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Abstract
With the growing privacy concerns surrounding natural language understanding (NLU) applications, the need to train
high-quality models while safeguarding data privacy has reached unprecedented importance. Federated learning
(FL) offers a promising approach to collaborative model training by exchanging model gradients. However, many
studies show that eavesdroppers in FL could develop sophisticated data reconstruction attacks (DRA) to accurately
reconstruct clients’ data from the shared gradients. Regrettably, current DRA methods in federated NLU have been
mostly conducted on public datasets, lacking a comprehensive evaluation of real-world privacy datasets. To address
this limitation, this paper presents a pioneering study that reexamines the performance of these DRA methods
as well as corresponding defense methods. Specifically, we introduce a novel real-world privacy dataset called
FeEDATTACK, Which leads to a significant discovery: existing DRA methods usually fail to recover the original text of
real-world privacy data accurately. In detail, the tokens within a recovery sentence are disordered and intertwined
with tokens from other sentences in the same training batch. Moreover, our experiments demonstrate that different
languages and domains also influence the performance of DRA. By discovering these findings, our work lays a
solid foundation for further research into the development of more practical DRA methods and corresponding defenses.
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real-world NLU applications in privacy-sensitive do-

1. Introduction

mains, such as law (Cui et al., 2023) and digital
health (Singhal et al., 2023). However, there is a
growing concern that such NLU models impose
the risk of privacy leakage during training and in-
ference (Liu et al., 2021). Although data protection
regulations, such as GDPR (Voigt and Von dem
Bussche, 2017), ensure a high level of private data
protection, they obstruct the sharing of personal
data for training NLU models. To address those is-
sues, federated learning (FL) (Konec¢ny et al., 2016;
McMahan et al., 2017a) becomes a promising so-
lution with growing popularity to enable distributed
client devices to train NLU models collaboratively,
without sharing or transmitting their local data to a
centralized place. However, within research com-
munities, there exists an ongoing debate regarding
the level of security that FL algorithms offer for real-

“Equal contribution.
TCorresponding authors.

Figure 1: A demo of DRA in Federated NLU. Dur-
ing federated training, the server performs DRA on
the gradients uploaded by the clients to recover
private data. The sensitive tokens in the ground
truth are highlighted in green. The tokens in orange
come from instances other than the original ones
(crosstalk issue) and the tokens in blue are accu-
rately recovered but appear in the wrong positions.

world applications.

Instead of sharing data directly, the majority of
FL algorithms upload gradients or model updates
computed on client devices to a central server iter-
atively during training. Data reconstruction attack
(DRA) methods (Zhu et al., 2019; Liu et al., 2021)
aim to recover client data from shared gradients by
assuming that the server is honest-but-curious so
that eavesdroppers may directly obtain client data
via those methods, as shown in Figure 1. How-
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ever, these studies report empirical results only
on public English datasets (Klimt and Yang, 2004;
Pang and Lee, 2005; Socher et al., 2013; Warstadt
et al., 2019), hence raising the following concerns
for real-world applications.

Firstly, although DRA methods have achieved
impressive recovery rates on public data, the effec-
tiveness of DRA on real-world sensitive data, such
as personal IDs, is uncertain. This is mainly be-
cause these types of data are not commonly found
in the public datasets that have been used to test
DRA. Therefore, it is essential to question the per-
formance of DRA when dealing with privacy-rich
data in real-world scenarios. Secondly, it is essen-
tial to consider that non-English languages may
present different challenges for Federated Learn-
ing compared to English. Previous studies have
indicated that the success rates of attacks on FL
systems heavily rely on the mechanisms used to
protect word embeddings and vocabularies (Zhang
et al., 2022). For instance, the effectiveness of
reconstruction attacks may vary when applied to
different languages like Chinese, which requires
a different word segmentation mechanism com-
pared to English. Therefore, it is unclear whether
the current reconstruction attacks are capable of
compromising the privacy of non-English datasets.
Thirdly, most attack methods assume the presence
of a single client per attack or involve a small batch
size (Zhu et al., 2019; Deng et al., 2021). However,
in real-world settings, it is quite rare to encounter
scenarios with only one client or small batch sizes.
Therefore, itis crucial to examine the DRA methods
when multiple clients are involved or when large
batch sizes are used during training.

To address the above concerns, we construct a
novel privacy-sensitive benchmark, coined FEDAT-
TAack', for evaluating reconstruction attack methods
on English and Chinese NLU tasks in real-world FL
settings. Herein, we construct a novel dataset and
assess the performance of state-of-the-art DRA
and highly referenced defense methods using this
dataset. It comprises resumes, legal documents,
and medical consultation records in English and
Chinese, conveying substantial de-identified per-
sonal information that still preserves their statistical
patterns. The DRA methods are evaluated w.r.t. the
trade-off between privacy protection and model util-
ity, where the utility of information is evaluated via
two NLU tasks: text classification (TC) and named
entity recognition (NER). Through extensive experi-
ments, we obtain the following novel and intriguing
findings:

» We identify a previously unreported phe-
nomenon, referred to as crosstalk, in recon-
structed texts by the existing DRA methods

'https://github.com/SMILELab-FL/FedAttack.

