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Abstract

Large Language Models (LLMs) have showcased remarkable capabilities in following human instructions. However,
recent studies have raised concerns about the robustness of LLMs when prompted with instructions combining
textual adversarial samples. In this paper, drawing inspiration from recent works that LLMs are sensitive to the design
of the instructions, we utilize instructions in code style, which are more structural and less ambiguous, to replace
typically natural language instructions. Through this conversion, we provide LLMs with more precise instructions and
strengthen the robustness of LLMs. Moreover, under few-shot scenarios, we propose a novel method to compose
in-context demonstrations using both clean and adversarial samples (adversarial context method) to further boost the
robustness of the LLMs. Experiments on eight robustness datasets show that our method consistently outperforms
prompting LLMs with natural language instructions. For example, with gpt-3.5-turbo, our method achieves an
improvement of 5.68% in test set accuracy and a reduction of 5.66 points in Attack Success Rate (ASR).

Keywords: Large Language Models, Robustness, Code-style Instructions

1. Introduction

Large language models (LLMs) have shown in-
creasing power in following human instructions
and solving various NLP tasks. (Sanh et al., 2022;
Chung et al., 2022; Ouyang et al., 2022a; Wang
et al., 2023c¢,b; Xi et al., 2023).

However, recent evaluations in terms of LLMs
have revealed their insufficient robustness when
prompted with instructions containing textual adver-
sarial samples, raising concerns about their real-
world applications (Liu et al., 2023; Wang et al.,
2023a; Ye et al., 2023; Chen et al., 2023). By in-
serting slight perturbations into clean samples at
the character, word, or sentence level (Gao et al.,
2018; Renetal., 2019a; Li et al., 2019), the outputs
of LLMs occasionally deviate from the expected re-
sults. For example, in Aspect-based sentiment
analysis tasks, when inverting the sentiment po-
larity of the target aspects, the performance of
gpt-3.5-turbo falls by nearly 35% under zero-shot
scenarios (Ye et al., 2023).

In response to textual adversarial attacks, vari-
ous adversarial defense methods have been pro-
posed, such as adversarial training (Jiang et al.,
2020), interval bound propagation (Dvijotham et al.,
2018) and randomized smoothing (Cohen et al.,
2019). However, all these methods require param-
eters update of models, which can be infeasible
when it comes to powerful modern LLMs such as

*Equal contribution.
t Corresponding Author

GPT-3 (Brown et al., 2020) with only APIs pro-
vided. Consequently, limited research has been
conducted on enhancing the robustness of such
closed source black-box LLMs.

To alleviate this problem, we explore enhancing
the robustness of LLMs through instructions de-
sign. Typically, instructions are formulated using
natural language. However, the inherent ambiguity
of natural language can make LLMs extremely sen-
sitive to instructions, as even slight modifications
to the instructions can result in a significant drop
in performance (Zhao et al., 2021; Holtzman et al.,
2022). Besides, we believe that introducing adver-
sarial samples into the instructions aggravates this
phenomenon and leads to low robustness. There-
fore, it is important to design an instruction format
that overcomes these shortcomings.

In this paper, we introduce a novel approach Ro-
Colns: Enhancing Robustness of LLMs through
Code-Style Instructions. The overall framework
is shown in Figure 1. We convert the instruction
formats from natural language to code style. The
advantages of code, such as being more structural
and less ambiguous, provide LLMs with clearer
and more concise instructions (Mishra et al., 2023;
Wang et al., 2022b; Li et al., 2023a), which lead to
robustness improvement. Additionally, we propose
the adversarial context method to further boost
the robustness of LLMs. Inspired by (Dai et al.,
2023; von Oswald et al., 2022) that in-context learn-
ing (ICL) can be considered as implicit finetuning,
we hypothesize that by incorporating both clean
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NL Instructions
Are the following two questions equivalent or not?

Concat Concat

Clean Sample Adversarial Sample
sentencel:"What are the procedures for ? . sentencel:"What are the trails for «se? "

sentence2:"What is the procedure of ++?". sentence2:"What is the procedure of ? "
T T —T

T —
Clean Input l l Adversarial Input

‘ SEL LM
[ |

Correct Answer
“equivalent”
T T
T T

(a) Prompt LLMs with natural language instructions

Wrong Answer
"not equivalent"

Code Instructions
class 8
def __init_ (self, sentl, sent2):

def (self):
Concat l l Concat
Clean Sample Adversarial Sample

classifier = ( classifier = (
" What are the procedures for =+? ", " What are the trails for s++? ",

" What is the procedure of *++? " ). " What is the procedure of *es? " ).
T T T T

Clean Input l lAdversarial Input
% v

Correct Answer Correct Answer
"equivalent" "equivalent”
T T
T T

(b) Prompt LLMs with code-style instructions

Figure 1: An illustration of prompting LLMs with
natural language instructions and code-style in-
structions for the semantics consistent judgment
tasks. The input sample contains a sentence pair.
We show a clean sample and an adversarial sam-
ple, respectively. This code-style instruction can be
applied to arbitrary tasks with task-specific design.

and adversarial samples to compose the in-context
demonstrations can be viewed as a type of implicit
adversarial training. We verify the effectiveness
of the method on eight datasets and decrease the
average Attack Success Rate (ASR) by 5.66 points
with gpt-3.5-turbo. We conduct further analysis to
demonstrate the advantages of using code-style
instructions.

To sum up, our contributions are as follows:

» We introduce RoColns, a novel approach to
enhance the robustness of LLMs against tex-
tual adversarial attacks by utilizing code-style
instructions.

