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Abstract

Predicting price variations of financial instruments for risk modeling and stock trading is challenging due to the

stochastic nature of the stock market. While recent advancements in the Financial AI realm have expanded the

scope of data and methods they use, such as textual and audio cues from financial earnings calls, limitations exist.

Most datasets are small, and show domain distribution shifts due to the nature of their source, suggesting the

exploration for data augmentation for robust augmentation strategies such as Mixup. To tackle such challenges in the

financial domain, we propose SH-Mix: Saliency-guided Hierarchical Mixup augmentation technique for multimodal

financial prediction tasks. SH-Mix combines multi-level embedding mixup strategies based on the contribution of

each modality and context subsequences. Through extensive quantitative and qualitative experiments on financial

earnings and conference call datasets consisting of text and speech, we show that SH-Mix outperforms state-of-

the-art methods by 3−7%. Additionally, we show that SH-Mix is generalizable across different modalities and models.

Keywords: Multimedia Document Processing, Social Media Processing, Tools, Systems, Applications

1. Introduction

Financial risk modelling is of great interest to cap-

ital market participants for making sound invest-

ment decisions comprising tasks like price forecast-

ing and movement/volatility prediction which are

essential to designing profitable trading strategies.

Nevertheless, forecasting trends in these valua-

tions is a complex task due to the inherent kinetic

characteristics and volatility of the stock market.

Recent works establish the effectiveness of in-

corporating multimodal data from diverse sources

like financial news (Hu et al., 2018), social me-

dia (Tabari et al., 2018) and financial documents

(Mathur et al., 2022a) over conventional statistical

methods using historical price data (Zheng et al.,

2019; Ariyo et al., 2014a; Wu et al., 2022). Finan-

cial conference calls are one such rich information

source consisting of textual, auditory and visual

cues (Price et al., 2012; Brockman et al., 2017),

and exhibit correlation with the involved firms’ stock

prices (Irani, 2004; Bowen et al., 2000). Examples

include earnings calls, mergers and acquisitions

calls, and monetary policy briefings which typi-
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Figure 1: Example from a financial earnings call

showing that not every part of the input has same

relevance for price movement forecasting task.

More salient spans are colored darker. There are

evident variations in the degree of saliency ob-

served within distinct hierarchical levels, specifi-

cally at the modality-level and the fused-level.

cally feature spoken content from senior executives

and offer valuable insights into a company’s per-

formance. Including vocal cues along with explicit

textual information enriches the learned represen-

tations with information about tonality, intonations,

and pitch, which serve as indicators of underlying

emotions and sentiment of the speaker, thereby
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also making them contextually enhanced. Recent

studies use multimodal fusion-based mechanisms

to harness the contextual information for individual

modalities within these calls, while simultaneously

incorporating inter-modal relationships (Qin and

Yang, 2019; Sawhney et al., 2021; Li et al., 2020;

Mathur et al., 2022b). However, there is a scarcity

of these real-world multimodal financial datasets,

like financial earnings calls which can be as low as

four calls per year (Chen et al., 2018). Additional

challenges arise in the form of source variations

and the need for meticulous annotation. To miti-

gate this scarcity, we explore Mixup (Zhang et al.,

2018) as a data augmentation technique due to its

established effectiveness in improving generaliza-

tion ability in limited data domains (both unimodal

and multimodal) (Chidambaram et al., 2022; Zhao

et al., 2023; Lin and Hu, 2023; Liu et al., 2023).

Financial data, including conference and pol-

icy calls, comprises extensive long-form content,

featuring extended audio-visual recordings (Behre

et al., 2022), lengthy textual transcripts, typically

containing over 5,000 words of text (Koval et al.,

2023). Such large data streams contain certain

salient segments that have the majority of informa-

tional essence (Wilmot and Keller, 2021). Saliency-

aware Mixup techniques exploit this saliency in-

formation to mix only the most relevant parts of

the input reducing noise by considering the dis-

criminative features of the input while also pre-

serving its local structure (Lee et al., 2022; Kim

et al., 2020a; Sawhney et al., 2022a). It captures

span-level saliencies in unimodal inputs and mixes

them by transporting the salient span of one im-

age/audio to another. These approaches utilize

saliency from a unimodal perspective and do not

consider cross-modal dependencies. As shown

in Figure 1, multimodal data streams may contain

certain important (salient) aspects to the model’s

predictions - both locally at the modality level and

globally at the fused level, creating a hierarchical

structure which is not fully captured by existing

Mixup techniques.

