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Abstract
Test-time adaptation (TTA) aims to adapt the neural network to the distribution of the target domain using only
unlabeled test data. Most previous TTA methods have achieved success under mild conditions, such as considering
only a single or multiple independent static domains. However, in real-world settings, the test data is sampled in a
correlated manner and the test environments undergo continual changes over time, which may cause previous TTA
methods to fail in practical noise scenarios, i.e., independent noise distribution shifts, continual noise distribution
shifts, and continual mixed distribution shifts. To address these issues, we elaborate a Stable Test-time Adaptation
Framework, called STAF, to stabilize the adaptation process. Specifically, to boost model robustness to noise
distribution shifts, we present a multi-stream perturbation consistency method, enabling weak-to-strong views to be
consistent, guided by the weak view from the original sample. Meanwhile, we develop a reliable memory-based
corrector which utilizes reliable snapshots between the anchor model and the adapt model to correct prediction bias.
Furthermore, we propose a dynamic parameter restoration strategy to alleviate error accumulation and catastrophic
forgetting that takes into account both the distribution shift and sample adaptation degree. Extensive experiments
demonstrate the robustness and effectiveness of STAF, which pushes the boundaries of test-time adaptation to more

realistic scenarios and paves the way for stable deployment of real-world applications.

Keywords: Test time adaptation, Offensive language detection, Text categorisation

1. Introduction

Pre-trained language models (PLMs) have demon-
strated superior performance on various natural
language processing (NLP) tasks (He et al., 2023;
Sanh et al.,, 2019; Liu et al., 2019; Wang et al.,
2022c). However, when the training domain and
testing domain are taken from different distribu-
tions, the deployed model often violates this as-
sumption. In the real world, environmental data
are typically non-stationary and constantly chang-
ing, and the testing data unavoidably undergoes
natural variations or corruption. For instance, word
spelling errors, toxic comments, OCR recognition
text errors, which make PLMs often suffer from
severe performance degradation (Lazaridou et al.,
2021; Yao et al., 2022; Zhang and Gao, 2022). And
due to the ever-changing nature of language, the
test input might exhibit continual distribution shift
over time (Dhingra et al., 2022).

In order to address this issue, an ideal goal is
to enable deployed models to achieve human-like
learning capabilities, allowing them to adapt and
respond to diverse environments and tasks. Specif-
ically, these models should be capable of learn-
ing and adapting in dynamic environments while
retaining previously acquired knowledge. These
abilities are vital for long-term deployment in the
real-world (Wang et al., 2022a). For instance,
autonomous driving systems and chat assistants
interact with ever-changing environments for ex-
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tended periods and require rapid and effective
adaptation to new circumstances. To enhance
the robustness and adaptability of models in such
scenarios, researchers have explored methods
such as continual learning (CL) (Lesort et al.,
2020; Zenke et al., 2017) and domain adaptation
(DA) (You et al., 2019; Pei et al., 2018). These
approaches achieve their objectives through in-
cremental training or retraining. However, these
methods often assume that the source domain is
accessible, data is labeled, and require a heav-
ier burden of backpropagation. Moreover, these
methods struggle to generalize to a wide array of
potential unknown data distributions during train-
ing.

Recently, test-time adaptation (TTA) methods
have emerged as an alternative solution (Wang
et al., 2021; Niu et al., 2022, 2023; Lee, 2013;
Ravichander et al., 2021). TTA methods update
the model online using only the current unlabeled
test data to adapt the model to the target domain
distribution. TTA has been shown to be effective
in handling distribution shift (Wang et al., 2021,
2022b; Niu et al., 2022; Manli et al., 2022). How-
ever, its superior performance is usually achieved
under some mild test settings, where the test sam-
ples are independently sampled from single or mul-
tiple distributions. In real-world scenarios, the test
data distribution may be non-stationary. As shown
in Fig. 1 (left), these scenarios may encounter: (1)
independent noise distribution shifts, (2) continual
noise distribution shift, (3) continual mixed distribu-
tion shifts. These are common scenarios in reality,
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where the test data not only significantly differs
from the source domain distribution but also con-
tains noise. Meanwhile, the test data is sampled
correlatively over time, which makes the pseudo
labels become noisy and calibration errors, leading
to unstable adaptation of existing TTA methods.