» Moreover, we propose the adversarial con-
text method to further boost the robustness of
LLMs.

+ We conduct experiments on eight robustness
datasets and verify the effectiveness of our
method, which outperforms prompting LLMs
with natural language instructions.

2. Background

2.1.

Textual adversarial attacks commonly generate ex-
plicit adversarial samples by substituting compo-
nents of sentences with their equivalents while pre-
serving a high degree of semantic similarity (Ren
et al., 2019a; Wang et al., 2021a). Given a clean
sentence = = (t1,ts,...,t,), Where t;,1 < i < n
denotes each token in the sentence. [ repre-
sents its ground truth label. Textual adversarial
attacks replace some original tokens with their
counterparts to fool the objective model. For ex-
ample, substituting t; with ¢; creates an adversary:
& = (ti,ta,...,t;,...,t,). For an adversary, the
objective model F' generates its label as follows:

Textual Adversarial Attack

[ = argmax F (-|2) (1)

where [ # | means a successful attack.

In this paper, we mainly focus on attack-
ing samples rather than instructions. The de-
tailed difference with other attack formats, such as
prompt attacks, can be found in Section 6.

2.2.

Due to the remarkable ICL abilities of LLMs, by
providing LLMs with a few demonstration input-
output pairs, they can predict the label for an un-
seen input without parameter updates. Formally,
we randomly select k sample pairs {(z;, )},
from the training set and concatenate them as a
string to compose the in-context demonstrations
D=x1 Dy -x2Dys-...- T D yg, Where & means
concatenation between the input and output within
a sample and - means concatenation between dif-
ferent samples. During inference, a new test in-
put z,.s is appended to the demonstrations, and
D - x4 is fed into the model for completion and
thereby generates an answer y;,._,.

In-context learning with LLMs

3. Method

In this section, we first describe how we recast the
instructions from natural language to code style
(Section 3.1). Then we introduce the adversarial
context method (Section 3.2).

3.1. Formulating Instructions into Code
Style

Considering an example in a task with the form
(T,S, L), where T denotes the task instruction, S
refers to input sample and £ represents the corre-
sponding label to be generated. Typically, both 7
and L are expressed in the natural language for-
mat. However, due to the inherent ambiguity, LLMs
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Adversarial Sentence

sentence = "Great food, great waitstaff, bad atmosphere, and best of all GREAT beer!”

aspect = "atmosphere"

Aspect_Based_Sentiment_Analysis(sentence, aspect).sentiment_classification()

# “negative"

Optional

Clean Sentence

sentence = "Great food, great waitstaff, great atmosphere, and best of all GREAT beer!”

aspect = "atmosphere"

Aspect_Based_Sentiment_Analysis(sentence, aspect).sentiment_classification() H

# "positive"

sentence = "Probably my worst dining experience in New York, and I'm a former waiter

so I know what I'm talking about"
aspect = "dining experience"

Aspect_Based_Sentiment_Analysis(sentence, aspect).sentiment_classification()

il sclf.sentence = sentence
l
i

class Aspect_Based_Sentiment_Analysis

def init_ (self, sentence: str, aspect: str):
self.aspect = aspect
‘ def sentiment_classification(self):
if is_positive(self.sentence, self.aspect):
‘ print("positive")
elif is_negative(self.sentence, self.aspect):
print("negative")

In-context Demonstrations

‘ Task Prompt

Figure 2: Components of code-style instructions. (1) Class definition mainly contains the class name,
annotation, initial function and implementation function. (2) In-context demonstrations consist of k
(adversarial) samples in the corresponding code style. (3) Task prompt follows the same format as

demonstrations without a ground truth label.

have shown extreme sensitivity to these natural lan-
guage instructions, as even slight modifications to
the instructions can lead to a substantial decrease
in performance (Zhao et al., 2021; Holtzman et al.,
2022). In contrast, code-style instructions, which
are less ambiguous and more structural, can serve
as an alternative to natural language instructions
and provide LLMs with more concise instructions.
The primary idea of our method is to convert T
from its original natural language format to a se-
mantically equivalent non-executable pseudo-code
format. In this work, we mainly define a Python
class to achieve this conversion. To illustrate our
method, we utilize the aspect-based sentiment
analysis (ABSA) task as a running example (Figure
2). ABSA aims to determine the sentiment polarity
("positive", "neutral" or "negative") of an aspect pre-
sented in a sentence. Our code-style instruction
mainly consists of the following components:

Class Name First, we convert the explanation of
the task into the class name. The class name can
be viewed as a summary of the task.

Annotation The annotations provide task de-
scriptions that are typically rephrased versions of
natural language instructions. Besides, the annota-
tions also contain descriptions of the parameters,
including their types and explanations.

Initial Functions The initial function defines the
input components of this task. For example, in the
ABSA task (Figure 2), we define two class instance

variables sentence and aspect, which will be uti-
lized in the subsequent implementation functions.

Implementation Functions The implementation
functions detail the solution process for the task.
This part is typically constructed based on the an-
notations and serves as a pseudo-code alterna-
tive version of the annotations. Following (Mishra
et al., 2023), the implementation function may in-
clude sub-task functions, which are usually not
explicitly defined and convey their functionalities
through descriptive names and parameters. For
example, in the ABSA task (Figure 2), is_positive
and is_negative are two sub-task functions to de-
termine the sentiment polarity of an aspect word.

Task Prompt Once the class is defined, we can
utilize it by creating an instance object. These ob-
jects, accompanied by their properties definitions,
compose the task prompt. Figure 2 provides an
example of the task prompt. Typically, we compose
an in-context demonstration by concatenating the
task prompt with its ground truth label. Finally,
we concatenate the class definition with several
in-context demonstrations and a task prompt con-
taining a test sample to construct the model input
and expect the model to generate final outputs.

