S-DSP (STAGE;) shows the best performance
among the 16 STAGE candidate combinations, and
we choose the best one as our final approach
STAGE. Compared to BERT without DA, BERT
with STAGE shows an average accuracy increase
of 6.6%. Especially, when there is only 1%, 2% of
the training dataset available, BERT with STAGE
shows an improvement of 47.0%, 10.3% over BERT
without DA, respectively.

Even STAGE;¢; demonstrates performance im-
provement over BERT without DA. It improves the

performance by 5.1% compared to BERT without
DA. It indicates that other combinations are also
effective for DA.

6. Experimental Results

6.1. Experimental Setup

We evaluate the performance of STAGE in various
environments. The experiments are constructed
with six datasets for text classification tasks. We
choose six datasets with different sizes and do-
mains: SST-2 (Socher et al., 2013), CR (Hu and
Liu, 2004; Liu et al., 2015), SUBJ (Pang and Lee,
2004), TREC (Li and Roth, 2002), PC (Ganapathib-
hotla and Liu, 2008), IMDB (Maas et al., 2011). In
Tables 18 and 19 in the Appendix E, we show the
description and summary of the datasets.

We use three pre-trained models: BERT (De-
vlin et al., 2018), DistiiBERT (Sanh et al., 2019),
RoBERTa (Liu et al., 2019) to verify the effective-
ness of STAGE for various pre-trained models. We
download the pre-trained model weights from Hug-
gingFace’s Transformers'. To verify the perfor-
mance of STAGE under various data scarcity, we
fine-tune the models with 8 subsets. Each of them
has 1%, 2%, 5%, 10%, 30%, 50%, 70%, 100%
of the original training dataset, respectively. The
average values of five runs of each experiment are
presented.

6.2. Overall Performance Comparison

Table 7 shows the overall performances of compar-
ative and proposed method. We also compare
the four recent baselines. EDA (Wei and Zou,
2019) used simple operations and selected random
operands. BT (back-translation) (Edunov et al.,
2018a) is a representative method in the text gen-
eration. SSMix (Yoon et al., 2021) is a method that
considered the importance of tokens when perform-
ing DA. AMR-DA (Shou et al., 2022) used simple
operations via AMR graphs.

We can see that STAGE consistently demon-
strates the DA effect regardless of datasets. It
shows greater performance improvements as the
amount of data becomes smaller. In comparison to
recent methods, the average performance is gen-
erally superior too. Specifically, while conventional
DA methods often show limited effectiveness in
full-dataset scenarios, STAGE demonstrates its ef-
fectiveness by exhibiting remarkable performance
improvement even on the full dataset.

We can compare binary classification (SST-2,
CR, SUBJ, PC, and IMDB), and multi classification
(TREC-c, TREC-f). In particular, it demonstrates

'https://huggingface.co/
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Method Training subset size ratio Average
1% 2% 5% 10% | 30% | 50% | 70% | 100%

BERT 55.7 | 77.0 | 84.5 86.7 89.0 89.7 90.7 91.2 83.1

STAGE 6 D-LE R-MC I-LEN S-DSP | 76.2 | 83.4 | 86.3 88.4 89.6 90.5 91.7 92.0 87.3

STAGE, D-ME R-RC I-MEN S-SP 81.2 | 84.9 | 87.1 89.4 89.6 90.3 90.6 91.6 88.1

STAGE, D-ME | R-MC | I-MEN | S-DSP | 81.9 | 849 | 87.6 | 89.6 | 90.3 | 90.7 | 91.6 92.1 88.6

Table 6: Performance results of STAGE candidates on the SST-2 dataset.
Data Method Training subset size ratio Avg
1% 2% 5% 10% 30% 50% 70% 100%