(see Section 4.3). Namely, if the batch size
is larger than one, it is likely that the recon-
structed tokens appear in the wrong instances
of the batch (Figure 1).

» The recovery rates for the public information
mentions by the DRA methods are approxi-
mately five times higher than those for private
information mentions. Hence, the real-world
private data in our dataset is invaluable by im-
posing unique challenges for the DRA meth-
ods, detailed in Section 4.2.

» The success rates of reconstruction attacks in
Chinese text are significantly higher than those
in English text on average, and the rates vary
among domains (see Section 4.2).

+ Although the parameter-efficient tuning meth-
ods, such as LoRA (Hu et al., 2021), are not
designed for FL defense originally, they ex-
hibit a better trade-off between model utility
and privacy protection than the widely used
defense methods, such as differential privacy
(DP) (Abadi et al., 2016) and gradient pruning
(GP) (Lin et al., 2017) (see Section 4.5). We
conjecture that this can be attributed to its lim-
ited size of tuned model parameters and the
frozen word embedding layer.

2. Preliminaries

Federated Learning. The federated learning
framework typically entails a server and multiple
distributed clients. The server coordinates the train-
ing process and updates the global model while
multiple clients upload their locally-trained model
information (i.e., parameters or gradients) to the
server. Assuming N clients with respective local
dataset D;, (i € [1, N]), loss function £;, and global
model W, the federated training process can be
expressed as follows.

At the beginning of each round ¢, the server dis-
tributes global parameters to every client of interest.
Then the selected i-th client trains the latest global
model Wi~! onits local dataset D; and uploads cor-
responding gradients VW! = 2% to the server.
The server aggregates all uploaded gradients and
updates the global model with averaged gradients
for the next training round. The above training pro-
cess is repeated until specific criteria are met.

Data Reconstruction Attacks. Figure 2 depicts
the workflow of the DRA that existed in federated
NLU. DRA starts by randomly initializing a pair of
dummy inputs (i.e., text embeddings X, and la-
bel mappings Y_). When observing the uploaded
ground-truth gradients V1, DRA recovers the pri-
vacy training data (X,Y) through an optimization-
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Figure 2: The workflow of DRA in Federated NLU.

based approach. Specifically, DRA uses dummy
inputs at each optimization step to perform the nor-
mal forward and backward and calculates dummy
gradients VW'. Then DRA tries to optimize the
reconstruction loss L. to minimize the distance
between VW and VV'. DRA back-propagates
this loss to update the dummy inputs. After multi-
ple iterative updates, DRA can get best-matching
dummy inputs. Finally, DRA recovers original data
by mapping dummy inputs back to words closest
to the federated model’s embedding matrix.

This paper considers three representative DRA
methods used in the federated NLU tasks. DLG
(Zhu et al., 2019) is the first study to show private
data could be leaked from the shared gradients, us-
ing L, distance between the dummy gradients and
the true gradients as the loss function for continu-
ous optimization. TAG (Deng et al., 2021) extends
DLG’s loss function and adds L; norm which priori-
tizes gradient matching in transformer layers closer
to the input data, improving the efficiency of data
recovery. These methods ignore the reconstruc-
tion of the text word order, leading to disordered
recovered text. LAMP (Balunovic et al., 2022) at-
tempts to recover the fluency of text words using
alternating optimization. Specifically, the alternat-
ing optimization contains a continuous optimization
for recovering tokens and a discrete optimization for
recovering the order of tokens by using an auxiliary
language model GPT2 (Radford et al., 2019) to re-
order the recovered tokens. Through well-designed
alternating optimization, LAMP is the sort-of-the-art
DRA method that extracts original text from gradi-
ents. More details can be found in Appendix B.

3. FEDATTACK

Our ultimate goal is to construct a practical privacy
attack dataset with a broad range of personally iden-
tifiable information, different training tasks, diverse
domains, and multiple languages. However, dis-
closing such sensitive datasets is prohibited due to
legal and ethical constraints. In the data collection
(Section 3.1) and human annotation (Section 3.2),
we present the source of FEDATTACK and process
sensitive information that could potentially identify
individuals as per legal regulations, thus enabling
the usage of FEDATTACK for academic research.
Next, we introduce a federated partitioning of FE-
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Figure 3: Examples of FEDATTACK. We provide
English and Chinese text and annotate labels for
TC and NER tasks, respectively. The complete
label statistics for NER can be found in Table 2.

DATTACK (Section 3.3) to verify the effectiveness
of DRA methods and corresponding defenses in
practical federated training processes.

3.1. Data Collection

The Internet’s ubiquity has made it easy to ac-
cess public medical online consultations, case judg-
ments, and resumes, which feature a broad range
of personal information. Using this domain-specific
data, we constructed a real-world privacy data
set for federated Natural Language Understanding
(NLU) tasks. Data is gathered using crawler tools
and manually filtered for toxic, offensive, meaning-
less, or excessively lengthy content. This process
yields 1,150 unlabeled raw Chinese samples.