To mitigate the degradation of model per-
formance, we elaborate a Stable Test-time
Adaptation Framework (STAF) to further stabilize
the adaptation process in practical noise scenar-
ios from three aspects: (1) encourage the model
to be consistent with the original weak view and
the weak-to-strong perturbed views to boost model
robustness to noise distribution shifts by MPC, (2)
take into account both the distribution shift and
sample adaptation degree to dynamically restore
the parameters of the model by DPR, thereby al-
leviating catastrophic forgetting, and (3) utilize re-
liable snapshots between the anchor model and
the adapt model to correct prediction bias while
maintaining long-term memory by RMC. Promising
results demonstrate that STAF can effectively ex-
tend the capabilities of deployed PLMs, enabling
them to thrive in practical noise scenarios.

Main Contributions

» We construct a more challenging robustness
evaluation benchmark, called NoISE WILDS-
CIVILCOMMENTS, which not only contains sig-
nificant distribution shifts but also have com-
mon natural noise.

+ We elaborate a stable test-time adaptation
framework, which considers more practical
scenarios and is easy to implement and de-

ploy.

» Extensive experimental results demonstrate
the effectiveness of our proposed STAF and
outperform the traditional TTA methods in
practical noise scenarios.

2. Related Work
2.1.

Unsupervised Domain Adaptation (UDA) aims to
alleviate distribution shift by jointly optimizing the
source domain data and unlabeled target domain
data. Some approaches focus on self-supervised
learning (Kumar et al., 2020), contrastive learn-
ing (Kang et al., 2020), or domain discrimina-
tors (Ganin and Lempitsky, 2015) to reduce the
distribution shifts. To avoid accessing source do-
main data, recent works utilize information maxi-
mization (Liang et al., 2020), but they often require
the entire target domain dataset and are performed
offline, making them challenging to deploy in prac-
tical online applications.

Unsupervised Domain Adaptation

2.2. Test-Time Adaptation

Test-time Adaptation (TTA) focuses on more chal-
lenging settings, which only use the current un-
labeled test data to adapt the model to the tar-
get domain distribution. Since the test data also
provides insights into distribution shift (Schnei-
der et al., 2020a), simply adjusting the normal-
ization statistics (Schneider et al., 2020b) can sig-
nificantly improve the model’s performance. While
methods based on self-training with hard pseudo-
labels (Lee, 2013) or entropy minimization (Wang
et al., 2021) further perform backpropagation to
update the parameters of normalization during test-
ing. In a similar vein, (Niu et al., 2022, 2023) seeks
to minimize reliable samples to restrict drastic up-
dates.

2.3. Continual Learning

Continual/lifelong Learning (CL) is designed to im-
bue the model with the ability to acquire new knowl-
edge in an uninterrupted data stream, transfer
knowledge from the source domain to the target do-
main, and retain the memory of the source knowl-
edge without succumbing to catastrophic forget-
ting (Parisi et al., 2019). Consequently, several CL
methods strive to alleviate catastrophic forgetting
by regularizing the preservation of source knowl-
edge (Ahn et al., 2019; Kirkpatrick et al., 2017) and
employing experience replay (Rolnick et al., 2019;
Rebuffi et al., 2017). In this study, our motivation
aligns with CL as we emphasize that TTA methods
encounter the issue of catastrophic forgetting even
in practical noise scenarios, thereby rendering the
deployed model unstable.

3. Problem Definition and Motivation

Problem Definition. Given a model 6, with pa-
rameter 0y, the parameter 6, is trained on the
source domain Dg = {(Xs, Vs)}. Then, we use Pg
and Pr to denote the data distribution of the source
domain Dg and the target domain Dr, respectively,
where Xg ~ Pg, Xr ~ Pr. In general, the pre-
trained model fy, performs well on Ds. However,
due to the distribution shift between the source
domain and the target domain, i.e., Ps # Pr, fo,
suffers significant performance degradation on the
target domain.