BERT 55.7+3.5 77.0+2.1 84.5+0.5 86.7+1.0 89.0+0.2 89.7+0.3 90.7+0.1 91.2+0.0 83.1
o +EDA T7.34+4.1 79.6+4.4 85.2+1.8 85.9+3.1 88.8+1.3 89.9+0.2 90.2+0.5 90.6+0.5 85.9
N +BT 53.3+0.6 64.945.5 85.0+1.3 88.140.4 89.240.5 89.9+0.5 90.9+0.3 91.6+0.2 | 81.6
] +SSMix 64.4+5.9 77.0+2.6 86.5+1.0 | 88.3+0.4 | 89.7+0.3 | 90.4+0.4 | 91.040.3 | 91.2+0.1 | 84.8
+AMR-DA 81.2+1.3 87.2+1.0 87.3+1.0 87.9+0.4 89.5+0.7 89.3+0.3 90.3+0.1 90.5+0.1 87.9
+STAGE 81.9+1.6 84.9+0.4 87.6+05 | 89.6+0.3 | 90.3+0.2 | 90.7+0.2 | 91.6+0.1 | 92.1+0.1 | 88.6
BERT 63.2+4.9 62.2+5.6 66.5+0.5 68.4+3.5 83.0+1.2 85.0+2.8 84.6+2.1 87.8+0.5 75.1
+EDA 61.3+3.1 63.8+2.7 73.1+1.5 81.9+1.2 82.9+2.7 83.9+1.5 85.2+0.8 86.7+1.1 77.3
o +BT 63.6+1.9 64.0+1.4 66.9+3.3 T7.7+2.0 86.0+1.0 85.6+1.1 87.3+1.2 87.8+1.1 77.3
o +SSMix 64.7+0.5 68.8+0.3 71.7+0.3 76.943.0 86.4+0.6 | 87.5+1.8 86.5+0.4 89.1+0.1 79.0
+AMR-DA | 67.0+2.9 67.4+1.5 76.1+1.3 | 83.2+0.3 83.6+0.6 83.1+1.0 83.6+1.9 87.8+0.2 79.0
+STAGE 69.945.4 71.212.9 75.7+2.8 84.3+1.6 | 87.2+t1.0 | 87.5+1.0 | 90.2+0.7 | 90.6+1.2 | 82.1
BERT 87.2+2.5 91.4+1.1 92.4+1.0 94.4+40.4 95.4+0.3 96.1+0.4 96.1+0.4 96.3+0.5 93.7
+EDA 92.3+0.4 93.8+0.6 92.6+0.9 94.3+1.6 96.2+0.2 96.0+1.0 96.3+0.2 96.3+0.2 | 94.7
QA +BT 90.4+1.2 93.0+0.0 94.14+0.4 | 95.6+0.3 | 96.3+0.2 96.2+0.7 96.2+0.2 96.8+0.0 94.8
a +SSMix 90.6+0.6 92.4+0.0 93.8+0.3 94.8+0.5 95.6+0.0 | 96.6+0.1 | 96.7+0.2 | 96.8+0.1 94.7
+AMR-DA | 87.5+3.6 81.7+1.7 81.8+1.0 84.8+1.8 87.7+1.3 88.6+0.9 91.2+0.6 92.0+0.1 86.9
+STAGE 92.8+0.8 | 94.0+0.3 | 94.1+0.3 | 94.8+0.3 95.7+0.1 96.2+0.4 | 96.7T+0.2 | 97.0+0.1 | 95.2
BERT 37.2+2.1 46.8+2.2 60.6+5.4 79.442.4 93.6+0.3 94.7+0.2 95.3+0.3 95.6+0.3 75.4
o) +EDA 45.1+2.5 68.5+3.5 84.6+1.4 87.8+1.1 94.4+0.3 95.440.3 95.8+0.5 95.4+0.3 83.3
8 +BT 40.4+2.5 57.7T+7.4 84.6+0.9 92.0+0.4 94.3+0.0 95.440.2 96.0+0.1 96.4+0.3 82.1
E +SSMix 28.4+9.5 52.3+11.4 64.7+4.5 88.0+3.8 94.9+03 | 96.5+0.2 | 96.44+0.3 | 97.0+0.1 | 77.3
+AMR-DA 37.4+1.3 63.2+3.1 78.1+1.1 88.4+3.8 90.8+1.2 93.2+1.1 94.6+0.5 96.4+0.2 80.3
+STAGE 45.7T+a5 | 70.5+1.7 | 84.9+2.1 91.1+0.3 94.3+0.5 95.3+0.3 96.4+0.1 96.6+0.2 84.4
BERT 1.5+1.5 16.4+6.1 13.5+1.7 41.9+44.7 64.2+1.2 T4.4+0.3 78.2+0.9 82.3+0.5 | 46.6
- +EDA 34.4+1.1 42.541.4 54.5+1.1 71.5+0.7 80.0+1.2 84.5+0.6 87.7+0.6 87.3+0.4 | 67.8
8 +BT 18.1+4.5 13.5+1.6 35.2+7.7 55.440.2 73.8+1.2 82.4+0.5 85.4+0.8 89.0+0.1 56.6
E +SSMix 25.5+5.2 28.7+9.4 41.842.7 56.9+1.2 77.9+0.4 83.7+0.8 86.3+0.5 81.6+0.3 | 60.3
+AMR-DA 16.2+6.7 36.3+2.2 49.9+1.6 57.9+1.7 74.6+0.3 T7.6+1.1 82.0+0.9 86.7+0.2 | 60.2
+STAGE 38.245.1 | 56.5+4.1 | 61.8+1.6 | 7T4.5+09 | 86.4+1.0 | 88.3+0.2 | 90.4+0.3 | 91.2+02 | 73.4
BERT 72.3+1.6 88.2+1.3 91.7+0.2 92.9+0.1 94.0+0.2 94.4+0.2 94.7+0.1 95.2+0.1 90.4
+EDA 88.4+0.8 90.8+1.2 92.8+0.5 | 92.9+0.5 94.1+0.9 94.2+0.0 92.9+0.5 95.1+0.2 | 92.6
&) +BT 89.9+0.2 90.8+0.0 91.5+0.5 92.2+0.0 94.0+0.0 94.3+0.3 94.6+0.1 95.1+0.1 92.8
o +SSMix 90.4+0.2 91.540.4 92.7+0.1 93.5+0.0 94.540.2 | 94.940.2 | 95.2+0.1 95.2+40.1 93.5
+AMR-DA | 90.0+0.3 90.8+0.1 92.0+0.4 93.3+0.0 94.0+0.0 94.4+0.0 94.540.1 95.3+0.2 93.0
+STAGE 91.0+0.3 91.4+0.2 92.2+0.1 93.6+0.2 | 94.7+0.2 94.6+0.2 95.210.2 | 95.4+0.2 | 93.5
BERT 86.9+0.6 85.9+1.1 87.2+0.6 90.0+0.2 91.6+0.0 92.0+0.1 91.6+0.1 92.3+0.1 89.7
+EDA 86.0+0.6 87.1+1.0 89.9+0.1 | 90.8+0.5 91.2+0.2 91.440.1 92.2+0.1 93.0+0.1 90.2
g +BT 87.1+0.3 89.0+0.3 89.6+0.6 90.240.2 91.440.1 91.1+0.0 | 92.T+0.0 | 93.0+0.1 | 90.5
= +SSMix 74.3+1.7 82.8+0.4 84.2+0.2 85.4+0.1 86.9+0.3 87.6+0.0 88.2+0.1 88.3+0.1 84.7
+AMR-DA 86.3+0.6 84.4+2.4 89.6+0.0 90.5+0.6 91.1+0.1 91.9+0.3 92.3+0.0 92.0+0.2 89.8
+STAGE 88.2+0.2 | 89.2+0.2 89.6+0.2 90.6+0.0 91.84+0.0 | 92.1+0.3 | 92.7+0.3 | 93.1+0.1 | 90.9

Table 7: STAGE performance on various datasets.

superior performance in multi-classification scenar-
ios compared to binary classification situations. In
the binary classifications, the overall performance
is improved by 1.3% to 7.8% compared models
without DA. However, in the multi classifications,
our method shows substantial improvements by
11.9% to 35.0%. This shows that our proposed
method is very effective for the classification tasks.

There is less performance improvement on the

IMDB dataset. The IMDB dataset consists of a
large number of significantly long samples com-
pared to other datasets. This characteristic pro-
vides the model with an sufficient information for
training. Therefore, in Table 7, it is evident that all
augmentation methods, including our method, are
relatively less effective. Specifically, methods other
than ours exhibit performance degradation even in
situations with a low data ratio. Despite the chal-
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Data Method Training subset size ratio |, ~ | Ratio [ 1% [ 10% | 50% [ 100% | avg
1% | 10% | 50% | 100% Acc | 795 | 885 | 900 | 913 | 87.3
D [0t oo [ e [ w00 [ o7 w200 | 00 | 7467 | 54596 |
SST-2 : : : : : 5 | _Acc [ 794 | 888 | 90.1 915 | 875
RoBERTa | 50.0 | 91.8 | 93.3 94.4 82.4 Naug 298 | 3,487 | 17,465 | 34,557 B
+STAGE 85.1 929 94.3 95.2 91.9 Acc 81.9 89.6 90.7 921 88.5
DistiBERT | 66.1 | 68.2 | 85.2 | 847 | 76.1 0 N, | 294 [ 3476 | 17,440 | 34,511 -
CR +STAGE | 73.8 | 82.0 | 847 | 894 | 825 o0 | _Acc | 765 | 887 | 90.0 916 | 86.7
RoBERTa | 64.1 | 62.1 | 89.2 | 89.4 | 76.2 Naug | 259 | 3,453 | 17,407 | 34,457 -
+STAGE | 721 | 85.2 | 90.5 | 91.4 | 84.8 50 | _Acc [ 722 [ 885 | 9038 920 | 8538
DistiBERT | 752 | 91.9 | 949 | 958 | 895 Naug | 183 | 3446 | 17,367 | 34422 | -
supy |_*STAGE | 888 | 939 | 956 | 960 | 936 _ _ )
RoBERTa | 738 | 934 | 957 | 9.3 | 898 Table 9: Performance comparison with various .
+STAGE | 91.3 | 94.3 | 958 | 96.4 | 945
DistiiBERT | 28.1 84.7 | 94.5 95.1 75.6
TREG.c | *STAGE | 438 | 883 | 943 | 96.1 | 806 scan the whole dataset, we can build the co-graph.
RoBERTa | 31.7 | 88.6 | 95.1 | 96.2 | 77.9 The co-occurrences need to be stored in v x v
+STAGE | 44.1 | 904 | 957 | 957 | 815 space, where v is the total number of corpus. The
DistlBERT | 26.2 | 484 | 72.8 | 827 | 57.5 worse case of the space complexity is O(v?). How-
TRECf L_*STAGE | 325 | 698 | 855 | 878 | 689  gygr, due to the high sparsity of the co-occurrence
ROBERTa | 4.7 | 545 | 805 | 874 | 56.8 matrix, it should require minimal space.
+STAGE | 27.5 | 66.8 | 86.1 | 899 | 67.6 W tract th data in a dicti
SiBERT [ 654 [ 926 1555 | 523 | o6 e extract the necessary data in a dictionary
oo +STAGE | 897 | 92.8 | 940 | 948 | 928 format, which includes the number of edges and
RoBERTa 1687 | 930 | 942 | 948 | 877 connected pairs for reduce computational cost. For
+STAGE | 895 | 935 | 947 | 951 | 93.2 each sentence, the words existing in the co-graph
DistiBERT | 86.4 | 89.3 | 91.5 | 91.8 | 89.8 are used as key. The number of edges in the co-
mpg L _*STAGE | 86.9 | 89.7 | 914 | 921 | 90.0 graph and the pair words are used as values. Since
RoBERTa | 904 | 92.7 | 934 | 941 | 927 the dictionary has a maximum size equal to the
+STAGE | 914 | 924 | 935 | 942 | 929 number of words s, it reduces searching space. For