Building on these gaps, we propose SH-Mix:

Saliency-Aware Hierarchical Multimodal Mixup, a

novel hierarchical architecture building on Mixup

incorporating saliency information from the under-

lying data leveraging gradient-based measures. At

the local-level, individual modality mixup is con-

ducted based on modality-specific saliency. Sub-

sequently, a second global-level is introduced,

wherein these modality-specific representations

are fused through an attention-based weighting

mechanism, to obtain an abstract multimodal rep-

resentation. At the global-level, saliency-based

mixup is employed on these fused embeddings

enabling it to capture the cross-modal correlations

and inter-dependencies. Incorporated with a neu-

ral multimodal-fusion base, SH-Mix shows signif-

icant performance improvement compared to the

state-of-the-art approaches. Our contributions are

as follows:

• We introduce SH-Mix
1, a novel data aug-

mentation strategy for multimodal financial

data leveraging modality-level and fused-level

saliency (§3).

• Through extensive quantitative (§5.1) and ex-

ploratory (§5.2, §5.4) experiments on real-

world tasks with insufficient training data, such

as financial prediction using conference calls,

we show that SH-Mix outperforms the existing

state of the art by 3-7%.

• Finally, we demonstrate the general applica-

bility of our approach by presenting SH-Mix

as a general Mixup framework for multimodal

sequence learning through supplementary ex-

periments on tasks from other domains like

sarcasm detection and sentiment analysis,

and different base models, on data comprising

audio, text and visual sequences.(§5.5).

2. Related Work

AI in Finance Traditional approaches to financial

forecasting employ numerical price-based data to

predict future price volatility/movement. These in-

clude areas like stock market (Ariyo et al., 2014b;

Rundo et al., 2019), cryptocurrencies (K et al.,

2022; Iqbal et al., 2021) and currency exchange

market (Kamruzzaman and Sarker, 2003). These

approaches usually employ time-series models like

ARIMA (Ariyo et al., 2014b) and GARCH (Boller-

slev, 1986). Recently, textual, acoustic and visual

signals fetched from social media platforms and

web searches have been used for forecasting (Xu

and Cohen, 2018; Sawhney et al., 2022b). Such

signals are able to capture the underlying investor

sentiment associated with financial security beyond

just numerical data thus improving the forecasting

ability of the model.

Multimodal Learning in Finance Recent multi-

modal learning advances have granted investors

access to substantial structured and unstructured

multimodal financial data for forecasting (Jiang,

2021). Anecdotal evidence highlights the relevance

of non-verbal cues like vocal tone, emotional indica-

tors and language complexity in relation to financial

trading (Cao, 2022; Li et al., 2016b; Jiang and Pell,

2017). Studies by Qin and Yang (2019); Sawhney

et al. (2020) have exploited multimodal data to pre-

dict both price volatility and movement. Mathur

et al. (2022b) employed audio, visual, and textual

1Our code is released at

https://github.com/gtfintechlab/shmix

https://github.com/gtfintechlab/shmix
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cues from MPC calls to forecast price changes and

volatility. The impact of augmentation methods,

such as Mixup, during multimodal financial data

training remains underexplored.

Mixup (Zhang et al., 2018) is a popular augmenta-

tion technique that interpolates two examples along

with their corresponding labels. Existing work

shows that Mixup performs well on tasks span-

ning vision, speech, and text (Meng et al., 2021;

Chang et al., 2021; Verma et al., 2019; Chhabra

et al., 2023; Sawhney and Neerkaje, 2022). Mixup

strategies which operate on sequential data such

as speech and/or text fail to preserve the locality

of inputs while mixing at the input space. Recent

work on saliency-based Mixup (Kim et al., 2020b;

Ma et al., 2022) look to address this problem by

mixing the most important contiguous spans over

the raw inputs. Such saliency-based approaches

when applied to sequential data, have only been

explored in the context of unimodality, such as text

(Kong et al., 2022; Yoon et al., 2021) and speech

(Sawhney et al., 2022a). Mixup has also lately

shown promise in multimodal setups (So et al.,

2022; Hao et al., 2023; Meng et al., 2021; Zhou

et al., 2023). Zhao et al. (2023) introduce a method

which generates new virtual modalities from the

mixed token-level representation of raw modalities.

However, there is a gap in leveraging the salient

components at the modality-level and sequence-

level during Mixup, which is addressed by SH-Mix

(§3.4).