3.2. Adversarial Context Method

In this work, we propose the adversarial context
method to further boost the robustness of LLMs.
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Recent studies have shown that ICL can be re-
garded as a form of implicit fine-tuning (Dai et al.,
2023; von Oswald et al., 2022). (Dai et al., 2023)
theoretically prove that Transformer attention has
a dual form of gradient descent and demonstrate
that ICL behaves similarly to explicit finetuning from
multiple perspectives. Thus, we hypothesize that
utilizing both clean and adversarial samples
to compose in-context demonstrations can be
regarded as a type of implicit adversarial train-
ing. Formally, following the definitions in Section
2.1 and 2.2, we first transform the clean sample
pair (z;,y;) and adversarial sample pair (z;, g;) into
their corresponding code-style format (z¢, y¢) and
(z¢,7¢). Then we compose the demonstrations
D = af ®yf 25 ®yf - 25, Dyp, - 25, O Y
by concatenating both clean and adversarial sam-
ples. We keep the total number of sample pairs
unchangeable.

4. Experiments

4.1.

Model We conduct experiments mainly using
the GPT-3.5 Series models with text-davinci-003
and gpt-3.5-turbo from OpenAl '. We choose
these two models because GPT-3.5 Series models
have shown remarkable code understanding abil-
ities, making them better suited to our proposed
method (White et al., 2023). These two models
support an input length of up to 8k and 4k tokens,
respectively.

Experimental setup

Hyperparameters We acquire the predictions
of the models through OpenAl API 2. We prompt
LLMs with greedy decode by setting the sampling
temperature ¢t = 0. Besides, we set the max num-
ber of generated tokens to 128 tokens.

Datasets In this paper, we mainly conduct ex-
periments on two adversarial datasets: AdvGLUE
(Wang et al., 2022) and Restaurant (Xing et al.,
2020). AdvGLUE is an adversarial version of the
GLUE (Wang et al., 2018) dataset, consisting of
SST-2, QQP, MNLI, QNLI and RTE. We use the test
set of AdvGLUE. Restaurant is an aspect-based
sentiment analysis robustness dataset generated
from SemEval 2014 Restaurant dataset (Pontiki
et al., 2014) by infusing three types of transforma-
tions (RevNon, RevTgt and AddDiff) into it (Xing
et al., 2020). We randomly select 300 samples
from the test set of Restaurant for each transfor-
mation to compose our test set Restaurant-T.

! https://platform.openai.com/docs/models/
gpt-3-5
2https ://openai.com/api

Few-shot Setting For each task, we randomly
select k samples from the dataset. The choice of
k is varied between different tasks according to its
number of classes and we explain the reason in
Section 5.2.2. The detailed value of k for each task
can be found in Table 1.

Instructions Design The natural language in-
structions for AdvGLUE are the same with (Wang
et al., 2023a) and for Restaurant-T, we choose
the same prompts following (Chen et al., 2023).
For code-style instructions, we follow Figure 2 to
construct instructions for different tasks.

Evaluation Following (Wang et al., 2023a), we
use Attack Success Rate (ASR) as the evaluation
metric for robustness. ASR is formally defined as :

ASR= )"

(z,y)€T

W@ £
1[f(z) = y]

where dataset 7' = {(z;, y;)}_, consists of N sam-
ples and A refers to an adversarial attack method,
which generates adversarial samples. In general,
the model’'s robustness against adversarial attacks
is inversely proportioned to ASR. All experiments
in this paper are conducted 3 times with different
demonstrations and we report the mean results.

Baselines

1) Zero-shot NL Prompting To evaluate the im-
pact of few-shot prompting on enhancing the
robustness of language models (LLMs), we
consider zero-shot natural language prompt-
ing as a baseline for comparison. The zero-
shot results of AdvGLUE are from (Wang et al.,
2023a).

2) Few-shot NL Prompting Under few-shot set-
tings, we compare our approach with natu-
ral language prompting. By using the same
natural language instructions with zero-shot
prompting, we additionally provide LLMs with
a few [Problem, Answer] samples to help LLMs
better understand the tasks and standardize
output formats.

3) Few-shot CoT Prompting Since Chain-of-
Thought (CoT) (Wei et al., 2023b) has verified
its effectiveness in improving performance on
various tasks, we also incorporate CoT as a
baseline to explore its effectiveness in robust-
ness improvement. Specifically, we provide
LLMs with a set of [Problem, Rational, An-
swer] samples to encourage LLMs to think
step-by-step and generate final answers.
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Dataset(ASR)
Model Method AdVGLUE Restaurant-T Avg(ASR) | Avg(Acc)
SST-2 QQP MNLI QNLI RTE | RevTgt RevNon AddDiff
Random 50.0 50.0 66.7 50.0 50.0 66.7 66.7 66.7 58.35 41.67
Zero-Shot
davinci-003 NL 44.6 55.1 44.6 38.5 34.6 44.11 20.00 13.19 36.84 —
gpt-3.5-turbo NL 39.9 18.0 32.2 34.5 24.74 49.42 36.09 42.67 34.68 —
Few-Shot
Shot Number 4 6 6 4 4 6 6 6
NL 25.39  23.94 25 24.03 15.18 25.09 11.39 10.16 20.02 72.07
davinci-003 CoT 23.07  26.56 23.8 23.62  14.28 24.04 9.35 7.65 19.05 73.43
Code 23.97 25.35 2254 21.73 12.65 23.52 5.79 5.08 17.58 75.82
Code+adv | 20.93 22,53 22.33 20.21 12.65 | 21.97 6.52 4.66 16.47 77.20
NL 19.23  23.07 21.73 18.75  22.05 29.19 17.03 16.4 20.93 70.45
gpt-3.5-turbo CoT 21.08 20.63 14.85 18.34 21.42 | 34.67 14.02 14.28 19.91 71.14
’ Code 17.83 18.46 18.55 14.28 2143 23.35 14.4 10.08 17.29 74.73
Code+adv | 16.43 9.23 144 10.71 2285 22.43 13.4 12.71 15.27 76.13