Table 8: STAGE performance on various LMs

lenge of obtaining significant augmentation effects
in such a dataset, our approach demonstrates su-
perior effectiveness, establishing it as a sufficiently
effective method.

6.3. Performance with Other LMs

We also evaluate the performance with DistiiBERT
(Sanh et al., 2019) and RoBERTa (Liu et al., 2019).
DistilBERT is shallower and has fewer parameters
compared to BERT. RoBERTa is larger and trained
with more data than BERT. Table 8 shows overall
performance on each dataset. It shows that STAGE
methods is also effective to other LMs.

In Tables 20 and 21 in the Appendix F, we present
the whole experimental results compared with base-
line methods. It also demonstrate the superiority
and applicability of our proposed method.

6.4. Computational Cost Analysis

To generate a co-graph, we scan the words within
a window size w for each word in a sentence to
count the co-occurrences. If we denote the number
of words in a sentences as s and the number of
sentences in the dataset as n, the time complexity
is O(nsw). Since w is a constant or relatively small
compared to s, we may say it is O(ns). If we simply

D-ME and R-MC, it need retrieve the word with the
most number of edges. The time cost for retrieving
the word is O(ns), deleting a word is O(1), and re-
placing connected words is O(nv). The respective
time complexities is O(ns) and O(nv). For I-MEN
and S-DSP, it need retrieve the pair. The time cost
for retrieving the pair is O(ns), inserting connected
words is O(nv), and swapping pair is O(1). The
respective time complexities is O(nv) and O(ns)
too. We confirm that time complexity has a linear
relationship with the size of the data. It is more
cost-effective than using DL like BT (Edunov et al.,
2018a) and SSMix (Yoon et al., 2021).

6.5. Discussion

6.5.1. How 7 affects the performance?

We use a hyperparameter, 7, to generate the co-
graph. We analyze how 7 affects the performance.
Table 9 shows the accuracy and the number of
augmented samples, N,,,. A smaller value of 7
leads to a more edges and inclusion of noisy infor-
mation. It results in performance degradation due
to unreliable information from the co-graph. When
T increases, the co-graph has fewer edges, and
finding suitable operands becomes more challeng-
ing due to sparsity. It leads to a smaller value of
Naug, and the performance decreases. In Table 22
in the Appendix G, we present the whole results on
8 subsets.
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Ratio 0.1% 0.3% 1%
Data GPT3MiX STAGE | GPT3MiX STAGE | GPT3MiX STAGE
SST-2 78.0 69.5 84.9 85.1 87.7 87.6
CR 70.0 68.7 80.8 80.9 84.7 85.7
SUBJ 85.4 84.9 87.5 91.1 90.6 92.7
TREC-c 47.7 47.5 57.8 54.6 60.5 68.6

Table 10: Performance comparison with LLM-based method

Training subset size ratio

Method 1% 10% | 50% | 100% Average
BERT 55.7 | 86.7 | 89.7 91.2 83.1
DS 77.8 | 89.3 | 90.2 91.6 87.6
DR 77.8 | 88.9 | 90.3 91.6 87.6
DI 75.0 | 88.4 | 90.0 91.6 86.9
SR 75.5 | 88.3 90.0 91.5 86.9
g SI 76.8 | 89.0 | 90.1 91.6 87.4
ﬁ. RI 77.0 | 89.3 90.0 91.6 87.3
® | DSR | 785 | 89.0 | 90.5 91.6 87.8
DSI 78.1 89.2 | 90.4 91.8 87.6
DRI 77.4 | 89.1 | 90.5 91.6 87.7
SRl 78.1 89.4 | 90.5 91.6 87.6
DSRI | 81.9 | 89.6 | 90.7 92.1 88.6

Table 11: Performance on various combinations

6.5.2. Isitas good as LLM-based methods?

We compare our method with an LLM-based data
augmentation, GPT3Mix (Yoo et al., 2021). We
adopt the experimental configuration employed in
GPT3Mix. We use 0.1%, 0.3%, and 1% of the
training set. The number of data augmentation
and epochs are set to 10 and 20, respectively. Ta-
ble 10 shows the experimental results. When the
dataset ratio is 0.1%, STAGE achieves compara-
ble performance to GPT3Mix except SST-2. In the
cases of 0.3% and 1.0%, STAGE exhibits superior
performance the GPT3Mix. However, GPT3Mix is
not cost-effective due to the number of parameters.
STAGE demonstrates a comparable or superior
performance when compared to GPT3Mix, and it
is cost-effective, which is a strong advantage.

6.5.3. Are all four operations necessary?

We combine the four operations for STAGE. To ver-
ify that all the four operations are necessary for the
performance improvement, we also evaluate partial
combinations of the operations. The experimental
results are presented in Table 23. From the exper-
iments, we may conclude that all the operations
contribute the performance improvements, which
indicates that our four modifications are necessary.
In Table 23 in the Appendix H, we present the whole
results on 8 subsets.

7. Conclusions

We presented a data augmentation method,
STAGE, that combined various operations and

graph data information. STAGE has shown the
effectiveness regardless of PLMs or datasets. In
particular, it was very effective when the data was
insufficient and was on the multiple classification.
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A. Importance of Operand Selection

We present more experiments to examine the im-
portance of operand selection. We use ‘Delete’
and ‘Swap’ operations in this section. In delete
operation, we use TF (Term Frequency) score to
select different operands. In swap operation, we
use similarity score. We evaluate classification abil-
ity by varying the operand based on the score. We
use the SST-2 dataset and accuracy score as our
performance metric.

Figure 3 shows the augmentation results of the
delete operation. To delete words in the sentence,
we choose the operands based on TF score in
the corpus. First, we evaluate TF score of all the
words, and choose the words to delete in the order
of scores in the sentence. Figure shows the rela-
tive performance with respect to the TF score of
the deletion word. In the result, the performance
varies much depending on which word is chosen for
deletion utilizing the same operation. We observe
that deleting words with 4th TF scores is the best
performance, while deleting words below a certain
rank results in decreased performance. It shows
the operand selection is crucial.