To address these issues, typical (fully) test-time
adaptation method (Wang et al., 2021) seeks to
update the norm layer parameters by minimizing
some unsupervised objective with the current unla-
beled test data x; € Dt at time step ¢, which can
be formulated as follows:

I%in]Em,,N'DT [€(fo,(x¢), yt)]
s.t. 0t+1 = Ot -n (ng(@t)) .
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Figure 1: Framework overview. We mainly consider the following practical scenarios: (a) independent
noise distribution shifts, (b) continual noise distribution shifts, and (c) continual mixed distribution shifts.
Prior to adaptation, STAF is initialized with source pre-trained weights. During test-time, MPC in eq. (4) is
designed to encourage weak-to-strong views to be consistent guided by the weak view from the original
sample, thus boosting model robustness to noise distribution shifts. Meanwhile, DPR in eq. (12) is
constructed to dynamically restore the parameters of the model by estimating the discrepancy between
the predictions of fy, , (z:) and fy, (x;) to alleviate catastrophic forgetting. Finally, RMC in eq. (9) utilizes
reliable snapshots in the memory bank to correct prediction bias.

where 7 is the learning rate, ¢(-) can be formu-
lated as the pure entropy minimization (Wang et al.,
2021) or other variants (Niu et al., 2022, 2023; Lee,
2013). The model fy, needs to update itself accord-
ing to z; and make online predictions immediately.
Note that since most Transformer-based (Vaswani
et al., 2017) pre-trained language models (Ken-
ton and Toutanova, 2019; Sanh et al., 2019) do
not have Batch-Norm layers, we only update the
parameters of the Layer-Norm layer during the test-
time adaptation process.

In our practical noise scenarios settings, as
shown in Fig. 1 (left), the test scenario may meet:
(a) independent noise distribution shifts, (b) contin-
ual noise distribution shifts, and (c) continual mixed
distribution shifts. More challenging is that the test
data distribution changes continually in scenario (b,
C), i.e., Py — P1 — - = Ps. Furthermore, the test
data x; in scenario (c) further contains a mixture of
multiple noise distribution shifts. It is important to
note that the above mentioned scenarios not only
have significant distribution shifts but also include
common natural noise as described in Sec. 5.1.

Motivation. As a matter of fact, this setting is
largely driven by the practical requirements of de-
ploying models. Taking the chat assistants men-
tioned in Sec. 1 as an example, chat assistants
need to interact with dynamic open environments
and operate on non-static data. In addition, the
constantly changing nature of language as spoken
or written may be a key factor behind distribution
shifts. Therefore, this degradation is also preva-
lent in pre-trained language models (PLMs) over
time. Motivated by the fact that error accumula-

tion and catastrophic forgetting are inevitable in
practical noise scenarios, the urgent need prompts
us to further propose a stable test-time adaptation
framework to mitigate the degradation of model
performance.

TTA considers more challenging but realistic
problems and has attracted widespread attention
and applications (Manli et al., 2022; Liu et al., 2022;
Ma et al., 2022; Ye et al., 2022). However, it is still
in its infancy in the NLP domain.

Algorithm 1 Proposed Approach STAF

Initialization: A source pre-trained model fy,;

Input: Unlabeled data stream z; at time step ¢.

1. Feed forward x, and generate the weak-to-
strong perturbed predictions pi by eq. (2).

2: Update model fy, by multi-stream consistency
loss in eq. (4).

3: Update memory bank M with more reliable
snapshot in eq. (5).

4: Correct the prediction bias by eq. (9).

5: Dynamic parameters restoration by eq. (12).

Output: Predictions p;; Updated model fy, ;.

4. Methods

Motivated by the fact that the error accumulation
caused by noisy samples or low-quality pseudo-
labels in practical noise scenarios, we propose to
encourage the model to be consistent with the orig-
inal weak view and the weak-to-strong perturbed
views to boost model robustness to noise distri-
bution shifts. Meanwhile, we develop a reliable
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memory-based corrector, which utilizes reliable
shapshots to correct prediction bias. Furthermore,
to mitigate the catastrophic forgetting, we propose
to dynamically restore the parameters of the model
by estimating the adaptation degree of the cur-
rent sample. An overview of our framework and
algorithm is depicted in Fig. 1 and Algorithm 1,
respectively.