Table 1: Experiments performances on AdvGLUE and Restaurant-T datasets. We report the ASR({)
for each method. We also report the average accuracy(Avg(Acc) 1) in the last column. In this table,
Our methods and the best results are highlighted in bold. NL and Code refer to prompting with natural
language and code-style instructions, respectively. Code+adv refers to our proposed adversarial context

method.

Model Method Clean Adversarial 5.66 points for gpt-3.5-turbo. Besides, from
davinci-003 cﬁlée 87.2@%3 47) 75.8;2(%.75) Tabel 2, incorporating our adversarial context
Code+adv . 77.20(+5.13) method results in a significant improvement in

NL 85.61 70.45 accuracy. Specifically, there is an improvement

gpt-3.5-turbo  Code | 86.13(+0.52) | 74.73(+4.28) of 5.13 points with text-davinci-003 and 5.68
Code-+adv - 76.13(+5.68) points with gpt-3.5-turbo. We hypothesize that

Table 2: Average Accuracy on the 8 clean and
adversarial datasets for NL, Code and Code+Adv
methods.

4.2. Results

NL instructions vs. Code-style instructions
As shown in Table 1, prompting LLMs with code-
style instructions consistently outperforms prompt-
ing with natural language instructions. Specifically,
code-style instructions result in a 2.44 and 3.64
point reduction in ASR on text-davinci-003 and
gpt-3.5-turbo, respectively. We also provide the
average accuracy in Table 2. We observe a slight
improvement by using code-style instructions when
prompting LLMs with clean samples(0.47 and 0.52),
but a relatively huge improvement with adversar-
ial samples(3.75 and 4.28), which indicates the
advantages of using code-style prompts when
faced with adversarial samples. A more detailed
analysis of the advantages of code-style instruc-
tions is provided in Section 5.

Adversarial context further enhances the ro-
bustness We further demonstrate the effective-
ness of our proposed adversarial context method.
Compared to natural language prompting, the
adversarial context method leads to a decrease
of 3.55 points in ASR for text-davinci-003 and

the improvement brought by adversarial samples
could be attributed to the implicit adversarial train-
ing through in-context learning. Additionally, in-
troducing adversarial samples prompts the LLMs
to recognize specific adversarial attacks, such as
spelling errors and word substitutions. The find-
ings also suggest that more advanced models,
like gpt-3.5-turbo, potentially benefit more from
code-style instructions and the adversarial context
method than text-davinci-003.

Zero-Shot vs. Few-shot As shown in Table 1,
zero-shot prompting exhibits low robustness on
both text-davinci-003 and gpt-3.5-turbo. In par-
ticular, for some tasks, the LLMs perform only
slightly better or even worse than random guessing
(for example, QQP on text-davinci-003). How-
ever, when prompting LLMs with additional in-
context demonstrations, the robustness of LLMs
improves by a large margin. By few-shot prompt-
ing, the average ASR of text-davinci-0@3 and
gpt-3.5-turbo decrease by 16.82 and 13.75
points, respectively. This indicates the strong few-
shot learning abilities of LLMs. By leveraging only
a few examples, LLMs can better understand
the task and yield stronger robustness.

Chain-of-thought helps with robustness We
then explore whether CoT can help improve the
robustness of LLMs. By promoting LLMs to
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CodeT5-base+code
T5-base+nl
20 A CodeT5-base+nl

T T T T T
SST-2 QQP MNLI QNLI RTE

Figure 3: Perplexity for AdvGLUE dataset on
T5-base with natural language instructions and
CodeT5-base with both natural language and code-
style instructions. We report the logarithm of their
initial values.

think step-by-step to generate final answers,
we find that for most tasks, LLMs showcase bet-
ter robustness than directly prompting LLMs
to generate the final answer. On average,
we present a decline in ASR by 0.97 and 1.02
points with text-davinci-003 and gpt-3.5-turbo,
respectively. However, we also observe a de-
crease in robustness on specific datasets, such
as RevTgt on gpt-3.5-turbo. By analyzing the
reasoning steps, we find that the over-complicated
and neutral-oriented reasoning process contributes
to the failure of CoT.

5. Analysis

5.1. Perplexity: Code vs NL

To take a closer look at the advantages of using
code-style instructions, we hypothesize that utiliz-
ing code-style instructions can provide LLMs pre-
trained on code data with more precise instruc-
tions, consequently resulting in performance im-
provement. To verify our hypothesis, we compare
the perplexity of a pre-trained language model on
the natural language instructions and a pre-trained
code model on both the natural language and code-
style instructions. Specifically, we calculate the
mean perplexity ppl/ of a dataset T consisting of N
samples using the following formula:

1 m
ppln(T) = — > HP]V[(yi|yl N
(@y)eT i=1
(3)

where m refers to the length of the generated to-
kens. For each sample (z,y) in T, we convert it to
both natural language format (z,;, y.;) and code-
style format (x., y.) and then calculate the perplex-
ity with two models M,,; and M. A lower perplexity

suggests the models are less confused by the in-
structions and output format.