To assess the effectiveness of the previous DRA
methods across different languages, the raw Chi-
nese dataset was translated into English via Chat-
GPT2. Note that ChatGPT just serves as a trans-
lation tool for efficiency. We subsequently employ
five educated annotators to check, correct, and an-
notate these translated texts for translation quality.
FebpAttack comprises 2,300 instances of privacy-
rich texts, equally split between English and Chi-
nese.

Note that FEDATTACK is not intended for model
training but aims to validate the effectiveness of
previous DRA methods. Regarding this, the scale
of FEDATTACK is sufficient to test the performance
of DRA under different batch sizes in FL settings.

3.2. Human Annotation

Our human annotation includes two steps: (1) the
manual de-identification step, which aims to pro-
cess personally identifiable information (PIl); and
(2) the task annotation step, which yields two clas-

2https://chat.openai.com/chat
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sical NLU tasks, including text classification and
named entity recognition tasks.

Manual de-identification. According to the Gen-
eral Data Protection Regulation (GDPR) (Art.30),
China’s Personal Information Protection Law
(PIPL), and similar regulations, successfully de-
identified data is no longer considered personal
data and can be shared with third parties (Pilan
et al., 2022), including research organizations. The
successful de-identification goes beyond remov-
ing directly identifying values, such as personally
identifiable information regulated by privacy laws. It
also encompasses addressing quasi-identifiers that
could potentially lead to re-identification. Therefore,
relying solely on automated de-identification tech-
niques is insufficient in ensuring complete privacy
protection.

To address this, we manually de-sensitize col-
lected data rather than solely relying on automa-
tion technology. The conventional de-identification
methods remove Pll to achieve data anonymization,
which may significantly deplete privacy information
in the text and result in unrealistic privacy attack ex-
periments. Our manual de-identification employs
the substitution method to "retain”" sensitive per-
sonal information. Specifically, we determine all PII
(see the mentioned names in Table 2) in the text
according to regulatory requirements and manually
replace the data with false but format-consistent
data. For example, we replace a real personal
ID with a randomly selected non-existent personal
ID in the same format. By adopting this manual
approach, we prioritize privacy protection and com-
pliance with regulations like GDPR and PIPL, en-
suring the safeguarding of individuals’ data in the
research process. More details can be found in
Appendix A.

We recruited a team of five educated people to
perform the substituted de-identification. On av-
erage, de-identifying a sample takes about three
minutes per person. Figure 3 shows examples of
our manual de-identified dataset.

Tasks Annotation. After the manual de-
identification, we consider two classic NLU tasks to
comprehensively verify the performance of the DRA
methods under various training objects: text classi-
fication (TC) and named entity recognition (NER).
Domain names are utilized as classification labels
for TC hence annotations aren’t required. We estab-
lish a data schema and corresponding annotation
guidelines for the NER task, using privacy-sensitive
synthetic Pll as entity types (refer to Table 2). No-
tably, FEDATTACK comprises both character-based
privacy tokens and numerical privacy tokens (e.g.,
ID Number) that are scarce in publicly accessible
datasets. The NER annotations were conducted
through a web interface, and annotators received
compensation for their work. The Kappa scores

Domain # Instance # Tokens # Avg. Length
Train Dev Test | Non-Sen Sen ZH EN
Medical | 309 39 39 9405 2780 | 54.14  40.59
Legal 326 40 39 17926 5833 | 94.53 86.80
Resume | 288 36 36 22341 5166 | 130.21 101.97

Table 1: The statistics of FEDATTACK. Sen denotes
sensitive tokens.

Domains Mention Name ‘ # Mentions | Mention Type #Z/:Ivg Legﬁlth
Height 309 numeric 1.00 1.00
Weight 309 numeric 1.47  1.04
Medical Disease 326 character-based | 4.75 2.85
Gynecologic History 93 character-based | 2.99  1.89
Medical History 39 character-based | 4.90 240
Gender 308 character-based | 1.00  1.00
Criminal Charges 336 character-based | 4.36 2.29
Legal Date of Birth 299 numeric 498 297
Home Address 297 character-based | 8.06 5.26
ID Number 173 numeric 1.00 1.00
Name 288 character-based | 2.37  1.98
Major 263 character-based | 4.40 2.19
Age 195 numeric 133 1.12
Resume Contact Information 267 numeric 1.67 1.00
Alma Mater 241 character-based | 542 3.28
Education 251 character-based | 2.04 2.91
Interests and Hobbies 168 character-based | 4.77 2.20

Table 2: The statistic of privacy-sensitive entities in
FEDATTACK.

(McHugh, 2012) among five annotators are 92% for
the NER annotation. More details on NER Ilabeling
can be found in Appendix A.