3. Methodology

3.1. Background

Mixup generates virtual samples for training by a

convex interpolation of training samples. Given two

training samples G8 and G 9 and their corresponding

labels H8 and H 9 , we generate synthetic sample G̃

and the corresponding mixed label H̃ as

G̃ = <8G(G8 , G 9 ) = _G8 + (1 − _)G 9 (1)

H̃ = <8G(H8 , H 9 ) = _H8 + (1 − _)H 9 (2)

_ ∈ [0, 1] is the mixing ratio (Zhang et al., 2018).

In particular, for discrete classification settings, H8
and H 9 are one-hot encoded labels.

Saliency measures the contribution of input / hid-

den representation features in predicting a spe-

cific output class. Gradient-based methods for

saliency computation (Simonyan et al., 2014; Li

et al., 2016a) are used during training to find fea-

tures contributing the most towards the prediction.

We compute the saliency for an input / hidden rep-

resentation / = [I1, I2, . . . , I=] by computing its

gradient with respect to the classification loss L.

sal(/;L) =
mL

m/
=

[

mL

mI1
,
mL

mI2
, . . . ,

mL

mI=

]

(3)

3.2. Problem Formulation

Given an example X = [R1,R2, . . . ,R# ] where X

is a composite multimodal sequence comprising

of # distinct modalities. Each modality R8 com-

prises of a temporal sequence of its raw inputs

R8
=

[

A 8
1
, A 8

2
, . . . , A 8=

]

where = is the length of each

modality’s sequence. All the modalities are tempo-

rally aligned.

Following Xu and Cohen (2018), we define price

movement prediction as a binary classification task

which uses the multimodal input X to predict the

price movement for the associated firm’s stock’s

closing price over a period of g days following the

conference call. We define the movement label

H3−g,3 as

H3−g,3 =

{

1 ?3 > ?3−g

0 ?3 < ?3−g
(4)

where ?3 is the closing price on the day 3.

3.3. ADMF: Attention-Driven Multimodal
Fusion Architecture

Utilizing low-level modality-specific specialized

transformers, such as BERT (Devlin et al., 2019),

ViT (Dosovitskiy et al., 2021), and AST (Gong et al.,

2021) on raw inputs enables independent process-

ing of each modality at the utterance level, facilitat-

ing the capture of modality-specific patterns and

yielding contextually rich representations. In line

with existing works by Tsai et al. (2019); Mathur

et al. (2022b), we first convert the raw modal-

ity data into embeddings via low-level transform-

ers (q8) corresponding to each modality to get

M8
=

[

<8
1
, <8

2
, . . . , <8

=

]

where <8
9
= q8 (A

8
9
). We

then use an attention-based fusion mechanism

that captures the dependency between the modal-

ities. The attention weights , ′
8 for a modality are

computed via softmax normalization as

,8 =
4M

8�8+18

:
∑

9=1

4M
9 �9+1 9

∀8 ∈ [1, 2, . . . , #] (5)

, ′
8 =

,8

#
∑

:=1

,:

∀8 ∈ [1, 2, . . . , #] (6)

where �8 and 18 represent the attention layer

weights learned during the training.

The attention weights are used to weigh the fea-

tures corresponding to each modality by multiply-

ing these with the respective embeddings to ob-

tain the attended inputs. This adaptive attention-

based weighing mechanism enables the model to

selectively focus on the most informative modali-

ties along with temporal dependencies (Hori et al.,
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Figure 2: SH-Mix Overview: Input text T and audio A are encoded to yield respective embeddings.

Attention weights for each modality are extracted, followed by fusion through weighted summation. The

fused representation is fed to transformer block and a dense layer, to obtain the loss. Saliencies are

computed for text, audio, and the fused representation via backpropagation, as detailed in section 3.1.

These saliencies drive Local-Mix and Global-Mix, resulting in two sets of mixed inputs.

2017; Yan et al., 2020). These are further com-

bined by additive fusion to obtain the intermediate

fused multimodal embedding. This is augmented

with positional embedding (POS) by addition to ob-

tain the final fused embedding � as follows

� =

#
∑

9=1

M 9, ′
9 + POS (7)

We use a transformer encoder which employs

multi-headed self-attention (Vaswani et al., 2017)

along with a feed-forward network to obtain the

encoded representations for the input fused em-

bedding �. Average pooling is applied to the

output of the transformer before passing through

two dense layers (MLP) to produce the output

H = MLP(�) = 5\ (X), where 5\ (·) represents the

complete model architecture with parameters \.