Accuracy
o
o

3 4
Shot Number

Figure 4: Accuracy with the different number of
in-context demonstrations on SST-2 and MNLI ad-
versarial dataset. The experiment is conducted on
gpt-3.5-turbo.

Due to the black-box features of LLMs, obtaining
logits directly from LLMs is challenging. Therefore,
following (Li et al., 2023a), we use T5 (Raffel et al.,
2019a) and CodeT5 (Wang et al., 2021b), which
are further pre-trained on code data for T5, to com-
pute perplexities. We use the AdvGLUE dataset
to calculate the perplexity of T5-base with natural
language instructions and CodeT5-base with both
natural language and code-style instructions. As
shown in Figure 3, utilizing the pre-trained code
model with code-style instructions consistently re-
sults in the lowest perplexity, surpassing the per-
formance of using natural language instructions
in both the pre-trained language and code mod-
els. This observation suggests that converting
instructions into code style better align with
the pretraining data distribution for pre-trained
code models.

Prompt SST-2 MNLI QNLI

NL 19.23  21.73 18.75
NL(complicated) 19.45 21.64 18.97
Class Exec 17.83 1855 14.28
Class Init 20.93 16.12 16.52
Func Exec 18.6 17.52 14.03

Table 3: ASR for different code-style instructions
design. "class exec" is the code format used in our
main experiments and is highlighted in light grey.
The experiment is conducted on gpt-3.5-turbo.

5.2. Ablation Studies

5.2.1. Different Code-style Instructions

To explore whether using code-style instructions
can generally obtain better robustness, following
(Wang et al., 2022b) and (Li et al., 2023a), we de-
sign two different code-style instructions class init
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Clean

Code with ‘ the ‘ fast ‘ log ‘ on ‘. speedy ‘ WiFi ‘conncction‘ and ‘ the - battery ‘ life ‘
0.6
NL ‘ I ‘ am ‘ pleased ‘with ‘ the ‘fast ‘ log ‘ on H 5 | speedy ‘ WiFi ‘conncction‘ and‘ the - battery ‘ life ‘
Adversarial
Code ‘ 1 ‘ am ‘ displeased ‘with ‘ the ‘ fast ‘ log ‘ on ‘. speedy ‘ WiFi ‘connection‘ and ‘ the - battery ‘ life ‘
0
NL ‘ 1 ‘ am ‘ displeased ‘with - fast ‘ log ‘ on H s | speedy ‘ WiFi ‘connection‘ and - short ‘ battery ‘ life ‘

Figure 5: Visualization of a sample’s gradient on each word when fine-tuning CodeT5 with code-style
instruction and T5 with natural language instruction, respectively. The sample is selected from the
Restaurant-T dataset with both its clean and adversarial versions. The sample aims to determine the
sentiment polarity of the aspect "battery life" in the sentence with "positive" or "negative".

and func exec. The class init provides LLMs with
incomplete code with partial parameter input of the
class as triggers to prompt LLMs to complete the
code. The func exec converts the class definition
into function definition. We also design a more
complicated NL prompt for comparison. We report
the results in Table 3, from which we find that code-
style instructions almost always outperform natural
language instructions with lower ASR, showcas-
ing the overall superiority of code-style instructions.
Besides, using more complicated natural language
instructions does not help with the robustness of
LLMs.

5.2.2. Number of In-context Demonstrations

To investigate the influence of different numbers of
demonstrations, we perform experiments on SST-2
and MNLI, ranging from 1 to 6 shots. As shown
in Figure 4, we find that the completeness and
balance of labels are significant for the task perfor-
mance. For example, for SST-2 with two labels pos-
itive and negative, when prompting with an even
number of demonstrations (positive and negative
are both included and the number of each label
is equal), we consistently get better results than
those with incomplete labels (1-shot) or with imbal-
anced labels (3-shot, 5-shot). Therefore in Section
4.2, we choose shot number k according to the
number of labels for different tasks.

5.2.3. Different Part of Code Instructions

To assess the influence of different parts of our
code-style prompts, we conduct three transforma-
tions on the instructions. As shown in Table 4,
randomly replacing the Class Name and Sub-task
Name has minimal impact on performance while
removing the annotation leads to a slight decline
in performance. This shows the toughness of

our code-style instructions against different dis-
turbance.

Component SST-2 RTE
Code Instructions 83.1 74.07
- Class Name 82.43(—0.67) 72.83(—1.24)
- Sub-task Name  81.08(—2.02) 75.31(+1.24)
- Annotation 78.38(—4.72)  69.14(—4.93)

Table 4: Results for different parts of code-style
instructions. We report the Acc with gpt-3.5-torbo.
We conduct three separate experiments: randomly
replacing the Class Name, randomly replacing the
Sub-task Name and removing the Annotation.

5.3. Visualization Analysis

To further investigate which part the model focuses
on, we select a sample from the Restaurant-T
dataset with both its original and adversarial forms.
We then utilize natural language instructions and
code-style instructions to wrap the sample and
then fine-tuning them using T5-base and CodeT5-
base, respectively. We extract the gradients of
each token from the model embedding layer and
average them across dimensions. Moreover, we
normalize the gradients within the sentence and
obtain final gradients. We visualize the gradients
in Figure 5. Since the gradients can reflect how
much the model focuses on the token (Li et al.,
2016; Madsen et al., 2022), for clean sentence,
both natural language instruction and code-style
instruction focus on the right word "long". While for
adversarial sentence, code-style instruction with
CodeT5-base can still lead the model to pay at-
tention to the phrase "short battery life". However,
using natural language with T5-base, the model
focuses on irrelevant phrases such as "the". There-
fore, code-style prompts may help the model focus

14192



more on the important part of a sentence.