3.3. Federated Partitioning

Our work aims to emulate DRA methods and cor-
responding defenses during the practical federated
training process. To achieve this goal, we divide
FeDATTACK into three federated clients based on
their respective domains. Unlike previous studies
that only consider one client, our federated system
comprises an honest-but-curious server and three
participants with varying domain datasets. We ran-
domly divide the data into train/valid/test sets with
an 8:1:1 ratio. In this way, we train the federated
model on the training set, validate it on the valid set,
and finally report model performance on the test
set. The DRA methods mainly reconstruct train-
ing data from the gradients uploaded to the server
by clients. Basic statistics of the FEDATTACK are
presented in Table 1.

4. Experiments

This section begins with a quantitative analysis of
three DRA methods on two diverse NLU tasks, vary-
ing in language, domain, and training batch sizes
(Section 4.2). Next, we elucidate two critical chal-
lenges these DRA methods face when recovering
raw text from uploaded gradients: crosstalk and
out-of-order issues (Section 4.3). Using existing
DRA methods, we also investigate the disparities
in recovering text for public and private information.
Finally, we assess different defense strategies and
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illustrate their trade-offs between model utility and
privacy risks (Section 4.5).

4.1. Experimental Setup

We have selected three representative DRA meth-
ods that are commonly used in Federated NLU
tasks: (1) DLG (Zhu et al., 2019) is the first study
to show that private data could be leaked from the
shared gradients; (2) TAG (Deng et al., 2021) im-
proves the efficiency of gradient recovery by adding
L, norm to the gradient attacks optimization on the
top of DLG; (3) LAMP (Balunovic et al., 2022) is the
sort-of-the-art DRA method that extracts original
text from gradients and reorders recovery text by
using auxiliary language model priors.

In DRA experiments, we follow previous stud-
ies (Deng et al., 2021; Balunovic et al., 2022;
Gupta et al., 2022) and use ROUGE (ROUGE,
2004) to evaluate DRA methods performance. We
use the average F-score of ROUGE-1, ROUGE-
2, and ROUGE-L as a measure of similarity be-
tween the recovered text and the original text in
unigrams, bigrams, and the longest matching sub-
sequence. Considering the richness of private enti-
ties contained in our FEDATTACK, we follow previous
work (Gupta et al., 2022) using named entity recov-
ery ratio (NERR) as a recovery metric for these
sensitive entities. Specifically, NERR=0 indicates
completely mismatched entities, while NERR=1 in-
dicates perfectly recovered entities.

To ensure the accuracy and reproducibility of our
attack results®, we utilize official code published in
Balunovic et al. (2022). When performing the DRA
methods, we set the continuous optimization steps
to 5,000 across all the attack experiments. We use
Adam (Kingma and Ba, 2014) with a linear learning
rate decay schedule applied every 50 steps. DLG
and TAG use the gradient matching loss function
reported in their papers. We chose the cosine gradi-
ent matching loss function for LAMP since it exhib-
ited the best recovery performance and the discrete
optimization activities every 375 steps in LAMP. In
all DRA methods, we use FedSGD (McMahan et al.,
2017b) as the basic FL algorithm to carry out the
data reconstruction attack akin to previous stud-
ies (Deng et al., 2021; Balunovic et al., 2022; Gupta
et al., 2022). For threat models, we use Bert-Base-
Chinese* for Chinese tasks and Bert-Base (Devlin
et al., 2018) for English tasks.

4.2. Main Results

We first systematically evaluate the performance of
existing DRA methods with different training batch

30ur data will be publicly available upon acceptance.
*https://huggingface.co/bert-base-chinese

sizes (B) in FEDATTACK, where B=1 is the ideal at-
tack setting. The experimental results are listed
in Table 3 and Table 4. We observe two consis-
tent phenomena in FEDATTACK containing different
tasks and languages: (1) The recovery ability of all
DRA methods decreases rapidly as the batch size
increases. (2) LAMP is by far the most powerful
attack method compared with other DRA methods,
demonstrating the effectiveness of utilizing auxiliary
language models in the attack process. These ex-
perimental results are consistent with the findings
of previous work (Balunovic et al., 2022). However,
we find that the current DRA methods have limi-
tations in terms of the real damages they can
inflict, particularly at the typical training batch
size of B=32. For example, advanced LAMP barely
recovers the original text correctly with B=32 (es-
pecially for privacy-sensitive word recovery NERR,
with a maximum of only 8.62% correct recovery).
LAMP struggles (maximum ROUGE-2 is only 0.19)
despite using auxiliary language models to recover
word order.

We then explore the performance of different
attack methods on FEDATTACK-ZH and FEDATTACK-
EN. Upon comparing Table 3 and Table 4, we dis-
cover that existing attack methods are more ef-
fective at recovering the Chinese corpus as
compared to the English corpus. This perfor-
mance gap could be attributed to differences in tok-
enizer techniques (see Section 4.3). The Chinese
tokenizer is character-level, while the English tok-
enizer usually operates at the subword level, which
needs the search for precise combinations of sub-
words. This presents a more challenging setting for
English text recovery. Comparing different learning
tasks, we do not observe a significant difference
in the performance of DRA methods in TC or NER
tasks, which suggests that DRA performance may
be task-agnostic.