3.4. SH-Mix: Components

Given multimodal examples X� and X�, we embed

each modality as: X� = [M1

�
,M2

�
, . . . ,M#

�
] and

X� = [M1

�
,M2

�
, . . . ,M#

�
]. To compute saliency

information at the global and local levels, we also

perform a forward pass on the unmixed inputs to

obtain an initial unmixed loss L>A6 (§3.5).

Local-Mix To capture the most important aspects

of a given modality, and keep the mixed sam-

ple more closely related to the output, modality-

specific Mixup is applied to generate the mixed

multimodal input X̃. We find the saliency (8
�

of

modality M8
�

and (8
�

of M8
�

as,

(8� = sal(M8
�;L>A6) ; (

8
� = sal(M8

�;L>A6)

where (8
�

= [(B8
1
)�, (B

8
2
)�, . . . , (B

8
=)�] and (8

�
=

[(B8
1
)�, (B

8
2
)�, . . . , (B

8
=)�]. For (<8

9
)� ∈ M8

�
and

(<8
9
)� ∈ M8

�
, we find positions of the :8 great-

est values in (B8
9
)� and the :8 least values in (B8

9
)�.
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m
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Figure 3: Local-Mix: Given any audio/text utter-

ance <� and <� for input samples A and B, we

mix the most salient portions of <� with the least

salient portions of <� while zeroing out the remain-

ing features to obtain the mixed utterance <̃. More

salient features are darker.

Here :8 = Xloc · ?8, where ?8 is the number of fea-

tures in the embedding corresponding to the 8Cℎ

modality and Xloc is a hyperparameter for control-

ling the local Mixup threshold. We perform Mixup

on the features present at these positions. We de-

fine binary masks (<0B: 8
9
)� and (<0B: 8

9
)� of size

?8. (<0B: 8
9
)� is 1 at :8 most salient positions of

(<8
9
)� and (<0B: 8

9
)� is 1 at :8 least salient posi-

tions of (<8
9
)�. These masks are used to zero out

the features that are not involved in Mixup. We

then define Local-Mix as,

<̃8
9 = _;>2 (<

8
9 )� ⊙ (<0B: 89 )�

+ (1 − _;>2) (<
8
9 )� ⊙ (<0B: 89 )�

(8)

M̃8
= [<̃8

1
, <̃8

2
, . . . , <̃8

=] (9)

X̃ = locmix(X�,X�,L>A6)

= [M̃1, M̃2, . . . , M̃# ]
(10)

where _loc is the local mixing ratio and is sam-

pled from a beta distribution. The labels associated

with examples X� and X� i.e. H� and H� are also
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Figure 4: Global-Mix: Given fused representations

�� and �� of input samples A and B, we replace

the most salient span in �� with the least salient

span in �� to obtain the mixed fused representation

�̃. More salient utterances are colored darker.

mixed to obtain the mixed label H̃loc.

H̃loc = _locH� + (1 − _loc)H� (11)

Global-Mix Span Mixup approaches have shown

to be more effective in preserving the locality and

maintaining the structural coherence of the inputs

(Yun et al., 2019); synergistically integrated with

saliency-driven methods it has shown to effectively

utilize the ingrained local statistics in the data (Kim

et al., 2020a). Global-Mix uses the fused rep-

resentation of the data to enable efficient cross-

modal information exchange and leverage these

contextual embeddings. For each example X�

and X�, we compute utterance-level saliency for

their fused representation �� = [D1, D2, . . . , D=] and

�� = [D′
1
, D′

2
, . . . , D′=] obtained using ADMF, given

as,

(� = sal(��;L>A6) ; (� = sal(��;L>A6) (12)

where (� = [(B1)�, (B2)�, . . . , (B=)�] and (� =

[(B1)�, (B2)�, . . . , (B=)�]. We compute the span-

level saliency of span ? to @ as the sum of !1 norm

of the saliencies in the span, given as,

B�[?; @] =

@
∑

:=?

∥(B:)�∥!1
(13)

B� [?; @] =

@
∑

:=?