Figure 4 shows the augmentation results of the
swap operation. In the swap operation, we choose
a pair of words to swap based on similarity. We
first evaluate similarities of all word pairs in the
sentence, and choose the pair to swap in order
of similarity scores. Figure shows the relative per-
formance with respect to the similarity of the pair.
The performance varies much depending on which
pair is chosen too. When a word is replaced by a
word with a similarity rank of 10, the augmentation
performances are the best. We can see that the
similarity information and the relation information
between words have a significant impact. It is a
similar patterns with other modification operations.

Random Delete

Relative performace
o

25 50 75 100 125 150 175 20.0
TF rank of the deleted word

Figure 3: Augmentation result with the delete op-
eration. We repeat augmentation experiments by
choose a word to delete in the order of TF (term
frequency) in the sentence. It shows that operand
selection significantly impacts performance.

1.0 . o
051,

0.0

Relative performace

-1.0 ST e

25 50 75 100 125 150 175 20.0
Similarity rank of the swapped pair

Figure 4: Augmentation result with the swap op-
eration. We repeat augmentation experiments by
choose a pair of words to swap in the order of simi-
larity in the sentence. The perforamcne is the best
when the 10th similar pair are swapped. It shows
that operand selection impacts performance.

B. Description of Proposed Methods

We suggest a various way to choosen operands
based on the co-graph for each operation. Table
12 shows the description of proposed methods. It
explains each operation abbreviation and how it
modifies the sentence.
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Operation Method Explanation
D-RE Delete the random edge-word
(Delete-Random Edge-word) in the sentence
D-RI Delete the random isolated-word
Delete (Delete-Random Isolated-word ) in the sentence
D-ME Delete the edge-word
(Delete-Most Edge-word) with the most edges in the sentence
D-LE Delete the edge-word
(Delete-Least Edge-word) with the least edges in the sentence
R-RC Replace random word
(Replace-Random-Connected) with connected word in the graph
R-RS Replace random word
(Replace-Random -Similar) with the most similar word in the graph
R-RDS Replace random word
Replace (Replace-Random-Dissimilar) with the most dissimilar word in the graph
R-MC Replace the most connected word
(Replace-Most edge-Connected) with connected word in the graph
R-MS Replace the most connected word
(Replace-Most edge-Similar) with the most similar word in the graph
R-MDS Replace the most connected word
(Replace-Most edge-Dissimilar) with the most dissimilar word in the graph
I-EE Insert neighboring word connected to
(Insert-Edge-word Expansion) a randomly selected edge-word in the sentence
I-REN Insert random neighboring word
Insert (Insert-Random Edge-word’s Neighbors) connected to edge-words in the sentence
I-MEN Insert most neighboring word
(Insert-Most Edge-word’s Neighbors) connected to edge-words in the sentence
I-LEN Insert least neighboring word
(Insert-Least Edge-word’s Neighbors) connected to edge-words in the sentence
S-RP Swap random word pair
(Swap-Random Pair) connected in the sentence
Swap S-SP Swap the most similar word pair
(Swap-Similar Pair) in the sentence
S-DSP Swap the most dissimilar word pair
(Swap-Dissimilar Pair) in the sentence

Table 12: Proposed augmentation methods

C. Evaluation of Proposed Methods
for Each Operation

Due to the page limit, we partially present the eval-
uation result of the proposed methods for each
operation. In this section, we present the details
of evaluations with the SST-2 dataset. The experi-
ments are conducted in 8 subsets of each training
dataset.

C.1.

Table 13 shows the performance of delete operation
methods. As a result of the experiment, it can be
showed that regardless of the size of the data-set,
there is a performance improvement after DA com-
pared to before. Furthermore, it has been proven
to be more effective in situations where there is lim-
ited data, similar to a previous DA approach. We
define methods based on different criteria for select-
ing operands. Through experimental results, we
can observe the differences in performance among
these methods. When data is insufficient, it is effec-
tive to simply remove frequently used words such
as stop-words. When data is sufficient, it is better to
learn noise sentence by removing frequently used

Detail evaluation result of delete

words in some special patterns.

In previous methods, the performance is better
when using TF-IDF score or Word2Vec representa-
tion than using D-Random. From the perspective
of frequency, D-TF-IDF high deletes word that is
important in data-set. As a result, it can be seen
that deleting important words is meaningful. This
method, similar to the one we proposed, utilize
term frequency and show similar effects in the re-
sults. However, our proposed approach using co-
graph considers not only the simple term frequency
but also the relational information leading to better
performance. From a semantic perspective, the
D-Word2Vec deletes words that are similar to the
original sentence. However, this approach shows
significantly lower effectiveness compared to the
term frequency-based method.

C.2. Detail evaluation result of replace

We try to select operands with high grammatical, se-
mantic, and idiomatic correlation with existing word
using co-graph. The meaning of being connected
by a graph is highly likely to be a word with a high
correlation. Table 14 shows the performance of
replace operation methods. In the case of a small
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Training subset size ratio

Method 1% | 2% | 5% | 10% | 30% | 50% | 70% | 100% | ~verage

BERT 557 | 770 | 845 | 86.7 | 89.0 | 897 | 90.7 | 912 83.1
D-Random | 70.3 | 80.7 | 851 | 86.8 | 87.5 | 891 | 90.1 | 90.8 85.1
DTF-IDF high | 75.3 | 82.3 | 852 | 870 | 884 | 895 | 895 | 90.4 86.1
D-Word2Vec | 72.7 | 781 | 846 | 875 | 885 | 89.3 | 906 | 90.9 853
D-RE(ours) | 744 | 823 | 855 | 88.3 | 891 | 89.9 | 906 | 91.3 86.4
D-Rifours) | 704 | 78.4 | 849 | 872 | 87.7 | 89.2 | 891 | 90.9 847
D-ME(ours) | 75.4 | 831 | 86.2 | 884 | 895 | 90.1 | 91.0 | 914 86.9
D-LE(ours) | 741 | 818 | 856 | 882 | 89.9 | 90.2 | 905 | 916 865

Table 13: Performance results of delete methods on SST-2 dataset

Training subset size ratio

Method 1% | 2% | 5% | 10% | 30% | 50% | 70% | 100% | ~Verage

BERT 557 | 77.0 | 845 | 867 | 89.0 | 89.7 | 90.7 | 91.2 83.1
R-Random | 706 | 81.0 | 848 | 861 | 87.7 | 89.1 | 895 | 89.9 84.8
R-Word2Vec | 70.6 | 79.9 | 854 | 871 | 886 | 895 | 904 | 905 853
R-RC(ours) | 79.6 | 84.0 | 86.4 | 87.8 | 89.0 | 89.4 | 901 | 90.2 871
R-RS(ours) | 775 | 82.4 | 859 | 87.6 | 886 | 896 | 89.8 | 908 865
R-RDS(ours) | 743 | 80.0 | 850 | 86.8 | 89.2 | 89.6 | 905 | 91.1 8538
R-MClours) | 76.2 | 83.3 | 86.0 | 880 | 89.6 | 904 | 1.1 | 91.7 87.0
R-MS(ours) | 76.0 | 83.1 | 859 | 881 | 891 | 89.9 | 903 | 91.6 86.8
R-MDS(ours) | 725 | 83.0 | 85.7 | 88.0 | 895 | 905 | 904 | 91.6 86.4