Unlike prior studies, our experiments are con-
ducted in a more realistic federated DRA setting
with one server and three clients. We compare
the performance of diverse DRA methods on dif-
ferent clients (domains) in Table 5. As shown in
Table 5, we can observe the experimental results
for different domains are still consistent with the
previous findings. Comparing different domains,
DRA methods have the general trend in NERR:
Dicgal > Dresume > Dmedicar- We conjecture that
the medical text contains more numeric type enti-
ties (e.g., height and weight), making it difficult for
the DRA method to recover accurately.

4.3. Crosstalk and Out-of-order Issues

We next review the recovered text by the DRA meth-
ods and further investigate the underlying reasons
for the unsatisfactory performance of DRA meth-
ods on FEDATTACK. We chose LAMP and the case

14084



| B=1 | B-8 | B3z
t
asK MeMe% R4 R2 RL NERR| R1 R2 RL NERR| R1 R2 RL NERR
DLG |5451 227 2073 672 |27.10 038 1151 376 | 17.30 009 837 255
TC | TAG |5456 225 2089 617 |27.04 038 1159 3.85 | 17.14 0.11 824 241
LAMP | 5569 3.02 21.25 667 |27.68 0.58 12.01 364 | 1633 0.5 800 1.90
DLG |5441 216 2063 648 |27.24 031 1167 364 | 1678 012 824 2.41
NER | TAG | 5443 235 2072 643 |27.29 033 1166 3.42 | 1679 013 827 236
LAMP | 5504 298 21.20 691 |27.88 0.64 1219 328 | 17.03 019 862 1.85

Table 3: The attack performances of different DRA methods on FEDATTACK-ZH. B=x represents the training
batch size x in federated training. R-x means the average F-score of ROUGE-x, and NERR refers to the

named entity recovery ratio.

e Mothog | B=1 | B-8 | B=32
t
asKk M Tr4T R2  RL NERR| R1 R2 RL NERR| R1 R2 RL NERR
DLG |39.56 203 19.85 14.05 | 20.79 039 11.27 7.3 | 1423 010 895 4.46
TC |TAG | 3946 182 19.85 13.76 | 20.87 040 11.32 7.0 | 1436 014 912 431
LAMP |39.14 218 19.85 1390 | 20.78 0.35 1128 718 | 1441 0.2 885 4.98
DLG |39.14 190 19.36 13.60 | 20.94 023 1119 7.05 |14.66 0.17 895 4.21
NER | TAG | 3881 197 1941 1413 | 2086 027 1120 6.93 | 1459 0.8 899 423
LAMP |38.76 216 19.52 14.75 | 20.78 0.34 11.45 693 | 1414 009 840 5.01

Table 4: The attack performances of different DRA methods on FEDATTACK-EN. B=x represents the training
batch size x in federated learning. R-x means the average F-score of ROUGE-x, and NERR refers to the

named entity recovery ratio.
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Figure 4: Some reconstructed texts of LAMP for
the NER task with B=8. Green tokens are privacy-
sensitive in the reference column, while blue ones
in the prediction column indicate accurate predic-
tions within the sentence. Orange tokens represent
the correct prediction of sensitive entities from other
sentences, which is called cross-talk.

of B=8. Figure 4 illustrates some randomly sam-
pled recovery cases. In Figure 4, it is apparent that
LAMP recovers sentences with almost no order
either in FEDATTACK-EN or FEDATTACK-ZH, even
though LAMP exploits an auxiliary language model
to recover the order of the original sentences. Chu
et al. (2022) claim that the current DRA method
pays little attention to position embedding and the
complex deep transformer structure with residuals.

However, Figure 4 illustrates another significant
phenomenon not reported in previous studies: the
tokens recovered by DRA methods are heavily inter-
twined in the same batch of sentences. We refer to
this phenomenon as crosstalk. As an example, us-
ing the recovered sensitive privacy text, we can see
that many privacy-sensitive tokens are perfectly re-
covered in Figure 4. For instance, in one sentence,
LAMP recovers many privacy tokens from other
sentences (e.g., each sentence in Figure 4 has
more tokens marked in orange than those marked
in blue). We also quantitatively measure the token
recovery rate of DRA under different batch sizes,
and results are shown in Table 6. We find that the
DRA strives to recover most tokens in uploaded
gradients but crosstalk diminishes the quality
of the recovered text and eventually presents
a chaotic and meaningless reconstructed text.
Regrettably, the DRA methods are not designed
to resolve the crosstalk problem, which makes it
extremely challenging to achieve successful text
reconstruction.