Multi-stream Perturbation Consistency
(MPC)

we posit that regularizing perturbed predictions
to be consistent with a shared weak view from
the original prediction can be regarded as enforc-
ing consistency between these perturbed views.
Although advanced methods (Bayer et al., 2022)
have been proposed to generate strong views, their
success heavily relies on the manual design of
strong data augmentation. To break this dilemma,
guided by consistency learning (Englesson and Az-
izpour, 2021; Wang and Shi, 2022), we propose to
encourage the model to be consistent with the orig-
inal weak view and the weak-to-strong perturbed
views to boost model robustness to noise distribu-
tion shifts.

Specifically, let ¢ : X — R? be the model en-
coder and g : R? — R¢ be the classifier, where X
is the input space, d and ¢ are the dimension of
feature space and the number of classes, respec-
tively. For a test sample z; appearing at the time
t, we first obtain the original prediction p;, and the
perturbed prediction p; by:

hy = ¢<fvt) ©&, & ~ Bernoulli(r), @)

Dt = g(ht), bt = g(ht),

where &, is sampled from a Bernoulli distribution
with a dropout rate r, and © denotes the element-
wise product. To boost the robustness to noisy
samples, we propose to minimize the divergence
between p; and p., resulting in the following single-
stream perturbation consistency loss:

R 1 R R
Lspc(pe, i, 0:) = 5 (Lxrp (pellpe) + Lxio (Bellpe)) ,

with Lxip(pt||pe) = ZPE log %7
i=1 t

(©)
where Lkip is the Kullback-Leibler Divergence
(KLD). While minimizing the KLD, the divergence
between the original prediction p;, and the per-
turbed prediction p, is minimized, thus enhances
the robustness to noisy samples.

However, the severity of noise varies from sam-
ple to sample, and the model may not exhibit
consistent stability across different severity lev-
els of noise. Guided by weak-to-strong consis-

tency (Yang et al., 2023) and the smoothing as-
sumption (Wagner et al., 2018), we propose to
gradually increase the dropout rate r (r : 0.1 —
0.2---), resulting in weak-to-strong perturbed pre-
dictions p:. This allows us to enable weak-to-strong
views to be consistent guided by the weak view
from original sample and multiple views can be
complementary to each other. Overall, the multi-
stream perturbation consistency loss is given by:

1 & ¥y
Lupc(ze, ) = — > Lec(p,pi,60:).  (4)
i=1

Here, the additional costs are negligible since only
optimize the parameters in Layer-Norm and a sin-
gle forward pass is required to perform multiple
perturbations.

Reliable memory-based corrector (RMC)

Motivated by the fact that the continually changing
environments, the pseudo-labels tend to become
noisier and miscalibrated over time. An ideal solu-
tion is to maintain a memory bank M, which can
be used to correct the prediction bias. However, up-
dating M may contain unreliable snapshots, which
may distract the model from the correct direction.

To address this issue, we propose a reliable
memory-based corrector (RMC) to correct the pre-
diction bias. Specifically, we propose to update
the memory bank M by maintaining more reliable
key-value {¢: : po(z1),v: : fo(x)} pairs between
the anchor model f,, with parameter 6, and the
adapted model f,, with parameter 6., which is de-
fined as follows:

M — MU {q, v} - W(wy;60,6:,) (5)

where I(-) is an indicator function to determine
whether the snapshot is reliable or not, is defined
as:

R KIACHE
]I() {¢90(zt)7

if max{fo,(x¢)} > max{fo,(z+)}
otherwise

(6)

For a test sample x; appering at the time ¢,
we initially retrieve a support set S(¢(z)) =
{(hj,v;)}h_, from M, where k is the number of
retrieved samples. Guided by the smoothing as-
sumption (Zhang et al., 2019), let ¢; ; = m
be the cosine similarity between feature h; and h;.
Then, we can use the cosine similarity distance
to assign the attention weight w, j to each corre-
sponding sample in S as:

exp(cr) @

Wtk = < 7.
MY erexplenn)

where cosine similarity c; i, is then computed be-
tween k selected samples and z;.
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We adopt ensemble strategy (Dong et al., 2020)
to take into account the intermediate result w; j
in eq. (7), which is ensembled as follows:

U = Zwt,j v (8)

jEk

Then, the final prediction can be corrected as fol-
lows:

Pt = (fo, () + Vep) /2 (9)

Furthermore, the estimates are not stable within a
single mini-batch, and the model may not exhibit
consistent stability across different mini-batches.
Therefore, we use a fixed-length FIFO (first-in, first-
out) queue to cache the most recent key-value
pairs. We discuss the computational cost of the
RMC module in Sec. 6.