Table 14: Performance results of replace methods on SST-2 dataset

Method Training subset size ratio Average

1% | 2% | 5% | 10% | 30% | 50% | 70% | 100% 9
BERT 557 | 77.0 | 845 | 86.7 | 89.0 | 89.7 | 90.7 | 91.2 83.1
I-Random | 735 | 814 | 848 | 869 | 889 | 896 | 90.3 | 90.8 85.8
I‘Word2Vec | 71.7 | 814 | 85.7 | 87.3 | 89.2 | 90.0 | 90.2 | 91.0 85.8
-EE(ours) | 75.7 | 822 | 86.1 | 87.7 | 89.5 | 90.1 | 90.6 | 91.4 86.7
I-REN(ours) | 772 | 822 | 86.6 | 884 | 896 | 90.2 | 91.2 | 91.6 87.1
I-MEN(ours) | 79.5 | 82.8 | 86.9 | 89.2 | 89.2 | 90.2 | 91.3 | 91.7 87.6
-LEN(ours) | 78.1 | 82.3 | 86.8 | 885 | 89.9 | 90.6 | 91.5 | 91.6 87.4
Table 15: Performance results of insert methods on SST-2 dataset

corpus, R-RC shows better results than similarity-
based ones, and the the case of a large corpus,
R-MC shows better than similarity-based ones. It
can be noted that choose substitute words by the
co-graph is better than by similarity. R-RC and
R-MC are differ in the criteria for choosing what
words in the sentence. R-MC chooses a operand
that has the highest correlation with other words
in the sentence. This significantly alters the mean-
ing of the sentence and shows better performance
when data-set size ratio is large.

R-Word2Vec is expected to select synonym and
preserve the meaning of the original sentence.
However, R-Word2Vec sometimes shows lower per-
formance than R-Random when the data set-size
ratio is small. This is considered to be because
there are not enough synonym words in the vocab-
ulary. Searching for synonym words is meaningless
when it doesn’t have a vocabulary of sufficient size.
Similarly R-RS, R-RDS, R-MS and R-MDS are not
very useful because vocabulary size is too small to
find the synonym or antonym.

C.3. Detail evaluation result of insert

Table 15 shows the performance of insert opera-
tion methods. I-EE utilizes the co-graph to select
operands that have a relation with the edge-word in
the sentence. This method is more effective com-
pared to the simple similarity-based approaches
like I-Word2Vec or the base method I-Random.

In I-EE, all words connected to the specific edge-
word become candidates for operands. [-EE is
highly influenced by the specific edge word that
is selected. On the other hand, methods like /-
REN, I-MEN, and I-LEN consider all edge-words in
sentence and narrow down the candidate range for
operands. Intable I-REN, itis less influenced by the
choice of edge-word and consistently shows better
performance as a result. Furthermore, I-MEN may
select highly related word with sentence. I-LEN
may select unrelated one. Through this, we confirm
that finding words related to the entire sentence is
more crucial in the insert operations, rather than
focusing on a single word and its related words.
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Training subset size ratio
Method 1% | 2% | 5% 190% 30% | 50% | 70% | 100% | Average
BERT 557 | 77.0 | 845 | 86.7 | 89.0 | 89.7 | 90.7 | 91.2 83.1
S-Random | 72.3 | 795 | 85.4 | 87.5 | 88.0 | 89.3 | 89.4 | 90.2 85.2
S-Word2Vec | 725 | 80.3 | 85.3 | 87.2 | 882 | 90.0 | 90.1 | 905 85.5
S-RP 777 | 83.7 | 859 | 87.7 | 89.2 | 90.0 | 90.4 | 90.4 86.9
S-SP 79.8 | 83.8 | 86.1 | 87.6 | 881 | 898 | 89.6 | 90.3 86.9
S-DSP 723 | 818 | 85.8 | 87.8 | 88.9 | 90.1 | 90.8 | 91.5 86.1
Table 16: Performance results of swap methods on SST-2 dataset
Method Training subset size ratio Average
1% | 2% | 5% | 10% | 30% | 50% | 70% | 100%
BERT 55.7 | 77.0 | 845 | 86.7 | 89.0 | 89.7 | 90.7 | 91.2 83.1
STAGE:s | D-LE | R-MC | I-LLEN | S-DSP | 76.2 | 83.4 | 86.3 | 88.4 | 89.6 | 90.5 | 91.7 | 92.0 87.3
STAGE:; | D-LE | RRC | -'MEN | S-SP | 788 | 835 | 865 | 88.4 | 89.5 | 90.3 | 90.9 | 91.4 87.4
STAGE,, | D-LE | RMC | ILEN | S-SP | 785 | 837 | 87.3 | 885 | 89.9 | 90.3 | 90.7 | 91.3 87.5
STAGE,s | D-ME | R-RC | 'MEN | S-SP | 785 | 84.0 | 87.2 | 884 | 89.8 | 90.2 | 90.8 | 92.0 87.6
STAGE:, | D-LE | RRC | I'MEN | S-DSP | 78.4 | 839 | 86.7 | 89.4 | 89.6 | 90.4 | 91.3 | 91.8 87.7
STAGE,; | D-LE | RRC | ILEN | S-SP | 787 | 84.6 | 87.1 | 89.0 | 89.8 | 90.1 | 90.8 | 91.8 87.7
STAGE:, | D-ME | R-RC | I-'MEN | S-DSP | 79.4 | 844 | 86.8 | 88.6 | 90.1 | 90.2 | 91.0 | 92.0 87.8
STAGE, | D-LE | R-MC | I-LEN | S-SP | 786 | 848 | 87.3 | 88.8 | 90.4 | 90.0 | 91.0 | 914 87.8
STAGE; | D-ME | R-RC | I-MEN | S-DSP | 80.0 | 839 | 86.9 | 89.0 | 89.8 | 90.5 | 90.6 | 916 87.8
STAGE, | D-ME | R-MC | I-LEN | S-SP | 79.4 | 837 | 875 | 89.1 | 89.5 | 90.2 | 90.9 | 92.1 87.8
STAGE; | D-LE | R-RC | I'MEN | S-DSP | 80.0 | 84.4 | 86.7 | 89.0 | 90.2 | 90.2 | 90.9 | 916 87.9
STAGE; | D-LE | R-MC | I-LEN | S-DSP | 795 | 84.2 | 86.6 | 89.0 | 90.2 | 90.4 | 91.4 | 917 87.9
STAGE, | D-ME | R-MC | I-LEN | S-DSP | 79.0 | 84.1 | 87.0 | 89.3 | 90.1 | 905 | 91.4 | 918 87.9
STAGE; | D-ME | R-MC | I-LEN | S-SP | 810 | 845 | 87.2 | 888 | 89.7 | 90.2 | 91.56 | 91.9 88.1
STAGE, | D-ME | RRC | I-'MEN | S-SP | 812 | 849 | 87.1 | 89.4 | 89.6 | 90.3 | 90.6 | 916 88.1
STAGE, | D-ME | R-MC | I-MEN | S-DSP | 81.9 | 849 | 87.6 | 89.6 | 90.3 | 90.7 | 91.6 | 92.1 88.6
Table 17: Performance results of STAGE candidates on the SST-2 dataset
C.4. Detail evaluation result of swap Dataset | C [ Nuwain | Neost | V
SST-2 2 | 6920 | 1,821 | 11,925
Table 16 shows the performance of swap opera- CR 2 | 1863 208 3.775
tion methods. Our proposed methods considering SUBJ 2 | 8000 | 1,000 | 19,179
relation information show better performance. In TREC-coarse | 6 | 5452 | 500 | 5353
addition, S-SP, S-DSP consider relation informa- TRECAfine | 50 | 5452 | 500 | 5353
tion but also consider semantic similarity. S-SP PC 2 | 39428 | 4,504 | 8666
IMDB 2 | 20,000 | 25,000 | 72,831

swaps the most similar word pair connected in the
graph. It is believed that to preserve the meaning
of sentence, and it is effective when data is insuffi-
cient. On the other hand, S-DSP is believed that to
variant the meaning of sentence, and it is effective
when data is sufficient.