Regarding this, while FL is not a family of com-
pletely privacy-preserving learning algorithms, the
existing DRA methods pose a limited threat to
clients’ privacy because of crosstalk and out-of-
order problems. Moreover, Figure 4 indicates a
severe leakage of sensitive tokens, which do not al-
ways convey private information explicitly. Despite
that, this increases the chances of inferring private
information based on these sensitive tokens. FE-
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FEDATTACK-ZH

FEDATTACK-EN

Task | Method | Medical Legal Resume | Medical Legal Resume
‘ ‘ NERR R-L  NERR R-L  NERR ‘ NERR R-L  NERR R-L NERR
DLG 25.40 0.37 28.22 7.01 27.63 2.88 20.02 2.32 20.27 1199 22.20 6.00
TC TAG 25.35 0.56 28.20 6.15 27.53 2.76 20.39 2.50 20.15 11.78 22.23 6.00
LAMP 27.47 0.65 27.64 7.16 27.97 2.94 20.29 2.04 20.25 1291 22.31 5.47
DLG 25.90 0.47 28.08 7.44 27.67 2.46 20.52 2.41 2045 1298 21.82 4.82
NER | TAG 26.03 0.37 28.10 7.08 27.64 2.28 20.51 2.32 20.24 13.05 21.89 4.49
LAMP 27.09 0.65 28.87 7.44 28.70 2.86 20.70 2.32 20.28 11.71 2191 5.67

Table 5: The domain performances of DRA (LAMP) on FEDATTACK with B=8.

FepArTACcKk-EN
# Tokens # Recovered Ratio

FepATTACK-ZH
# Tokens # Recovered Ratio

B=t | 67 64 95.02 | 55 53 94.36
B=8 | 532 505 95.77 | 412 394 93.93
B=32 | 1920 1829 95.96 | 1631 1562 94.09

Table 6: The batch-averaged token recovery ratio
with diffgrent batch sizes.

I Public
40 Private
35.40% 35.34% 35.10%

Recovery rate (%)
5 8 & &8 8

=
5}

7.05% 6.93% 6.93%

v

DLG TAG LAMP

DRA Methods

Figure 5: The recovery rates of public and private
information vary with different DRA methods on the
NER task within FEDATTACK-EN using B=8.

DATTACK can serves as a valuable real-world source
for investigating such attacks.

4.4. Reconstruction Analysis for Private
and Public Information

The FeDATTACK contains significant real-world
private information, whereas publicly available
datasets used by previous attack studies contain
almost no such sensitive texts. Hence, we investi-
gate the impact of distribution differences between
private and public information in text on DRA meth-
ods.

Figure 5 illustrates the recovery rates of private
and public information in text. The results indicate
that the existing DRA methods tend to excel
in recovering mentions of non-private informa-
tion while facing difficulties in recovering those
for private information. This phenomenon con-
tributes to better performance of DRA methods on
publicly available datasets (such as SST-2(Socher
et al., 2013), CoLA(Warstadt et al., 2019), Rotten-
Tomatoes(Pang and Lee, 2005)), but less satis-

factory results on FEDATTACK. However, current
DRA methods have not exhibited significant differ-
ences in recovering natural versus texts for private
information, which is impractical. From a practical
perspective, attackers are primarily interested in
extracting sensitive information, such as word se-
quences containing phrases like "my credit card
number is...". Regarding this, the lack of real-world
privacy attack data also hampers the development
of robust defense methods within the FL community,
thereby limiting the ability to protect the sensitive
information of federated clients effectively.

4.5. Defense Against DRA Methods

Several defenses aim to mitigate the damage of the
DRA methods, often leading to a reduction of model
utility. When defenses are incorporated, this exper-
iment assesses the trade-off between model utility
and privacy risk in federated training. We employ
three defenses against DRA methods: Gradient
Pruning (GP) randomly zeroes elements of the gra-
dient vector at a specified mask ratio. Differential
Privacy (DP) employs noise addition to the gradi-
ents. We choose noise intensity and masking rates
to achieve 80% performance without defense, con-
sidering the extensive range of options available.
Additionally, we incorporate the parameter-efficient
tuning method LoRA (Hu et al., 2021), as demon-
strated by Zhang et al. (2023c), to bolster defense
against DRA methods further. We utilize ROUGE-L
to measure the risk of privacy breaches. We em-
ploy the NER task from FEDATTACK-EN and the
F1-Score as the utility metric for model utility.
Figure 6 reports the trade-off results between
model utility and privacy leakage when using dif-
ferent defenses to resist existing DRA methods on
FepATTACK. As illustrated in Figure 6, we observe
that LoRA exhibits a superior trade-off between
privacy preservation and model utility relative
to other defenses. We also further explore the
reasons why LoRA can resist DRA methods. LoRA
freezes the pre-trained model weights and intro-
duces lightweight trainable rank decomposition ma-
trices into every transformer layer, greatly reducing
the number of uploaded gradients in FL. Table 7
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Figure 6: The trade-off between model utility and
privacy leakage when using different defenses to
resist existing DRA methods on FEDATTACK. The
z-axis represents the risk of privacy leakage, while
the y-axis denotes model utility. The closer to the
upper left corner of the diagram indicates that the
defense can achieve a better trade-off.