Dynamic Parameters Restoration (DPR)

To reduce the long-term error accumulation and
catastrophic forgetting in lifelong TTA, (Wang et al.,
2022b) proposed to further update the parameters
by randomly restoring a small number of tensor
elements in the trainable weights after the gradient
update at time step ¢:

M, = Bernoulli(po)

(10)
Orp1 =M ©0p + (1 — My) © Opy1.

where M is a mask matrix that determines which
parameters within 6,,, need to be restored to the
initial weights 6y, po = 0.1 is stochastic restore
probability, and ® denotes element-wise product.
Note that (Wang et al., 2022b) is not suitable for
the NLP domain.

However, due to the change of model parame-
ters over time, even for samples with similar distri-
bution shifts but different arrival times, the demand
for adaptation degree should be different. If the
parameters of samples with slight distribution shifts
are restored drastically, it will lead to the degrada-
tion of the model’s ability to adapt to new samples.
Therefore, it is necessary to dynamically adjust the
probability of parameter restoration according to
the adaptation degree required by each sample,
so as to reduce the long-term error accumulation
while maintaining the ability to adapt to new sam-

les.

P Specifically, for a test sample z; appearing at
time ¢, we aim to estimate the adaptation degree 1,
of the model to the current sample by capturing the
distribution shift before and after adaptation. Let
p: be the prediction of the model with parameters
0:, then the adaptation degree 7, is estimated as
follows:

7= 5 (Lxwn (o, @0llpe) + Lacu (il fo (1))
(1)

Thus, the stochastic restore probability in eq. (10)
can be dynamically adjusted over time, which is
defined as follows:

pt = exp (Ti) - po , (12)
satisfying constraints p; € [0, 1]. Accordingly, the
elements in 0,1 are restored to the initial weights
Ao with a probability of p;.

5. Experiments

5.1.

Dataset. To evaluate our method, we selected
a dataset with a significant distribution shift be-
tween the train and test distributions, i.e. WILDS-
CIVILCOMMENTS (Koh et al., 2021), which is
a modification of the original CivilComments
dataset (Borkan et al., 2019). This dataset com-
prises 269,038 training samples and 133,782 test
samples. Each comment text is associated with
metadata indicating membership in one or more of
eight sensitive groups, and is labeled as toxic or
non-toxic using a binary indicator’.

Setup

Challenge Settings of Dataset. Due to the lack
of datasets with relevant distribution shift and noise
in the NLP field, we have constructed a more chal-
lenging robustness evaluation benchmark by pro-
cessing WILDS-CIVILCOMMENTS, called "Noise
WILDS-CivilComments". This dataset not only con-
tains significant distribution shifts but also have
common natural noise, i.e. recognition errors by
mimicking optical character recognition (OCR) en-
gines (Ma, 2019), keyboard errors (keyboard) (Be-
linkov and Bisk, 2018), machine translation errors
(backtranslate) (Jorg Tiedemann, 2020), synonym
replacer (Pavlick et al., 2015), and spelling errors
(Coulombe, 2018). Tab. 1 shows examples of
NoISE WILDS-CIVILCOMMENTS dataset.

Baselines and Models. All experiments were
conducted on the pre-trained DistiiBERT (Sanh
et al., 2019) network and fine-tuned on the WILDS-
CivILCOMMENTS dataset followed by (Koh et al.,
2021). During test time, the Baseline represents
the pre-trained model directly evaluated on the tar-
get domain without any adaptation. Apart from
the baseline, we compare with the following typical
and strong baselines to verify the effectiveness of
STAF: (1) TENT (Wang et al., 2021) minimizes en-
tropy to update norm layer parameters. (2) PL (Lee,
2013) updates norm layer parameters with hard
pseudo-labels. (3) LN (Schneider et al., 2020b)

'Our source code, dataset, and pre-trained mod-
els are available at https://anonymous.4open.
science/r/coling-tta-D527/.
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Comment

Only an idiot would believe that.
On.j an idiot eoupd F2lisve that.

Only an idiot would believe it.
Only an 1diot would 6elieve that.