An interesting result from the swap operation is
that the performance of the S-Random is quite good
as S-Word2Vec. This means that swapping only
with similarity is not effective. We use the co-graph
to focus on relation information and it is effective.

D. Superiority of STAGE Candidates

As mentioned in the paper, we select 2 methods
for each operation, and combine them to create 16
candidate combinations. In this section, we present
the whole comparative results. Table 17 shows the
combinations and experimental results for each
candidate. Overall, the average accuracy of most
combinations are around 88%. All of them show
significant performance improvement compared

Table 18: Summary of six classification datasets.
C: number of classes, Ny.qin: humber of training
samples, Ny..:: humber of test samples, V: size
of vocabulary

to BERT without DA. The combined ones also
show superior performance compared to single-
operation results. Through this, we can see that
operation combinations are more effective.

E. Description of Datasets

We conduct an experiment using six benchmark
data-sets for the text classification task. Table 18
is the detailed information of the data-sets. The
detailed descriptions of benchmark data-sets are
in the Table 19.
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Dataset Description

It is the Stanford Sentiment Treebank(Socher et al., 2013) dataset,
SST-2 which is movie review data. It is binary classification
dataset for sentiment analysis.

It is the Customer Reviews(Hu and Liu, 2004; Liu et al., 2015) dataset. Itis a
CR binary classification dataset, and it is compared with
SST-2 from different domains

The subjectivity(Pang and Lee, 2004) dataset is divided into subjectivity
and objectivity for movie reviews. It is similar to

SuBJ sentiment analysis, but what we want to distinguish is

the problem of binary classification of data based on

subjectivity, not sentiment.

It is a dataset for question classification problem provided

by Text Retrieval Conference(Li and Roth, 2002). The dataset is
TREC divided into TREC-coarse and TREC-fine in detail.
TREC-coarse consists of 6 comprehensive labels and
TREC-fine consists of 50 subdivided labels.

Pro-Con dataset(Ganapathibhotla and Liu, 2008) is a dataset for binary
PC classification of sentences into two classes, pros and cons.
Pros means agree and cons means disagree.

IMDB(Maas et al., 2011) is the most well-known dataset for
movie review datasets. Compared with other movie review
datasets, the number of sentences included in the dataset
is large and the words used are diverse.

IMDB

Table 19: Descriptions of benchmark datasets

F. Evaluation of STAGE with other
Language Models

In Section 6, we briefly present the comparative
results with DistiiBERT and RoBERTa due to the
page limit. We have performed various compara-
tive evaluations with DistiiBERT and RoBERTa.

We apply STAGE to the benchmark datasets
SST-2, CR, SUBJ, TREC, PC, and IMDB with
BERT, DistiBERT, and RoBERTa. To simulate the
scarcity of training data, we train models with 8 sub-
sets of the original training dataset like evaluation.
We also compare with the four recent baselines as
we do in Section 6: EDA (Wei and Zou, 2019), BT
(back-translation) (Edunov et al., 2018a), SSMix
(Yoon etal., 2021), and AMR-DA (Shou et al., 2022).
The experimental results are shown in Tables 20
and 21.

DistilBERT and RoBERTa do not perform well
when fine-tune with very small datasets (such as
when the data ratio is 1%). Our proposed data aug-
mentation technique, STAGE, can easily overcome
this issue. Although there is not a strong linear
correlation between the amount of data and the
performance improvement, there is a positive cor-
relation to some extent. Our approach also show
superior performance compared with the four base-
lines in all the cases. We cocnlude that STAGE
can be used regardless of the type of pre-trained
models.
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Training subset size ratio

Data | Method | —o; 2% 5% | 10% | 30% | 50% | 70% | 100% | A9
DistiiBERT | 50.4+5.1 | 68.2+s7 | 83.9+02 | 86.4+07 | 88.2+0.3 | 88.3+0.1 | 89.4402 | 89.8:01 | 80.6

o +EDA 76.2+30 | 81.44+05 | 84.5+05 | 86.7+02 | 86.4+21 | 88.9+06 | 90.2+04 | 89.7102 | 85.5
U) +BT 50.2+0.2 | 54.4120 | 80.1+2.4 | 86.0x05 | 88.4+05 | 89.1+04 | 89.9+02 | 90.9+0.r | 78.6
2 +AMR-DA | 79.041.0 | 82.4105 | 84.5+06 | 85.8+t02 | 86.7+0s | 87.8+02 | 88.6+00 | 90.0+00 | 85.6
+STAGE 80.4+05 | 82.2103 | 85.5+0.4 | 87.6+0.2 | 89.4+04 | 90.0+0.2 | 90.3+0.1 | 90.9+0.1 | 87.0
DistiBERT | 66.1+2.s | 67.8+1.5s | 68.1+25 | 68.2+21 | 84.1+26 | 85.2+1.3 | 84.3+10 | 84.7+1.4 | 76.1

- +EDA 65.6+0.6 | 63.9+3s | 72.0+s5 | 79.4+24 | 81.7+15 | 825124 | 82107 | 84.2404 | 76.4
S +BT 64.0+2.2 | 66.7+10 | 66.4+24 | 79.1xa1 | 82.8+0s | 82.4+1.1 | 84.2+1.4 | 85.6+00 | 76.4
+AMR-DA | 69.5+05 | 70.0+47 | 75.4+11 | 82.0x13 | 83.3+16 | 80.9+11 | 80.5+04 | 83.7Tx02 | 78.2
+STAGE 73.8:24 | 70.T+a2 | 76.9:24 | 82.0:22 | 83.9+15 | 84.T+13 | 85.4+1.4 | 89.4+13 | 80.9
DistiBERT | 75.2+6.7 | 89.0+0.2 | 91.6+05 | 91.9+04 | 94.3+03 | 94.9+04 | 95.2+04 | 95.8:03 | 91.0

e +EDA 89.3:106 | 90.410s | 91.7x06 | 93.9+03 | 94.1102 | 94.6x03 | 95.5+02 | 95.8+104 | 93.1
) +BT 88.5+0.4 89.6+1.3 91.440.2 94.2:0.3 94.9+0.4 95.5+0.5 95.6+0.5 95.9+0.3 932
« +AMR-DA | 87.T+24 | 82.8:16 | 83.9+12 | 81.5x1s | 85.0x11 | 85.2+12 | 87.7+14 | 89.2:+05 | 85.4
+STAGE 88.8+1.6 | 90.3+05 | 91.8203 | 93.9+01 | 94.3+11 | 95.6102 | 95.T+02 | 96.0:03 | 93.3
DistiiBERT | 28.1+s.4 | 45.5+s5 | 56.9+24 | 84.7+18 | 92.7+0.0 | 94.5+01 | 94.8404 | 95.1:04 | 74.0

