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Abstract
Recently, prompt-tuning has achieved very significant results for few-shot tasks. The core idea of prompt-tuning is
to insert prompt templates into the input, thus converting the classification task into a masked language modeling
problem. However, for few-shot relation extraction tasks, how to mine more information from limited resources
becomes particularly important. In this paper, we first construct a global relation graph based on label consistency to
optimize the feature representation of samples between different relations. Then the global relation graph is further
divided to form a local relation subgraph for each relation type to optimize the feature representation of samples within
the same relation. This fully uses the limited supervised information and improves the tuning efficiency. In addition,
the existence of rich semantic knowledge in relation labels cannot be ignored. For this reason, this paper incorporates
the knowledge in relation labels into prompt-tuning. Specifically, the potential knowledge implicit in relation labels
is injected into constructing learnable prompt templates. In this paper, we conduct extensive experiments on four
datasets under low-resource settings, showing that this method achieves significant results.
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1. Introduction

Relation Extraction (RE) is a fundamental task in
Natural Language Processing (NLP) to detect re-
lations between entities in a sentence. With the
rise of a series of pre-trained language models
(PLMs)(Devlin et al., 2018; Liu et al., 2019; Lewis
et al., 2019; Raffel et al., 2020), fine-tuning PLMs
has become the primary approach for relation ex-
traction(Joshi et al., 2020; Xue et al., 2021; Zhou
and Chen, 2021). The core idea of standard fine-
tuning is shown in Fig. 1(a). However, fine-tuning
requires adding additional classifiers on top of PLM
and further training the model under the classifica-
tion objective. Therefore their performance relies
heavily on time-consuming and labor-intensive an-
notated data with poor generalization performance.
In addition, the capabilities of PLMs may not be
fully utilized as the training objectives of PLMs are
different from the downstream tasks.

Prompt-tuning(Brown et al., 2020; Schick and
Schütze, 2020a,b; Liu et al., 2023) has been pro-
posed and proven effective, especially in low-
resource scenarios(Gao et al., 2020; Scao and
Rush, 2021). The core idea of prompt-tuning, as
shown in Fig. 1(b), is to transform the goal of a
downstream task into one closer to that of a pre-
trained task. This is done by designing a template
to reformulate the input examples into perfect-form
phrases and linguistics to map labels to candidate
words. The labels of the input examples can be
determined by predicting mask tokens.

Despite the success of prompt-tuning on low-

(a) Fine-tuning

(b) Prompt-tuning

Figure 1: Examples of fine-tuning and prompt-
tuning core ideas

resource relation extraction tasks, they have paid lit-
tle attention to exploiting the relations between a lim-
ited number of labeled samples. In addition, there
is rich semantic knowledge in relation labels and
rich structural knowledge between relation triples
that cannot be ignored. The KnowPrompt(Chen
et al., 2022) inspires this work, and in addition to
injecting knowledge into the templates, this paper
pays more attention to the relations between the
samples. Specifically, in this paper, we first opti-
mize the features of samples between different rela-
tions by constructing a global relation graph. Each
node represents a labeled sample, and the edges
between nodes represent the similarity between
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the two samples. The boundaries are optimized in
the global relation graph by determining whether
two samples are from the same relation and regu-
larising the similarity of the representations learned
through PLM between every two samples. Sec-
ondly, this paper further optimizes the features of
samples within the same relation by constructing
a local relation subgraph. Specifically, this paper
divides the global relation graph into multiple lo-
cal relation subgraphs and translates this task into
learning the similarity between the subgraphs and
the target instances. The operation procedure is to
represent the subgraph as a feature through an ag-
gregation function and then calculate the similarity
with the target instance. For example, sum pooling
on the representation of all nodes in the subgraph is
a practical and popular aggregation scheme. This
method can improve the performance of prompt-
based tuning strategy in low-resource relation ex-
traction tasks.

This paper conducts extensive experiments on
four widely used relation extraction datasets in a
low-resource scenario setting. The method’s effec-
tiveness is demonstrated by achieving better perfor-
mance compared with a range of recent baseline
models. The contributions of this paper can be
summarised as follows:

(i) In order to make full use of the limited sample
resources, the features of the samples between
different relations are optimized by constructing a
global relation graph.

(ii) To further constrain the feature representation
of the samples, the features of the samples within
the same relation are optimized by constructing
local relation subgraphs.

(iii) Extensive experiments on four widely used
public datasets demonstrate the effectiveness of
the present method in low-resource settings.