Only at idiot wood believe that.
Only an idiot would understood that.

Operation Conditions
Original comment  Shift
Keyboard Shift + Noise
Backtranslate Shift + Noise
OCR Shift + Noise
Spelling Shift + Noise
Synonym Shift + Noise

Table 1: Examples of NoISE WILDS-CIVILCOMMENTS challenge sets from 5 types of natural noise:
keyboard error, machine translation error, OCR engines recognition error, synonym, and spelling error.
The underline indicates the operation part. Our NoISE WILDS-CI1vILCOMMENTS not only have significant

distribution shift but also have common natural noise.

only utilizes layer normalization statistics from the
test input and keep frozen model parameters. (4)
EATA (Niu et al., 2022) seeks to minimizes reliable
and non-redundant samples, and use the fisher
regularizer to restrict model updates. (5) SAR (Niu
et al., 2023) seeks to find falt minimum (Foret et al.,
2021) and minimizes reliable samples, also further
restoring the model by recording a moving average
of loss.

Implementation Details. In our experiments, we
adopt Adam optimizer (Kingma and Ba, 2015) with
learning rate 1e—®, the memory queue length is set
to ¢ x 100 (cis the number of classes), the retrieval
size k =61ineq. (7), m = 5in eq. (4), and default
values for all other hyperparameters. For a fair
comparison, we set batch size to 8 and keep the
default settings of other TTA methods. Note that
we do not perform any tuning during training, we
only conduct adaptation on the pre-trained model.

5.2. Results for Independent Noise
Distribution Shifts

To evaluate the effectiveness of STAF, we first con-
sider the independent noise distribution shifts sce-
nario in Fig. 1, scenario (a), where the target do-
main is exposed to distribution shifts and noise in-
dependently. From Tab. 2, it it obvious that the per-

formance of the model after adaptation has been
improved to varying degrees, which highlights the
indispensability of adaptation.

Notably, TENT and PL can achieve significant
improvements under mild conditions (e.g. Back-
translation, Spelling, Source) and even comparable
to our method. However, since the EATA and SAR
methods stabilize the adaptation by restricting the
update, but in some cases it hinders the model’s
adaptation ability, resulting in poor gains.

On the contrary, STAF attains superior results
on most conditions compared to previous meth-
ods, and significantly outperforms the baseline by
2.18%, verifying the effectiveness of our method to
boost robustness to noisy samples.

5.3. Results for Continual Noise
Distribution Shifts

Moreover, real-world applications are running in
practical noise scenarios, where the environment
is non-stationary and continually changing, and
the test data is sampled correlatively over time. As
shown in eq. (13), it is necessary to further evalu-
ate on continual noise distribution shifts scenario,
where the target data arrives continually from dif-

Method Source  Keyboard Backiranslation OCR  Spelling  Synonym Avg.
Baseline 90.06 88.99 89.67 90.11 89.13 90.71 89.78+0.30
PL 2.37 1.77 2.42 1.60 2.92 1.44 2.094+0.38
TENT 2.39 1.78 2.44 1.59 2.92 1.46 2.10+0.39
EATA 0.62 0.51 0.53 0.43 0.65 0.40 0.52+0.08
LN 0.60 0.50 0.56 0.44 0.69 0.38 0.53+0.08
SAR 0.54 0.65 0.51 0.57 0.64 0.75 0.61+0.21
STAF (Ours) 2.61 1.98 2.18 1.74 2.94 1.65 2.18+0.35

Table 2: Independent noise distribution shifts scenario (Fig. 1, scenario-a). Percentage difference
in accuracy (%) over 5 runs. The number in brackets represents the standard deviation and underline

indicates the second best result.
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Time t

Method Source Keyboard Backtranslation OCR  Spelling Synonym  Source” Avg.
Baseline 90.06 88.99 89.67 90.11 89.13 90.71 90.06 89.82+0.27
PL 2.37 -0.01 -0.07 -1.37 -0.31 -1.90 -1.27 -0.37+0.45
TENT 2.39 0.01 -0.14 -1.33 -0.38 -1.96 -1.22 -0.38+0.46
EATA 0.62 0.58 0.55 0.41 0.68 0.38 0.63 0.55+0.08
LN 0.60 0.50 0.52 0.45 0.69 0.38 0.60 0.53+0.09
SAR 0.59 0.47 0.62 0.41 0.59 0.43 0.65 0.54+0.12
STAF (Ours) 2.40 1.72 1.91 1.46 2.48 1.19 2.45 1.94+0.47