8 +EDA 43.543.7 | 725100 | 82.2+06 | 88.8+t0.7 | 92.9+04 | 94.2410 | 95.3+0s | 95.2+04 | 83.1
H:J +BT 37.0+2.1 55.4+7.0 82.5+13 | 88.8107 | 93.1x03 | 95.1106 | 95.320.4 95.8+0.4 | 80.3
o +AMR-DA | 42.8:1.1 | 72.6+2.3 | 82.8+05 | 87.5+x01 | 92.2:114 | 93.6107 | 922108 | 93.1:x02 | 82.1
+STAGE 43.8:45 | 7T3.5132 | 83.5122 | 88.3+1.7 | 93.0+05 | 94.3+10 | 95.4+05 | 96.1+06 | 83.5
DistiiBERT | 26.2+7.0 | 29.7T+s0 | 33.841.4 | 48.4+27 | 65.7+03 | 72.8:416 | 76.9+0s | 82.7+06 | 54.5

5 +EDA 32.2j:3.6 45~5j:l.(] 62.4:‘:()‘5 68.3j:2.4 80.1:‘:2”'5 84.1j:1.2 87.4j:().4 87.7j:[).$) 68.4
lflEJ +BT 12.92422 | 11.3204 | 49.2:43 | 60.9x02 | 73.9+t0s | 81.6+11 | 84.1+11 | 88.1+t0s | 57.0
[ +AMR-DA | 24.6+3.0 | 35.3+2.4 | 48.6+2.0 | 58.5+06 | 71.3+t02 | T4.T+20 | 80.6+1s | 83.5+02 | 59.6
+STAGE 32.5:2.0 | 49.110.2 | 60.022.0 | 69.8:2.7 | 80.4+1.0 | 85.5+:04 | 87.7+06 | 87.8+05 | 69.1
DistiBERT | 65.4+41 | 75.0+3.2 | 91.4+04 | 92.6+02 | 93.5+01 | 93.7+01 | 94.0x02 | 94.3+01 | 87.5
+EDA 89.6x0.6 | 90.9+05 | 91.6+04 | 92.8+02 | 93.4+05 | 94.2+01 | 94.3+02 | 94.5+01 | 92.6

8 +BT 89.5+04 | 91.0+02 | 92.0x03 | 924201 | 93.5+02 | 94.3101 | 94. 1201 | 94.7+01 | 92.6
+AMR-DA 89.6j:[].2 90.9i(].7 91.6j:[).2 92.7j:(].2 93;6:‘:0.1 94.0j:[].l 93.9j:(].2 94.0i[).l 92.5
+STAGE 89.7+05 | 91.1x0s | 91.9+02 | 92.8+0.2 | 93.6+03 | 94.0t02 | 94.3+00 | 94.8:02 | 92.8
DistiBERT | 86.4+0.4 | 86.5+0.2 | 87.4+05 | 89.3205 | 90.5+05 | 91.5+00 | 91.7x02 | 91.8201 | 89.4

m +EDA 80.7+32 | 84.9+0s | 87.5+04 | 89.2+00 | 90.4+05 | 91.3200 | 91.8201 | 92.1101 | 88.4
g +BT 84.5+07 | 86.3+02 | 87.6x05 | 89.1x01 | 91.0203 | 91.7T+01 | 92.0100 | 92.0+02 | 89.2
- +AMR-DA | 86.4=0.5 86.6+0.5 86.8+1.4 | 88.3x0.9 90.5+02 | 90.7+0.7 | 91.8+0.2 91.9+0.1 | 89.1
+STAGE 86.9:05 | 87. 1105 | 88.1+0s | 89.7+0s | 91.0x0s | 91.4+01 | 92.0+02 | 92.1:02 | 89.8

Table 20: STAGE performance on DistilBERT
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Training subset size ratio