∥(B:)�∥!1
(14)

As shown in Figure 4, on a span of length ; =

_glob · = between inputs X� and X�, we replace the

most salient span [8; 8 + ; − 1] in �� with the least

salient span [ 9 ; 9 + ; − 1] in �� as,

8 = argmax
8

B�[8; 8 + ; − 1] (15)

9 = argmin
9

B� [ 9 ; 9 + ; − 1] (16)

�̃ = globmix(��, ��,L>A6)

=

{

D′
:

: ∉ [ 9 , 9 + 1, . . . 9 + ; − 1]

D8+:− 9 : ∈ [ 9 , 9 + 1, . . . 9 + ; − 1]

(17)

The labels associated with examples X� and X�

i.e. H� and H� are mixed with the global mixing

ratio _glob to obtain the mixed label H̃glob,

H̃glob = _glob · H� + (1 − _glob) · H� (18)

3.5. SH-Mix Traning Objective

The unmixed inputs [X1,X2, . . . ,X# ] are passed

through the model 5\ (·) to get the corresponding

logit H′org. Lorg is computed as the binary cross

entropy (BCE) loss between the predicted logit H′org

and the ground truth Horg.

H′org = 5\ (X) ; Lorg = BCE(H′org, Horg) (19)

We perform backpropagation on the loss obtained

above to get gradients w.r.t. all the input modalities

M1 through M# as well as the fused embedding

� described in equation 7.

For any two unmixed input examples X� and

X�, we perform Local-Mix to get the mixed input

X̃ = locmix(X�,X�,L>A6) and H̃loc. We pass X̃

through the model and compute the BCE loss with

the output H′
loc

to get the loss Lloc

H′loc = 5\ (X̃) ; Lloc = BCE
(

H′loc, H̃loc

)

(20)

We similarly perform Global-Mix on X� and

X� to get mixed fused embedding �̃ =

globmix(X�,X�,L>A6) and mixed label H̃glob. We

now pass �̃ into the transformer encoder to get

H′
6;>1

and find the BCE loss with H̃glob to get the

Global-Mix loss Lglob = BCE
(

H′
glob

, H̃glob

)

. The

three losses are combined to get a single weighted

loss

L = U · Lorg + V · Lloc + W · Lglob (21)

4. Experiments

4.1. Datasets

Multimodal Multi-Speaker Merger & Acquisition

Call (M&A Calls) (Sawhney et al., 2021) consists

of 812 M&A conference calls between 2016 to

2020. The data for each call comprises of the text

transcript and the aligned audio recording of the
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Model M&A Calls Dataset MAEC Dataset

g = 3 g = 7 g = 15 g = 3 g = 7 g = 15

Metric F13 MCC3 F17 MCC7 F115 MCC15 F13 MCC3 F17 MCC7 F115 MCC15

MLP 0.52 0.10 0.57 0.17 0.48 -0.04 0.50 0.09 0.55 0.13 0.55 0.10

LSTM 0.58 0.15 0.54 0.12 0.51 0.11 0.54 0.16 0.50 0.01 0.56 0.12

MulT 0.57 0.18 0.57 0.18 0.52 0.12 0.55 0.13 0.55 0.10 0.54 0.09

MDRM 0.57 0.20 0.58 0.19 0.46 0.11 0.60 0.20 0.54 0.11 0.56 0.13

M3ANet 0.59 0.18 0.58 0.17 0.50 0.13 0.56 0.13 0.54 0.09 0.55 0.10

M3ANet + Mixup 0.58 0.17 0.60 0.21 0.57 0.15 0.56 0.12 0.56 0.12 0.56 0.12

PISA 0.59 0.19 0.61 0.18 0.55 0.14 0.57 0.15 0.55 0.11 0.54 0.12

SH-Mix (Ours) 0.66* 0.32* 0.63* 0.30* 0.63* 0.26* 0.58 0.18 0.58* 0.17* 0.56* 0.13*

Table 1: Performance comparison of SH-Mix with both non-transformer and transformer-based baselines

for M&A calls and MAEC dataset for price movement prediction g days after the call where g ∈ {3, 7, 15}.

∗ shows statistically significant improvements (? < 0.005) over PISA under Wilcoxon’s Signed Rank Test.

Bold, italics shows the best, second best performance.

call along with the speaker ID associated with each

utterance. We encode text transcripts using BERT

(Devlin et al., 2019) and process audio recording

using OpenSMILE2. We use the train-test split as

released with the dataset.

Multimodal Aligned Earnings Call (MAEC) (Li et

al., 2020) contains aligned text transcripts and as-

sociated audio recordings from the earnings calls

of S&P 1500 companies between 2015 to 2018.

For each example, the text is procesed using BERT

encoder and the corresponding audio recording is

processed using Praat (Boersma and Van Heuven,

2001). We use 860 data samples with a train-

ing:validation:test split ratio as 60 : 10 : 30, same

as the released dataset.