Table 3: Continual noise distribution shifts scenario (Fig. 1, scenario-b). Percentage difference in
accuracy (%) over 5 runs. The test inputs ¢ from different target domains arrive continually. Here, Source*
indicates returning to the source domain to re-adapt, the red color indicates the results which lower than
the Baseline, the underline indicates the second best result, and the bold indicates the best performance.

ferent target domain distributions as:

change change
Dy ———— i —————— Dy
~—— hoise distribution <~ noise distribution “— —
Pi—1 Pe pt+l

(13)

From Tab. 3, we can observe that PL and TENT are
particularly prone to occur degradation, especially
on more challenging scenarios (e.g., OCR), result-
ing in a significant decline of -1.37% and -1.33%.
Furthermore, we find that although SAR benefits
from record a moving average of entropy loss val-
ues to reset the model to prevent model collapse,
however, when the loss fluctuates greatly, it is easy
to trigger the model reset condition frequently, re-
sulting in performance similar to LN which only
uses layer normalization statistics. It is worth to
note that EATA achieves a gain of 0.55% by restrict-
ing model updates, but it also requires access to
the source data, which defeats the whole purpose
of the TTA paradigm.

Conversely, STAF achieves better and more ro-
bust results, and significantly outperforming the
second-best method by 1.39%. Moreover, STAF
is the best result in all conditions, verifying the
effectiveness in the continual adaptation process.

Comparison of Continual and Independent
Noise Test-time Adaptation. In Fig. 2, although
most methods perform well on fixed domains, the
performance of Tent and PL has declined to vary-
ing degrees due to the lack of effective measures
to deal with distribution shifts. On the contrary, our
method is label-independent, which is not suscep-
tible to noisy pseudo-labels, and thus can stably
adapt in continual noise distribution shifts.

5.4. Results for Continual Mixed
Distribution Shifts

Under practical noise scenarios, the data distribu-
tion types may be arbitrary. Therefore, we addi-
tionally evaluate our method on continual mixed

Source

SynonymPpdb Keyboard LN (C.) LN (1)
v EATA(C.)  —v— EATA(L)
4 TENT(C.)  —— TENT(L)
PL (C.) PL (I.)
3 A # SAR(C.) —=— SAR(L)
Spelling y Bz;ckTranslate & STAF (C.) —m— STAF (L)

OCR

Figure 2: Comparison of continual (C.) and in-
dependent (l.) noise distribution shifts. Each
vertex represents a type of corruption, and the far-
ther the vertex is from the center, the better the
performance.

distribution shifts scenario, as depicted in Fig. 1
(left-c). In this scenario, each time step ¢ contains
a mixture of noise distribution types with a random
shuffle order, which are sampled from a uniform
distribution over each test input and share seman-
tic category labels with Source. In order to sim-
ulate scenarios in real-life situations that may be
revisited, and evaluate the forgetting effect of our
approach, we repeat the same target sequence
group eight times followed by (Wang et al., 2022b)
as:

Tt—1 — Tt — Tit1
~~ ~ ~—~
.sP0,P2,P2,...  --sP1,P0, P2y L P3,P1,Ps,...
8XDr

(14)

where each z; contains a mixture of different noise
distribution types.

From Tab. 4, we can observe that although SAR
and EATA have limited gains in the independent
noise distribution shifts scenario, but they can main-
tain consistent positive performance, resulting in
improvements of 0.55% and 0.61%, respectively.
Moreover, LN also exhibits similar behavior. On
the other hand, TENT and PL exhibit a rapid degra-
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Time t

Round 1 2 3 4 5 6 7 8 Avg.
Baseline 89.70 89.70 89.70 89.70 89.70 89.70 89.70 89.70 89.70
PL 233 -0.01 -061 -080 -0.85 -0.88 -0.92 -0.96 | -0.34+0.38
TENT 2.35 0.02 -058 -0.76 -0.83 -092 -096 -0.98 | -0.33+0.37
EATA 0.61 0.63 0.60 0.59 0.57 0.60 0.62 0.63 | 0.61+0.07
LN 0.61 0.59 0.58 0.61 0.58 0.59 0.61 0.58 0.59+0.07
SAR 0.51 0.58 0.57 0.58 0.60 0.49 0.51 0.57 0.55+0.13
STAF (Ours) | 2.48 2.32 2.05 1.89 2.02 1.86 1.75 1.87 2.03+0.34