| FT | FE | LoRA+E | LoRA
ROUGE-L | 11.28 | 484 | 678 | 1.06

Table 7: The averaged attack performance un-
der different tuning methods. FT denotes full fine-
tuning, FE refers to training with freezing word em-
bedding layer, and LoRA+E denotes training word
embedding when using LoRA.

illustrates the average DRA method performance
with various tuning methods. When contrasted with
LoRA+E and FT, the lightweight upload parameters
pose challenges for DRA methods in recovering
original data (also corroborated by GP). Compared
to LoRA and LoRA+E, we can see the importance
of the frozen word embedding layer in countering
DRA. Consequently, LoRA could offer superior pri-
vacy protection owing to (1) lightweight upload gra-
dients and (2) the presence of frozen word embed-
dings.

5. Related Work

Federated Natural Language Understanding.
Due to its decentralized and private nature, fed-
erated learning (Konec¢ny et al., 2016; McMahan
et al.,, 2017a) has gained prominence in recent
years and appeals particularly to privacy-sensitive
natural language understanding applications (Sui
etal., 2020; Ge et al., 2020; Long et al., 2020; Basu
etal., 2021; Zhang et al., 2023b). This emerging re-
search field, referred to as Federated NLU (Liu et al.,
2021; Lin et al., 2022), has attracted substantial
attention, with a variety of proposed approaches pri-
marily aimed at addressing challenges such as data
heterogeneity (Ji et al., 2019; Zhang et al., 2022),
system heterogeneity (Liu et al., 2022; Cai et al.,
2022), and limited resources associated (Zhang
et al., 2023c) with the federated training of pre-
trained language models (Liu et al., 2019; Radford
et al., 2019). The landscape of Natural Language
Understanding (NLU) is being revolutionized by
Large Language Models (Scao et al., 2022; Tou-
vron et al., 2023) (LLMSs). In this context, Federated

NLU emerges as a promising framework for training
privacy-preserving LLMs on data with privacy con-
cerns (Zhang et al., 2023a). Contrary to previous
studies, our work focuses on the privacy-preserving
capabilities of federated NLU, due to its importance
to the field.

Data Reconstruction Attacks. Although FL
forges new pathways for collaboration among the
distributed clients, it has recently faced criticism
for relying heavily on shared gradients as a pri-
vacy measure. A significant portion of recent FL
research has been dedicated to data reconstruc-
tion attacks (Zhu et al., 2019; Zhao et al., 2020;
Geiping et al., 2020; Deng et al., 2021; Balunovic
et al., 2022; Gupta et al., 2022), which expose the
possibility of an attacker reconstructing local data
from uploaded gradients.

DRA methods in FL can be categorized into two
types (Lyu et al., 2022) based on the nature of
the server: (1) honest-but-curious setting, where
a compromised server surreptitiously recovers the
victim client’s training data by passively observ-
ing uploaded gradients; and (2) malicious setting,
where the server illicitly steals the victim client’s
training data by manipulating the model param-
eters or gradients. Our research predominantly
focuses on the honest-but-curious setting within
DRA methods, considering its heightened threat
level and detection difficulty in federated training as
compared to the malicious setting (Balunovic et al.,
2022; Gupta et al., 2022).

DRA methods were first proposed and rapidly
developed in computer vision (Zhu et al., 2019;
Zhao et al., 2020; Geiping et al., 2020). Several
visual DRA benchmarks (Huang et al., 2021; Ovi
and Gangopadhyay, 2023; Yang et al., 2023) have
also been proposed to examine the limitations of
various DRA methods and to evaluate their qual-
itative performance in the reconstruction of input
images. Nevertheless, the development of DRA
methods in Federated NLU has been sluggish, with
research efforts recently initiated (Zhu et al., 2019;
Deng et al., 2021; Balunovic et al., 2022). Deep
Leakage from Gradients (Zhu et al., 2019) (DLG)
pioneered text extraction through gradients, demon-
strating potential leakage in masked language mod-
eling. TAG (Deng et al., 2021) extended DLG by
introducing a regularization term to strengthen gra-
dient matching in layers closer to the input original
data. LAMP (Balunovic et al., 2022) incorporates
language-prior information and utilizes language
models to restore token order based on recovered
tokens, demonstrating potent attack capabilities in
Federated NLU.

Although these DRA methods have shown im-
pressive reconstruction results, they have only
been tested on public English text classification
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datasets, leaving their performances on other lan-
guages, NLU tasks, and privacy-rich data in doubt.
Our work addresses this knowledge gap by provid-
ing the real-world privacy dataset and systemati-
cally testing DRA methods across various tasks,
domains, and languages in practical federated set-
tings.