5.4. Discussion for User-friendliness

Although showing impressive performance with
code-style instructions, it may be difficult for non-
professional users to transform the prompts into
code. Actually, the code-style prompts we design
are straightforward and can be easily adapted to
arbitrary tasks with similar structures. Users can
follow our structure either manually or through LLM-
based methods (e.g., utilizing LLMs) to construct
task-specific code-style prompts. To verify the sim-
plicity of our method, we select several tasks (SST-
2, MNLI, RTE) and concatenate them to prompt
GPT-4 to generate code-style prompts for new
tasks. The results are shown in Table 5. We
observe that LLM-based prompts almost match
the performance of manually designed prompts.

New Task LLM-based Manual
QNLI 72.07421 73.64
RevTgt 70.2249 7 71.33

Table 5: Results for LLM(GPT-4)-based prompts
with gpt-3.5-turbo. We report the Acc of new tasks
QNLI and RevTgt. "LLM-based" refers to GPT-4
generated prompts. "Manual" refers to our manu-
ally designed prompts.

6. Related Work

Textual Adversarial Attacks/Defenses Textual
attacks typically generate explicit adversarial exam-
ples by adding small perturbations into clean exam-
ples while maintaining lexical correctness, gram-
matical correctness and semantic similarity (Ren
et al., 2019b; Wang et al., 2021a). These adver-
sarial methods can be divided into character-level
(Gao et al., 2018), word-level (Ren et al., 2019a)
and sentence-level (Li et al., 2019). In response
to adversarial attacks, various defense methods
have been proposed(Jiang et al., 2020; Wang et al.,
2022a). Adversarial training (Zhu et al., 2019a) is
a widely adopted approach that iteratively solves a
two-layered min-max optimization problem. Inter-
val bound propagation (Dvijotham et al., 2018) is
proposed to find worst-case adversaries. Besides,
randomized smoothing (Cohen et al., 2019) and
adversarial detection (Alshemali and Kalita, 2019;
Mozes et al., 2021) are also popular methods in
defending adversarial attacks. However, all these
methods require parameter updates and can be
unattainable when faced with closed source black-
box LLMs. Therefore, in this work, we propose
a novel approach to enhance the robustness of
LLMs through instructions design without the need
for parameter updates.

Robustness Concerns for LLMs While the
progress of LLMs has shown remarkable abili-
ties in following human instructions and gener-
ating safe content, recent works pose concerns
about the robustness of LLMs (Liu et al., 2023; Shi
et al., 2024)(Wang et al., 2022). Attacks based
on prompts have showcased the possibility of at-
tacking LLMs with adversarial prompts (Zhu et al.,
2023; Ni et al., 2023). For example, "jailbreak" at-
tempts to modify clean prompts to elicit undesirable
responses from LLMs (Wei et al., 2023a). (Zou
et al., 2023) find adversarial attacks on aligned
language models and prove their universal and
transferable attack ability. In this paper, our
attack aims at destroying the samples while
keeping the prompts clean, which is different
from prompts attacks that focus on destroying
prompts.

In-context Learning With the model scale grow-
ing, directly fine-tuning the model can be extremely
expensive due to storage and time complexities
(Rae et al., 2022; Chowdhery et al., 2022; Smith
et al., 2022). Alternatively, in-context learning (ICL)
has been verified to be an effective way for LLMs to
learn a new task by conditioning on a few training
examples (Brown et al., 2020). There are already
lots of works demonstrating the perfect ICL abilities
of LLMs in solving complex tasks, such as solv-
ing mathematical reasoning problems (Wei et al.,
2023b). On the other hand, plenty of studies have
investigated the mechanism behind ICL. (Xie et al.,
2022) explained ICL from the perspective of implicit
Bayesian inference. (Dai et al., 2023; von Oswald
et al., 2022) viewed ICL as implicit fine-tuning and
theoretically demonstrated that Transformer atten-
tion has a dual form of gradient descent. There-
fore, in this work, we hypothesize that incorporat-
ing adversarial samples as demonstrations can
be viewed as a form of adversarial training and
propose the adversarial context method.

Code-style Instructions for Different Tasks
Due to the advantages of code format, plenty of
works have used code-style instructions to tackle
complex tasks. (Gao et al., 2023) used programs
to split the decomposition and computation of a
mathematical problem. (Wang et al., 2022b) lever-
age LLMs text-to-structure translation capability to
solve structured prediction tasks. (Madaan et al.,
2022) frame structured commonsense reasoning
tasks as code generation tasks. (Li et al., 2023a)
recast the structured output of IE tasks in the form
of code instead of natural language. Besides, simi-
lar to our work, (Mishra et al., 2023) utilizes pseudo-
code instructions to prompt pre-trained models
such as CodeGen (Nijkamp et al., 2023) to improve
the performance of pre-trained language models.
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7. Conclusion

In this paper, we propose RoColns to utilize code-
style instructions instead of natural language in-
structions to enhance the robustness of closed
source black-box models against textual adversar-
ial attacks. Instructions in code style, which are
more structural and less ambiguous than natural
language instructions, provide LLMs with more pre-
cise instructions. Besides, we propose adversarial
context method to further boost the robustness.
Experiments show that our method consistently
outperforms prompting LLMs with natural language
instructions under the few-shot setting. We con-
duct further analysis to verify the advantages of
using code-style instructions.