4.2. Baseline Models

We compare SH-Mix with several conventional and

contemporary multimodal and mixup-based base-

lines:

MLP The encoding corresponding to each modality

is averaged along the time axis and simply concate-

nated before passing through a vanilla multi-layer

perceptron network.

LSTM Inputs multimodal time series to individual

LSTMs (Hochreiter and Schmidhuber, 1997) and

averages before making the final prediction using

a dense layer.

MulT (Tsai et al., 2019) fuses multimodal se-

quences using directional pairwise cross-modal

transformers followed by sequence models for pre-

dictions.

MDRM (Qin and Yang, 2019) uses a contextual BiL-

STM (Poria et al., 2017) to derive context-aware

unimodal sequence representations, which are

then fused together using another layer of BiLSTM

to extract multimodal inter-dependencies.

2https://github.com/audeering/opensmile

M3ANet (Sawhney et al., 2021) employs atten-

tion weights for multimodal fusion, capturing inter-

dependency between modalities utilizing multi-

head attention to model long-range dependencies

and incorporate local and global contextual infor-

mation.

M3ANet + Mixup Simple linear Mixup (Zhang et al.,

2018) is performed at the individual modality level

before feeding it to M3ANet model. The mixing

ratio is sampled out of a beta distribution.

PISA (Sawhney et al., 2022a) Current state-of-the-

art among saliency-based approaches. Applies

a portion-wise Mixup method that leverages the

hyperbolic space to model complex hierarchies in

the data. Since PISA operates on a single modality,

we fuse the individual modalities before feeding the

inputs to the model.

4.3. Training Setup

The architecture of ADMF consists of a hidden

layer of size 32 with ReLU activation. We use a

transformer block with a feed-forward layer size of

64 with 3 attention heads for M&A calls and 4 atten-

tion heads for the MAEC dataset. The batch size

for all our experiments is 64. We have used Keras3

for our implementation. We report the weighted F-1

score and MCC as the mean of 10 independent

runs.

We tune the hyper-parameters using Optuna4

framework. The Mixup-related parameters are

tuned by sampling from the following ranges:

Global-Mix ratio _glob ∈ [0.1, 0.9], Local-Mix thresh-

old Xloc ∈ [0.1, 0.9], U ∈ [0, 1], V ∈ [0, 1], W ∈ [0, 1],

and the initial learning rate ∈ [14 − 4, 24 − 3] op-

timized with Adam optimizer. We use TPE (Tree-

structured Parzen Estimator) algorithm (Bergstra

et al., 2011) as the sampling strategy for hyper-

3https://keras.io/
4https://optuna.org/

https://github.com/audeering/opensmile
https://keras.io/
https://optuna.org/
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Hyperparameter M&A Dataset MAEC Dataset

g = 3 g = 7 g = 15 g = 3 g = 7 g = 15

Global-Mix ratio (_glob) 0.38 0.26 0.56 0.23 0.32 0.32

Local-Mix threshold (Xloc) 0.80 0.50 0.53 0.59 0.65 0.55

Loss coefficient for Lorg (U) 0.20 0.87 0.10 0.13 0.58 0.15

Loss coefficient for Lloc (V) 0.16 0.19 0.22 0.10 0.62 0.29

Loss coefficient for Lglob (W) 0.14 0.12 0.14 0.66 0.26 0.17

Initial learning rate 74 − 4 14 − 4 1.64 − 3 1.14 − 3 94 − 4 14 − 3

Table 2: Hyperparameter optimization results

parameter tuning. Table 2 provides the details for

the best hyperparameters obtained for our model

for price movement prediction task on M&A calls

and MAEC dataset g days after the call where

g ∈ {3, 7, 15}.

4.4. Infrastructure and Compute details

Our model has 105,932 trainable parameters for

M&A calls dataset and 48,710 trainable parameters

for MAEC dataset. To generate text embeddings,

we use a pre-trained BERT base model (uncased),

which has 110 million parameters. We run our

experiments on one NVIDIA A2 GPU which has 16

GB memory. The total number of GPU hours are

816 hours across all the experiments.

4.5. Evaluation Metrics

Following prior work (Mathur et al., 2022b; Sawh-

ney et al., 2021) and given the data imbalance, we

use weighted F1-score and Matthews correlation

coefficient (MCC) (Matthews, 1975). MCC also

mitigates the impact of class distribution skew and

is invariant to the class labels.