6. Conclusion

This paper constructs a novel benchmark FEDAT-
TACK, including a bilingual real-world dataset, for
evaluating the performance of DRA methods on
federated NLU tasks. In contrast to assessing re-
construction attacks on public datasets in prior stud-
ies, our extensive experiments show that the token
sequences conveying private information impose
unique challenges to the evaluated DRA methods
such that the corresponding recovery rates for pri-
vate information are approximately five times lower
than those for non-private information. Moreover,
our empirical studies discover an unreported type
of error called “crosstalk” in the token sequences
reconstructed by all assessed DRA methods. In
addition, the attack success rates depend on lan-
guage specific properties such that it is significantly
easier to reconstruct Chinese texts than English
ones. We also compare LoRA with the SOTA de-
fense methods and find out that LoORA provides a
better trade-off between model utility and private
protection than those defense methods.

Ethics Statement

All source texts for our FEDATTACK are from publicly
available websites and have been appropriately
anonymized. We do not analyze the content of
private information or possible individuals in any
way (although also virtually). Although our primary
aim is to reassess the privacy risks inherent in FL,
FEDATTACK may also facilitate the development of
even more sophisticated attack methods from the
attacker’s perspective. Therefore, we aspire to in-
spire the design of defense mechanisms that can
offer more strict privacy guarantees for clients dur-
ing federated model training.
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A. Annotation Details

Personally Identifiable Information (PIl), refers to
any data that can be used to identify an individual
considered sensitive or confidential. This can in-
clude a person’s name, identification number, date
of birth, address, phone number, email address,
social media ID, and other similar data. We refer to
different data protection laws (i.e., the EU’s GDPR,
the US’s CCPA, and China’s PIPL) and find that
PlI contains similar content. Therefore, we mainly
rely on the provisions of these laws to identify the
relevant privacy-sensitive entities in our collected
FepAtTack. Table 2 shows the types of sensitive
entities for different domains in FEDATTACK.

After defining the private entities, we solicit the
annotators to substitute them with corresponding
formats. As indicated in Table 2, the privacy infor-
mation encompasses character and numeric types.
Specifically, for character types such as names, we
manually selected them from a corpus of publicly
available Chinese personal names. For numeric
types such as weight, we introduced a certain de-
gree of noise (e.g., replacing the real weight of 76kg
with a substituted weight of 75kg). Moreover, gen-
uine IDs are substituted with non-existent IDs that
adhere to the format specified in China’s national
standard for identification, GB11643-1999. All the
substituted IDs’ birthdates are set before the year
2023, making them unused for future identification
purposes. Consequently, we use these substituted
entities to annotate our NER tasks. Notably, our
dataset comprises character-based privacy tokens
and numerical privacy tokens (e.g., ID Number)
that are scarce in publicly accessible datasets. Ta-
ble 2 also shows the statistics of these two types
of private tokens in different domains.

B. DRA Methods

Despite the success of keeping data locally to pro-
tect privacy in federated learning, prior studies (Zhu
et al., 2019; Deng et al., 2021; Gupta et al., 2022;
Balunovic et al., 2022) demonstrate the risk of
data reconstruction from the perspective of user-
uploaded gradients. We denote the ground-truth
data as (X,Y), recovered data as (X',Y’) and
ground-truth gradient VW, dummy gradient w.r.t
dummy data VW'. To recover private data, current
works commonly employ an optimization strategy
to shorten the distance between gradients V)V and
VW', which is formulated as:

Lgrad = [(VW, YW, YW™), (1)
Xl*vY,* =Y’ ﬁgradv (2)

where f(-) denotes some distance measure, such
as Ly (Zhu et al., 2019), L, and cosine distances.

DLG (Zhu et al., 2019) first attempted to recon-
struct data from gradients by defining § as the L,
distance:

2

VW — YW 3)

While TAG (Deng et al., 2021) extended DLG on
transformer-based models with L; constraint:

1% 1%
X ’Y :X/ Y’

/x 7% 7112
XY =gy [|[VW-VW

(4)

I

Fama(VW) va - vw"

where atag is a hyperparameter.

Additionally, the recovered sentences’ fluency
was considered in LAMP (Balunovic et al., 2022).
LAMP (Balunovic et al., 2022) alternated continu-
ous optimization for token selection and discrete
optimization guided by an auxiliary language model
for token arrangement, ensuring an effective re-
construction result from gradients. Based on the
widely-used gradient distance Lq.q (EQ. 1), the
embedding length regularization L.y (EQ. 5) is
introduced in the continuous reconstruction opti-
mization:

n 4 2
1 1
LiglX) = <n2|xi||2—vz||ej|2> . ©)
i=1 j=1

where x; and e; denote the i-th token embedding
in X and vocabulary respectively, n is the number
of tokens in X, and V is the size of the vocabulary.
Hence the continuous reconstruction loss is defined
as Lrec = Lgrad + Lreg-

In discrete optimization, LAMP (Balunovic et al.,
2022) employed various discrete sequence trans-
formations for token rearrangement and candidate
generation, selecting one with both low reconstruc-
tion loss and perplexity under an auxiliary language
model, which is formulated as:

Liamp = Lrec + UmLim )
X" =y Liawpe, for X in candidates,

where o, is a hyperparameter.
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