8. Limitations

Due to the limitation of closed source black-box
models, we cannot dig into the LLMs to explore
the reason for the effectiveness of using code-style
instructions. Furthermore, while we have investi-
gated various designs for code-style instructions,
there is still a need for further exploration of better
prompt design. Besides, querying the GPT-series
models can lead to economic expenses and cause
environmental pollution.
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Appendices

A. Datasets

The statistics of the datasets in our paper have
been presented in Table 6.

A.1. AdvGLUE

AdvGLUE (Wang et al., 2022) is a multi-task
benchmark to evaluate modern language mod-
els. The benchmark contains SST-2, QQP, MNLI,
QNLI and RTE. It incorporates diverse forms of
attacks at the word level, sentence level and also
contains human-written samples. SST-2 (Socher
et al., 2013) consists of movie reviews with human-
annotated sentiments. The task is to predict the
sentiment of given sentences. QQP is a collec-
tion of question pairs from the community question-
answering website Quora. The task is to determine
whether the given two questions are semantics
equivalent. MNLI (Williams et al., 2018) consists
of a set of sentence pairs accompanied by anno-
tations indicating textual entailment. The objec-
tive of this task is to determine whether a given
premise sentence implies the hypothesis (entail-
ment), contradicts it (contradiction), or has no clear
relationship with it (neutral). QNLI (Rajpurkar et al.,
2016) is a question-answering dataset consisting
of question-paragraph pairs. The goal is to deter-
mine whether the paragraph contains the answer to
the question. RTE datasets come from a series of
annual textual entailment challenges. The goal is
to judge the relationships between two sentences,
which include entailment and not entailment

A.2. Restaurant

The Restaurant dataset is an Aspect-based sen-
timent analysis sourced from SemEvall 2014
dataset (Pontiki et al., 2014) and in this work,
we use its adversarial version from (Xing et al.,
2020). The adversarial transformation contains
three parts: RevTgt, RevNon and AddDiff. RevTgt
is to generate sentences that reverse the original
sentiment of the target aspect. RevNon aims to
perturb the sentiments of the non-target aspects.

Specifically, for all the non-target aspects with the
same sentiment as the target aspects, we reverse
their sentiments. AddDiff further investigates if
adding more non-target aspects can confuse the
model. We add extra aspects that possess senti-
ments opposite to the target aspect. In this work,
we random select 300 samples from each transfor-
mation to conduct our experiments.

B. Prompt Design

B.1. Natural Language Prompts

The natural language prompts of AdvGLUE are the
same as (Wang et al., 2023a). We present all the
natural language prompts in Table 7.

B.2. Code-style Prompts

All prompts for the tasks in our paper will be pre-
sented in this section.
Prompts for SST-2:

class Sentiment_Classification:
Base class for judging whether the sentiment
of the given sentence is "positive” or
"negative”.

Parameters
input_text : str
The input sentence.

nnn

def __init__(self, input_text):
self.input_text = input_text

def sentiment_classification(self):
polarity =
self.input_text.sentiment.polarity

if polarity > 0:
print(’positive’)

elif polarity < 0:
print(’negative’)

Prompts for QQP:

class Semantics_Consistent_Judgement:
Base class for judging whether the semantics
of the two sentences are consistent.

Parameters
input_textl : str

The first input sentence.
input_text2 : str

The second input sentence.

nnn

def __init__(self, input_textl, input_text2):
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Dataset Task Sample | Class
SST2 sentiment classification 148 2
QQP quora question pairs 78 2
MNLI multi-genre natural language inference 121 3
QNLI guestion-answering NLI 148 2
RTE textual entailment recognition 81 2

Restaurant-T aspect-based sentiment analysis 900 3

Table 6: Statistics of test sets in this paper. For the Restaurant-T dataset, we randomly select 300
samples from each transformation (RevNon, RevTgt and AddDiff) and lead to a total of 900 samples.

Dataset Prompt

SST-2 Please classify the following sentence into either positive or negative. Answer
me with "positive" or "negative", just one word.

QQP Are the following two questions equivalent or not? Answer me with "equivalent"
or "not_equivalent".

MNLI Are the following two sentences entailment, neutral or contradiction? Answer
me with "entailment", "neutral" or "contradiction".

QNLI Are the following question and sentence entailment or not_entailment? Answer
me with "entailment" or "not_entailment".

RTE Are the following two sentences entailment or not_entailment? Answer me with
"entailment” or "not_entailment".

Restaurant-T | What is the sentiment towards 'sentence’ in terms of "aspect word’? Are they
viewed positively, negatively, or neutrally?

Table 7: natural language prompts

self.input_textl = self.hypothesis = hypothesis

self.input_text2 =

input_text1
input_text2
def determine_relationship(self):

def semantics_similarity(self):

similarity =
cosine_similarity(self.input_text1,
self.input_text2)

if similarity > 0:
print("equivalent™)

elif similarity < @:
print("not_equivalent”)

Prompts for MNLI:

class Entailment_Judgement:
Base class for judging whether the premise
and the hypothesis are "entailment”,
"neutral” or "contradiction”.

Parameters
premise : str
The input premise.
hypothesis : str
The input hypothesis.
def __init__(self, premise:
str):

self.premise = premise

str, hypothesis:

if is_entailment(self.premise,
self.hypothesis):
print(”"entailment”)

elif is_contradiction(self.premise,
self.hypothesis):
print(”contradiction”)

else:
print("neutral”)

Prompts for QNLI:

class Answer_Verification:

Given a question, determines whether the
provided text contains the correct
answer to the question.