5. Results and Discussion

5.1. Performance Comparison

Table 1 shows our model’s performance on the

financial datasets against the baselines. Models

like MLP and LSTM perform feature aggregation

over time series/modalities, and MDRM (Qin and

Yang, 2019) uses hierarchical multimodal fusion

on top of a contextual LSTM (Poria et al., 2017),

giving a better representation of individual modali-

ties with temporal dependencies. MulT (Tsai et al.,

2019) attends to low-level features and captures

long-range dependencies across modalities, thus

exhibiting improved performance over these fea-

ture aggregation based models. Attention-based

transformer models like M3ANet (Sawhney et al.,

2021) are able to focus on the relevant parts of an

input sequence while also preserving long-range

dependencies, thus outperforming the other base-

lines (Wu et al., 2021; Tsai et al., 2019; Xu et al.,

2023; Mathur et al., 2022b). Addition of Mixup to

M3ANet further boosts its performance corroborat-

ing Mixup’s regularization and data augmentation

benefits in improving generalization in cases of

feature diversity (Carratino et al., 2022). The in-

corporation of saliency information, utilized in the

hyperbolic space for capturing complex geome-

tries, to selectively perform portion-wise mixup in

PISA yields performance improvement. Our pro-

posed SH-Mix shows significant performance im-

provement over existing multimodal baselines, sur-

passing state-of-the-art by 3 − 7%. These obser-

vations verify our hypothesis that SH-Mix is able

to select relevant multimodal features across differ-

ent modalities and timestamps due to hierarchical

saliency-guided components that interpolate dis-

criminative temporal spans closely related to the

prediction. Further, it also preserves local features

key to modeling sequential information similar to

Yoon et al. (2021); Kim et al. (2020a). We attribute

the gains to the saliency-driven modality-specific

nature of interactions in SH-Mix arising due to fine-

grained local and global Mixup at the embedding

level.

5.2. Ablation: Impact of Saliency

In Table 3, we conduct an ablation analysis to inves-

tigate the contribution of local and global saliency

Mixup. We observe that omitting local saliency

lowers performance as the model is unable to uti-

lize fine-grained, modality-specific features. Re-

moving global saliency Mixup also leads to per-

formance degradation due to the loss of context-

aware fused representations which are crucial for

capturing high-level cross-modal dependencies.

SH-Mix, combining both global and local saliency,

achieves superior performance as it effectively ex-

ploits the locally discriminative features in each

modality while also capturing broader contextual re-

lationships across the input token sequence. This

combined approach brings diversity and qualitative

enrichment, resulting in improved generalization.
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Saliency Component
M&A Calls MAEC
F13 MCC3 F13 MCC3

All (SH-Mix) 0.66* 0.32* 0.58* 0.18*

(×) Saliency (Local) 0.58 0.18 0.55 0.11

(×) Saliency (Global) 0.59 0.19 0.57 0.14

Table 3: Ablation study covering performance im-

pact of the removal of each kind of saliency compo-

nent i.e. local and global level Mixup (g = 3 days).

The combined model with both components shows

the best results. ∗ shows statistically significant im-

provements (? < 0.005) over other configurations

under Wilcoxon’s Signed Rank Test. Bold shows

the best performance.

Modality
M&A Calls MAEC

F13 MCC3 F13 MCC3

Only Audio (A) 0.52 0.07 0.53 0.08

Only Text (T) 0.59 0.19 0.54 0.10

Audio + Text (AT) 0.66* 0.32* 0.58* 0.18*

Table 4: Impact of Modality: Text-based (T) uni-

modal model gives better performance compared

to audio-based (A) unimodal model due to noise in

acoustic inputs. Combining both modalities (T+A)

gives the best performance.∗ shows statistically

significant improvements (? < 0.005) over other

configurations under Wilcoxon’s Signed Rank Test.

Bold shows the best performance.

5.3. Impact of Modality

Table 4 compares the multimodal saliency-guided

Mixup model (AT) with its unimodal counterparts

(A, T). We observe that SH-Mix (T) outperforms

SH-Mix (A), which can be attributed to the inher-

ent noise and variability in audio data (Mathur

et al., 2022a; Chorowski et al., 2015), showing

that saliency information extracted from an explicit

semantic representation of text is more relevant to

the task. We note that SH-Mix significantly outper-

forms its unimodal variants as multimodality helps

to leverage complementary strengths of text utter-

ances and acoustic features, similar to prior works

Tsai et al. (2019); Mathur et al. (2022b).