Data | Method | —g7 2% 5% | 10% | 30% | 50% | 70% | i00% | V9
RoBERTa 50.0+7.6 50.0+5.8 89.0+0.8 91.8+01 92.5+0.2 93.3+0.2 93.6+0.1 94.4+01 81.8
SV +EDA 82.8+38 | 87.0x14 | 89.9+07 | 91.31009 | 92.6x01 | 93.1x01 | 93.0x06 | 93.8:05 | 90.4
'J) +BT 53.3x38 | 49.9+14 | 87.7x07 | 90.81009 | 92.6x01 | 93.2+01 | 93.6x06 | 94.0:05 | 81.8
2 +AMR-DA | 84.5+15 | 86.0x1.3 | 89.3x11 | 91.3x00 | 91.4z01 | 91.6x0s | 92.7x00 | 93.0+00 | 90.0
+STAGE | 85.1:05 | 88.7:01 | 91.9:02 | 92.9202 | 93.5202 | 94.3102 | 94.5101 | 95.2101 | 92.1
RoBERTa 64.1+31 66.0+0.1 67.2+0.0 62.1+2.90 89.0+0.3 89.2+11 89.3+1.0 89.4+1.7 80.9
+EDA 65.2+27 | 70.5+15 | 77.7T+27 | 84.3122 | 88.2+0s | 89.4126 | 90.8:0s | 90.7+1.4 | 82.1
EC) +BT 66.7+22 | 63.2+10 | 64.0+14 | 83.4+25 | 89.4+03 | 90.4+05 | 89.1+06 | 89.3:04 | 79.4
+AMR-DA | 66.4+1.4 | Tl.44s1 | TT.8+22 | 82.5422 | 88.2:112 | 89.210s | 90.2104 | 90.3z02 | 82.0
+STAGE | 72.1:s0 | 72.3:55 | 77.8:31 | 85.2+35 | 90.6+06 | 90.5+10 | 91.0x06 | 91.4:0.» | 83.9
RoBERTa 73.8+4.9 92.0+0.5 92.8+0.6 93.4+0.7 95.0+0.7 95.7+0.3 95.340.9 96.3+0.6 91.8
B +EDA 91.2+0.4 92.3+0.0 93.0+1.8 94.1+03 | 95.2+05 95.4+0.3 95.140.3 95.6+0.2 | 93.9
) +BT 76.6+1.7 | 915411 | 93.8+0.4 | 95.2200 | 95.0x05 | 95.5+00 | 95.6104 | 95.7+0s | 92.2
w +AMR-DA 90.3i[).2 85.4i2.4 85.9i(].(l 85.7i1,(] 87.4i1.1 89.1i(].6 91.7i().9 93.0i[).2 88.6
+STAGE | 91.3:06 | 92.6:05 | 93.0+11 | 94.3203 | 95.2:11 | 95.8204 | 96.1+03 | 96.4:01 | 94.7
RoBERTa 31.712.0 275458 64.5+2.0 88.6+2.7 93.6+1.0 95.1+0.4 96.2+0.6 96.2+0.3 74.2
é"; +EDA 433432 | 76.1+12 | 83.6+12 | 88.8t0s | 94.3106 | 94.5+1.0 | 94.84153 | 95.7+0s | 83.8
EI:J +BT 18.7+1.0 53.9+8.4 914114 | 92.5108 | 94.3108 94.3+0.7 95.1+03 96.0:0.1 | 79.5
= +AMR-DA | 4344126 | 73.3+07 | 83.9421 | 86.T+xo0 | 91.8+417 | 93.5x0s | 93.0t10 | 94.2:02 | 82.5
+STAGE 44 1+a5 76.6+1.1 84.3+2.4 90.4+1.7 93.9+08 95.7+0.2 95.9:03 95.7+0.1 84.6
RoBERTa 4. 7437 20.6+7.1 33.8+1.0 54.541.7 73.9+11 80.5+0.5 85.3+0.5 87.4+1.1 55.1
Z_'_) +EDA 32.94is6 | 37.1+10 | 55.2405 | 69.9:24 | 82.6+23 | 85.4+12 | 86.3t04 | 88.6+00 | 67.2
E':J +BT 11.043.6 | 11.1442 | 55.8405 | 64.0x0s | 82.8+07 | 85.1x13 | 86.9+06 | 89.7x02 | 60.8
= +AMR-DA 25.9+1.6 44.2127 | 58.2+1.1 68.3+0.7 T7.2+1.4 82.9x0.0 85.9+0.1 87.6+0.1 66.3
+STAGE | 27.545s | 31.7+00 | 55.5420 | 66.8+1.7 | 86.6+10 | 86.1104 | 87.8+06 | 89.9+05 | 66.4
RoBERTa 68.7+0.9 91.2+0.2 92.210.4 93.0+0.2 93.9+01 94.2+0.0 94.6+0.0 94.8+0.1 90.3
+EDA 89.4107 | 91.6x03 | 924101 | 934100 | 93.9:04 | 94.4100 | 95.010.2 | 95.0+05 | 93.1
%_) +BT 89.5+02 | 90.9+05 | 92.3100 | 93.4100 | 93.8202 | 944101 | 94.6101 | 94.9:00 | 00.0
+AMR-DA | 90.0:0.5 | 90.8:01 | 92.0:04 | 93.3:00 | 94.0x00 | 944200 | 94.5t01 | 95.0+02 | 93.0
+STAGE 89.5+07 | 91.T+0s | 92.6203 | 93.5101 | 94.2402 | 94.7401 | 95.0:0.1 | 95.120.1 | 93.3
RoBERTa 90.4+05 91.2+0.4 92.210.2 92.7+03 93.6+0.1 93.4+01 94.110.2 94.1+0.2 92.7
m +EDA 90.3+0.4 90.8+0.2 91.8+0.1 92.2+01 93.3+0.1 93.9+0.0 94.0+0.0 94.0+0.1 92.5
g +BT 88.9:+04 | 89.2103 | 92.1x02 | 93.1x02 | 93.0x01 | 93.9z0s | 93.6x01 | 94.0:01 | 92.2
- +AMR-DA | 90.1x05 | 90.5202 | 90.9+13 | 92.420s | 93.2202 | 93.2z05 | 93.2106 | 93.8+02 | 89.8
+STAGE | 91.4:07 | 91.5:05 | 92.8:05 | 92.4201 | 93.8202 | 93.5z01 | 94.0z01 | 94.2:01 | 92.9

Table 21: STAGE performance on RoBERTa
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r | Dataratio [ 1% [ 2% | 5% | 10% | 30% | 50% 70% [ 100% [ avg
5 performance | 79.5 | 83.3 87.4 88.5 89.4 90.0 90.9 91.3 87.5
Noug 300 | 500 | 1,747 | 3,499 | 9,999 | 17,497 | 24,995 | 34,596 -
5 performance | 79.4 | 83.6 87.6 88.8 89.6 90.1 90.9 915 87.7
Naug 298 | 498 | 1,740 | 3,487 | 9,978 | 17,465 | 24,962 | 34,557 -
10 performance | 81.9 | 84.9 87.6 89.6 90.3 90.7 91.6 921 88.6
Naug 294 | 493 | 1,727 | 3,476 | 9,957 | 17,440 | 24,922 | 34,511 -
20 performance | 76.5 | 82.2 86.6 88.7 89.6 90.0 90.9 91.6 87.0
Naug 259 | 468 | 1,721 | 3,453 | 9,926 | 17,407 | 24,877 | 34,457 -
30 performance | 72.2 | 82.0 87.1 88.5 89.5 90.8 91.4 92.0 86.7
Naug 183 | 421 | 1,693 | 3,446 | 9,982 | 17,367 | 24,846 | 34,422 -
Table 22: Performance comparison with various 7.
Naug: number of augmentation samples
Training subset size ratio
Method o359 T 5% | 10% | 30% | 50% | 70% | 100% | "verage
BERT 557 | 77.0 | 845 | 86.7 | 89.0 | 89.7 | 90.7 | 91.2 83.1
DS [ 778 | 846 | 867 | 89.3 | 896 | 902 | 91.0 | 916 87.6
DR | 778 | 849 | 867 | 889 | 89.5 | 90.3 | 91.1 | 91.6 87.6
DI 750 | 833 | 86.3 | 884 | 895 | 90.0 | 909 | 91.6 86.9
SR | 755 | 828 | 865 | 88.3 | 89.5 | 90.0 | 90.8 | 91.5 86.9
u SI 768 | 84.4 | 86.7 | 89.0 | 896 | 90.1 | 909 | 91.6 87.4
< RI 77.0 | 833 | 86.6 | 89.3 | 89.2 | 90.0 | 91.0 | 91.6 87.3
» [ DSR | 785 | 841 | 87.3 | 89.0 | 89.9 | 90.5 | 91.3 | 91.6 87.8
DSI | 781 | 84.0 | 869 | 89.2 | 89.5 | 90.4 | 91.2 | 91.8 87.6
DRI | 774 | 848 | 87.1 | 89.1 | 89.6 | 90.5 | 90.9 | 91.6 87.7
SRI | 78.1 | 83.0 | 87.4 | 89.4 | 89.8 | 905 | 90.9 | 91.6 87.6
DSRI | 81.9 | 849 | 87.6 | 89.6 | 90.3 | 90.7 | 91.6 | 92.1 88.6

Table 23: Performance on various combinations of
STAGE

G. Results with respect to

We have performed various ablation studies on 7,
but we present the ablation results for four subsets
in Section 6. We present the whole results on the
8 subsets of training data in Table 22.

H. Necessity of the Whole Operations

To verify the necessary of multiple operations, we
partially apply each operation used in STAGE. The
experimental results are presented in Table 23. In
the table, ‘D’, ‘'S’, ‘R’, and ‘I’ represent the chosen
operations for STAGE, i.e., D-ME (delete), R-MC
(replace), I-MEN (insert), and S-DSP (swap), re-
spectively. If we combine only two operations, the
average performance is 87.3%, and if we combine
three operations, it is 87.7%. However, the whole
combination is 88.6%. The experimental results
demonstrate that the performance improvement
is more significant if a wider range of operations
are applied. This is attributed to the application
of various modification methods, which results in
obtaining diverse sentences. Through the experi-
ments, the validity of our proposed combination of
four operations, known as STAGE, is evident.
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