The relationship consists of "entailment”
and "not entailment”.

Parameters

question : str
The input question.

text : str
The input text.

def __init__(self, question, text):
self.question = question
self.text = text
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def determine_relationship(self):
if is_entailment(self.question,
self.text):
print("entailment”)
else:
print(”"not_entailment”)

Prompts for RTE:

class Entailment_Judgement:
Base class for judging whether the two
sentences are "entailment” or
"not_entailment”.

Parameters
sentencel : str

The first input sentence.
sentence?2 : str

The second input sentence.

nnn

def __init__(self, premise: str, hypothesis:

str, relationship: str):
self.sentencel = sentencel
self.sentence2 = sentence?2

def determine_relationship(self):
if is_entailment(self.sentencel,
self.sentence?):
print("entailment”)
else:
print("not_entailment”)

Prompts for Restaurant-T:

class Aspect_Based_Sentiment_Analysis:
Base class for aspect-based sentiment
analysis task.

Parameters
aspect : str
The target aspect term of the given
sentence.
sentence : str

The input text that contains the aspect.

nnn

def __init__(self, sentence: str, aspect:
str):
self.sentence = sentence
self.aspect = aspect

def sentiment_classification(self):

if is_positive(self.sentence, self.aspect):
print("positive”)

elif is_negative(self.sentence, self.aspect):

print("negative”)

B.3. Other Code-style prompts Design

In Section 5.2.2, we design two other different
code-style prompts: class init and func exec.
Specifically, the "class init" prompt provides LLMs
with incomplete code with partial parameter input
of the class as triggers to prompt LLMs to com-
plete the code. The "func exec" converts the class
definition into a function definition. The detailed
results of these two designs can be found in Ta-
ble 2. Besides, following your advice, we will also
add other ablation experiments with regard to the
prompt design in the subsequent version of our
paper, such as the influence of certain parts of the
prompt (Class name, annotation etc.) We use the
QNLI task as an example to present the different
prompts.
Prompts for class init:

class Answer_Verification:

Given a question, determines whether the
provided text contains the correct
answer to the question.

The relationship consists of "entailment”
and "not entailment”.

Parameters

question : str
The input question.

text : str
The input text.

def __init__(self, question, text,
relationship):
self.question = question
self.text = text
self.relationship = relationship

Prompts for func exec:

def Answer_Verification(question: str, text:
str):

Given a question, determines whether the
provided text contains the correct
answer to the question.

The relationship consists of "entailment
and "not entailment”.

n

Args:
question (str): The input question.
text (str): The input text.

Returns:
str: "entailment”, or "not entailment”.

nnn

if is_entailment(question, text):
print("entailment™)

else:
print("not_entailment”)
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C. Detailed Experiments Results

The detailed experiments of accuracy can be found
in this section. Table 8 and Table 10 present
the accuracy of datasets before (Original) and af-
ter adversarial transformations (Adversarial) with
text-davinci-003. Moreover, Table 10 and Table
11 present the results of gpt-3.5-turbo. All the re-
sults are under few-shot settings. From Tabel 8
and Table 9, we can conclude that using code-
style prompts only acquire little improvement on
the original datasets. Specifically, using code-
style instructions outperforms using natural lan-
guage instructions by 5.13 and 5.68 points in ac-
curacy with text-davinci-003 and gpt-3.5-turbo,
respectively. However, when employing adver-
sarial samples in the instructions, using code-
style instructions acquires a relatively larger im-
provement. Specifically, we get 3.02 and 5.68
points with text-davinci-003 and gpt-3.5-turbo,
respectively, showcasing the advantages of code-
style instructions in resisting adversarial attacks.
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Dataset

Method AdvGLUE Restaurant-T AVG

SST-2 QQP MNLI QNLI RTE | RevTgt RevNon AddDiff
NL 96.18 82.05 79.33 79.72 92.59 91.66 92.67 80 86.78
Code 98.47 83.33 84.2 707 92.59 91 92 78.67 87.25

Table 8: Original datasets results with text-davinci-003
Dataset

Method AdvGLUE Restaurant-T AVG

SST-2 QQP MNLI QNLI RTE | RevTgt RevNon AddDiff
NL 70.94 67.95 61.15 63.51 82.72 67 86 76 72.07
CoT 74.32  71.79 70.25 67.57 81.48 70.66 82 69.33 73.43
Code 75 73.07 68.59 66.21 87.65 70.67 88 77.33 75.82
Code+adv | 78.38 75.64 72.72 64.86 87.65 | 72.66 87.33 78.33 77.20

Table 9: Adversarial datasets results of text-davinci-003
Dataset

Method AdvGLUE Restaurant-T AVG

SST-2 QQP MNLI QNLI RTE | RevTgt RevNon AddDiff
NL 99.23 83.33 76.03 75.67 83.95 91.33 92 83.33 85.61
Code 98.47 83.33 80.16 75.67 86.42 91.33 92 81.67 86.13

Table 10: Original datasets results of gpt-3.5-turbo
Dataset

Method AdvGLUE Restaurant-T AVG

SST-2 QQP MNLI QNLI RTE | RevTgt RevNon AddDiff
NL 79.05 76.92 60.33 62.83 67.9 67.3 77.3 72 70.45
CoT 7837 73.07 74.38 64.18 69.13 62 79 69 71.14
Code 83.1 74.35 69.42 73.64 74.07 71.33 79.6 72.33 74.73
Code+adv | 83.78 82.05 72.73 74.32 7283 72.33 80 71 76.13

Table 11: Adversarial datasets results of gpt-3.5-turbo
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