5.4. Impact of Augmentation Strength

We observe optimal performance surfaces in the

region characterized by both high Xloc and high

_glob (Figure 5a). A higher threshold Xloc effectively

selects the most salient, discriminative features

for Local-Mix and a higher mixing ratio _glob pri-

oritizes longer informative spans (Sawhney et al.,

2022a), enhancing global Mixup quality by incor-

porating rich cross-modal contextual information.

Consequently, reduced values for both exhibit a

discernible performance drop. Figure 5b reaffirms
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Figure 5: Joint and individual impact of Global-Mix

mixing ratio (_glob) and Local-Mix threshold (Xloc)

on SH-Mix’s performance on M&A calls. Higher

_glob and Xloc boost performance for both cases.

this trend, wherein increasing both _glob and Xloc in-

dependently positively impact model performance.

Note that other regions with optimal performance

also exist as is evident from Figure 5a, e.g. high

Xloc and low _glob, which is also the configuration

captured during hyperparameter tuning.

Model Setup
MUStARD CMU-MOSI

F1 MCC F1 MCC

ADMF 0.65 0.28 0.75 0.50

ADMF + Mixup 0.68 0.35 0.76 0.52

SH-Mix (Ours) 0.71* 0.41* 0.78* 0.54*

Table 5: Modality agnostic generalizability: Perfor-

mance of SH-Mix on audio, text, and video modali-

ties in MUStARD and CMU-MOSI. SH-Mix outper-

forms ADMF and ADMF + Mixup.∗ shows statis-

tically significant improvements (? < 0.005) over

other configurations under Wilcoxon’s Signed Rank

Test. Bold shows the best performance.

5.5. General Applicability of SH-Mix

To gauge the adaptability of SH-Mix to diverse ap-

plications, we apply it to sarcasm detection and

sentiment analysis binary classification tasks on

the MUStARD (Castro et al., 2019) and CMU-

MOSI (Zadeh et al., 2016) dataset respectively.

Both of these comprise audio, visual and textual

sequences. Table 5 shows the effectiveness of

SH-Mix over general fusion-based models and

vanilla Mixup techniques. It also displays a model-

agnostic behaviour, exhibiting performance im-

provement when applied over different neural base-

lines (see Table 6). By synergizing the hierar-

chy with saliency, SH-Mix leverages discriminative

modality-specific features and informative global

spans, thus establishing it as a comprehensive

hierarchical multimodal sequence learning Mixup

framework.
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Model Setup
M&A Calls MAEC

F1 MCC F1 MCC

MDRM 0.57 0.20 0.60 0.20

SH-Mix (MDRM) 0.61* 0.23* 0.61* 0.21*

M3ANet 0.58 0.17 0.56 0.12

SH-Mix (M3ANet) 0.63* 0.26* 0.56* 0.13*

Table 6: SH-Mix is generalizable across neural

architectures like MDRM and M3ANet.∗ shows sta-

tistically significant improvements (? < 0.005) over

other configurations under Wilcoxon’s Signed Rank

Test. Bold shows the best performance.

6. Conclusion

Building on the current limitations in multimodal

augmentation strategies, we introduced SH-Mix:

a saliency-guided hierarchical Mixup technique

for multimodal financial prediction tasks. SH-Mix

combines multi-level embedding Mixup strategies

based on the contribution of each modality and

contextual subsequences. Experimental results

show that it outperforms the existing state of the

art by 3 − 7%. We further analyze the contribution

of local and global levels of saliency, evaluate the

impact of each modality and assess the impact

of augmentation strength within SH-Mix. We also

show that SH-Mix is generalizable across different

modalities and neural models

7. Ethical Considerations and
Limitations

Our research specifically hones in on conference

calls in which companies make both transcripts and

audio recordings publicly accessible.The data for

M&A calls and Earnings conference calls is openly

available for anyone to download. Our usage and

storage of all the company data strictly adheres to

privacy laws, with no collection of personal data or

violations.

Limitations We acknowledge the presence of

gender bias in our study caused by the speaker-

level gender imbalance in the M&A calls and Earn-

ings calls. We also acknowledge the presence of

demographic bias in our study since the calls be-

long to companies in the United States of America

and cannot be generalized to other geographies

and non-native speakers. Also, our study is limited

to English language motivating similar study on

other multilingual calls.

Potential Risks It is also crucial to note that our

work of exploratory research should not be treated

as explicit financial advice. All investment-related

decisions involve exposure to market risks and

should only be taken following thorough evaluation.
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