Table 4: Continual mixed distribution shifts scenario (Fig. 1, scenario-c). Percentage difference in
accuracy (%) over 5 runs. The test inputs arrive continually while contain a mixture of multiple noise
distribution shifts. Here, the red color indicates the results which lower than the Baseline, the underline
indicates the second best result, and the bold indicates the best performance.

dation in performance after the second round, with
a decrease of 0.58% and 0.61%, which gradually
intensifies and becomes unavoidable. Moreover,
expanding the gains in such a challenging dynamic
scenario is difficult, but STAF consistently achieves
the best results in all rounds, and leverages an av-
erage improvement of 2.03%, which again demon-
strates the effectiveness of STAF.

6. Ablation Studies

Effect of Each Component From Tab. 5, com-
pared with pure entropy minimization, our MPC
in eq. (4) significantly improves the model perfor-
mance, i.e., -0.38% — 1.49%. DPR in eq. (12),
further improves the average classification accu-
racy by 1.88%. Meanwhile, the RMC in eq. (9) is
also effective, increasing accuracy from 1.88% —
2.03%. If any component is removed from STAF,
the performance will decline, thus confirming the
indispensability of each component.

Method | AA7T
Baseline 89.82
Entropy (Wang et al., 2021) | -0.38
MPC 1.49
+ DPR 1.88
+ DPR + RMC 2.03

Table 5: Average accuracy (AA 1) difference of
each component on the continual noise distribution
shifts scenario.

Ablations Fig. 3 shows the sensitivity analysis
of different perturbation number m and different
retrieval size k and the time calculation overhead.
We observe that m = 5 provides a good balance
between performance and computational overhead.
We limit the maximum to 5 because the dropout
rate over 0.5 easily cuts off too many connections
between layers and limits the learning ability of the
network. When the retrieval size k is 6, it can earn

- AA(T)

- AA(T) Time (s) Time (s)

o B N W A U O

(a) Perturbation number m (b) Retrieval size k

Figure 3: Average accuracy (AA 1) difference and
time (s) for different perturbation number m and
different retrieval size k£ on continual noise distribu-
tion shifts scenario.

more profits, while when k is 8, the performance
begins to decline.

7. Conclusion

In this work, we introduce several practical settings
for test-time adaptation, i.e., independent noise dis-
tribution shifts, continual noise distribution shifts,
continual mixed distribution shifts. To stabilize the
adaptation process in practical noise scenarios, we
elaborate a stable test-time adaptation framework
(STAF). Motivated by the fact that the error accu-
mulation in practical noise scenarios, we present
a multi-stream perturbation consistency method
(MPC), which enables multiple perturbed views
to be consistent guided by the weak view from
original sample to boost noise distribution shifts.
Meanwhile, we develop a reliable memory-based
corrector, which utilizes reliable snapshots to cor-
rect prediction bias. Furthermore, we propose a
dynamic parameter restoration strategy that takes
into account both the distribution shift and sam-
ple adaptation degree, thus mitigating catastrophic
forgetting. Extensive experimental results demon-
strate the stability and effectiveness of STAF, which
pushes the boundaries of test-time adaptation to-
wards practical noise scenarios and paves the way
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for stable deployment of real-world applications.

8. Limitations

Potential limitations of our method are that it re-
quires maintaining a memory bank for bias cor-
rection, and the parameter restoration has uncer-
tainty. In future work, we will explore more efficient
memory algorithms (Ming et al., 2022; Johnson
et al., 2021; Sun et al., 2022) to reduce computa-
tional costs, and only restore irrelevant parameters
to maintain learned knowledge (Brahma and Rai,
2023; Kirkpatrick et al., 2017). Moreover, test-time
adaptation may lead to carbon emission issues
due to the need to adapt to all samples. There-
fore, we will explore how to reduce computational
costs during test-time adaptation to better deploy
in real-world applications.
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