2. Related work

Relation extraction refers to extracting the relation
between two entities given their related contexts. It
plays an essential role in information extraction and
knowledge base construction. Early approaches
include pattern-based approaches(Huffman, 1995),
CNN/RNN-based approaches(Zhou et al., 2016)
and graph-based approaches(Guo et al., 2021). A
prototypical network(Snell et al., 2017) is the more
widely used metric-based meta-learning framework
for few-shot relation extraction. It learns prototype
vectors for each relation through several examples
and then compares the similarity between query
instances and prototype vectors of candidate rela-
tions for prediction. For example, Gao et al.(Gao
et al., 2019) proposed an attention-based hybrid
prototype network for noisy training samples in few-
shot learning. Ye et al.(Ye and Ling, 2019) further

proposed a multilevel matching and aggregation
network for few-shot relation extraction. Peng et
al.(Peng et al., 2020) demonstrated the effective-
ness of applying metrics-based approaches to pre-
trained models. Recent studies have used PLM for
relation extraction tasks(Li et al., 2020; Wang et al.,
2020; Ye et al., 2021). However, this paradigm
remains sub-optimal due to the gap between pre-
training and downstream tasks.

With the introduction of the GPT series, language
model prompting emerged. By further exploring
many prompt-tuning methods for relation extraction,
a series of studies(Ben-David et al., 2021; Lester
et al., 2021; Lu et al., 2021; Reynolds and McDonell,
2021) have been proposed and demonstrated the
effectiveness of prompts. PET(Schick and Schütze,
2020a) reformulates input samples as perfect-form
phrases to help language model runs understand
a given task. ADAPET(Tam et al., 2021) modi-
fies the goal of PET to provide more intensive su-
pervision. PTR(Han et al., 2022) uses logic rules
with multiple sub-prompts to encode prior knowl-
edge in prompt-tuning. KnowPrompt(Chen et al.,
2022) integrates knowledge between relation la-
bels into prompt-tuning for relation extraction and
provides co-optimization for better performance. In
this paper, we would like to highlight the difference
between KnowPrompt and the present method:
while KnowPrompt only considers the introduction
of knowledge, the present method pays more atten-
tion to the relations between a limited number of la-
beled samples along with the introduction of knowl-
edge. This allows the present method to achieve
better performance in low-resource scenarios.

3. Background

The relation extraction task T with label space R
consists of three datasets: (i) The training dataset
Dtrain = {(xi, ri)} contains several labeled exam-
ples. xi is the sequence of samples and ri is the
corresponding relation labels. (ii) The validation
dataset Ddev. (iii) The test dataset Dtest contains
unlabeled samples to be predicted.

For each sample instance x, the template maps
x to the prompt input xprompt = T (·). Specifically,
the template T (·) includes the location and number
of additional words to add. In addition to preserv-
ing the original token in x, one or more [MASK]
are placed in the xprompt prompt for the language
model to populate with tagged words. For example,
a sentence in a binary sentiment classification task:

xi = [CLS] s [SEP ]

Setting the template T (·) ="It is [MASK]" maps
x to:

xprompt = [CLS] s. It is [MASK]. [SEP ]

[CLS] and [SEP ] are special start and end
tokens. The hidden vector of [MASK] is ob-
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Figure 2: Model Architecture. This model consists of three main parts: the knowledge injection module,
the global relation graph module and the local relation subgraph module, respectively.
tained by mapping x to xprompt prompts via lan-
guage model encoding. A probability distribution
p([MASK]|xprompt) describes which tokens are
suitable for replacing [MASK] words. The linguist
v(·) maps ri to symbols representing the seman-
tics of ri. For example, "positive/negative" can be
mapped to "great/terrible". Depending on whether
the language model predicts "great" or "terrible",
the labels of the sample instance x can be identified
as "positive" or "negative".

Because the language model predicts the cor-
rect labeling of the mask position, it is possible to
formalize the mask position as p(r|x), that is:

p(r|x) = p([MASK] = v(r)|xprompt) (1)

Given the probability distribution p(r|x) on the
masked location, the loss function is computed by
the cross-entropy between r and p(r|x). The com-
putation of LCE is shown below:

LCE = − 1

|X |
∑
x∈X

r log p(r | x) (2)

where |X | denotes the number of training data.

4. Methodology

This section presents the general framework of
prompt tuning for few-shot relation extraction via
modeling global and local graphs. The specific
model architecture is shown in Fig. 2, and this
section details how to construct and optimize this
model.

4.1. Knowledge Injection Module
Traditional prompts are composed of two parts: a
template and a set of labeled words, while the rich

semantic knowledge in relation labels should not
be ignored. Inspired by the KnowPrompt approach,
this paper injects entity-related knowledge into con-
structing prompt templates.

4.1.1. Prompt Template Build with Knowledge
Injection

The direct introduction of type information for en-
tities requires additional annotation, which is not
always available in datasets. Therefore, this paper
obtains the scope of potential entity types through
the a priori knowledge contained in the relation
rather than annotations. For example, given the
relation "per : country_of_birth", it is clear that
the subject entity matching this relation belongs
to "person", while the object entity matching this
relation belongs to "country". Intuitively, prior dis-
tributions ϕsub and ϕobj can be estimated based on
the relation classes on the sets of potential entity
type candidates Csub and Cobj , respectively. Fre-
quency statistics estimate the prior distributions.
Some of the relations taken for Csub and Cobj are
shown in the labels listed in Table 1. For example,
the prior distribution Csub is computed as follows:
ϕsub = {”organization” : 3/6, ”person” : 3/6}.
Thus, assigning type words around entities can be
initialized with potential entity types to aggregate
embeddings. Since the initialized type words are
not the exact type of a particular entity, the learnable
type words can be dynamically adjusted according
to the context. The specific initialization method is
shown below:

ê[sub] =
∑

ϕsub · e (I (Csub)) (3)

ê[obj] =
∑

ϕobj · e (I (Cobj)) (4)

where ê[sub] and ê[obj] denote the embedding of
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Table 1: Some examples of relations in the TACREV dataset
Relation Labels Csub Cobj Cr

per:country_of_birth person country {“country”, “of”, “birth” }
per:date_of_death person date {“date”, “of”, “death” }

per:schools_attended person organization {“school”, “attended’}
org:alternate_names organization organization {“alternate”, “names” }

org:city_of_headquarters organization city {“city”, “of”, “headquarters” }

org:number_of_employees/members organization number {“number”, “of”,
“employees”, “members” }

type words around subject and object entities. I(·)
is a deletion operation on set duplicates. e is the
word embedding encoded by the language model.
Type words provide an initial sense of the range
of entity types and express semantic information
close to the actual entity types.

4.1.2. Loss of Knowledge Injection Module

This paper employs additional structured con-
straints to optimize the prompts, integrating struc-
tured knowledge into the model. Specifically, we
use the triple (s, r, o) to describe relation facts. Here
s and o denote the types of subject and object en-
tities, respectively. r is the relation label. In this
model, the computation is involved by using the
output embedding of the language model on the
entity type words. In this paper, we define the loss
of implicit structured constraints Lstruct as follows:

Lstruct = − log σ(γ − dr(s, o))

−
n∑

i=1

1

n
log σ(dr(s

′
i, o

′
i)− γ)

(5)

dr(s, o) = ||s + r− o||2 (6)

where (s′i, r, o
′
i) is the negative sample and γ is the

margin. σ is the sigmoid function and dr is the scor-
ing function. This paper assigns the correct type
of relation for negative sampling at the [MASK]
position. Negative samples are constructed by ran-
domly sampling subject or object entities to form un-
related triples, where entities are impossible types
for the current relation.

4.2. Global Relation Graph Module

In this section, this paper proposes to construct a
global relation graph to optimize the feature repre-
sentation of samples between different relations.
More supervised signals are mined from the train-
ing samples by constructing a global relation graph,
which can improve the effectiveness of prompt-
based tuning.

4.2.1. Construction of Global Relation Graph

Consider a batch S = {(xi, ri)}Ni=1 containing N
randomly sampled pairs of labels. Its index is kept
at I = {1, · · · , N}. More information is developed
by building a global relation graph of the sample
information. Let G = {V,E} denote the relation
graph between N training samples in S, where V
is the set of nodes. Each node vi ∈ V corresponds
to a training sample xi, and E = {eij} is the set
of edges between the N training samples. If a
node vi and another node vj belong to the same
relation class, an edge eij is created between them.
Specifically, eij is set as:

eij =

{
1 rj = ri
0 otherwise

(7)

4.2.2. Loss of Global Relation Graph Module

On a global relation graph G of a batch S, this paper
converts this task into a link prediction problem.
That is, connecting nodes with the same relation
and disconnecting nodes with different relations. In
this paper, we obtain the relation prediction r̂i for
vi (corresponding to xi) by using equation 1.

In this paper, r̂i and r̂j are established between
vi and vj based on the correlation of êij :

êij = g (r̂i, r̂j) (8)

where r̂i and r̂j are calculated from equation 1.
g(·, ·) is the computed cosine similarity. In order
to measure the loss of link prediction, the loss of
LLink is designed in this paper as:

LLink = −
∑
i∈I

∑
j∈A(i)

eij log (êij)

+ (1− eij) log (1− êij)

(9)

where
A(i) = {j ∈ I and i ̸= j} (10)

4.3. Local Relation Subgraph Module
Based on constructing a global relation graph, this
paper further optimizes the features of samples
within the same relation by constructing a local
relation subgraph.
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4.3.1. Construction of Local Relation
Subgraph

In a global relation graph G = (V,E) containing
a set of relation classes R and a set of labeled
nodes D = {(v1, l1), (v2, l2), · · · }, where vi ∈ V
and the corresponding labels of vi are li. When
the k − shot setting is used in this paper, for each
relation r ∈ R, there are exactly k pairs (vi, li =
r) ∈ D. A local relation subgraph is further formed
for each relation r ∈ R. The local relation subgraph
is then converted to an average representation of
the current relation class. The current relation is
represented by the vector S̃r, which is computed
as shown below:

S̃r =
1

k

∑
(vi,ℓi)∈D,ℓi=r

pti ⊙ hvi (11)

where hvi denotes the feature vector of node
vi and pt denotes the learnable prompt vector.
More recently, this paper abstracts this step into
a READOUT operation to aggregate node repre-
sentations in subgraphs, and a prompt-assisted
READOUT operation on a local relation subgraph
is shown below:

Sx = READOUT ({pt ⊙ hv : v ∈ Vx}) (12)

where Sx is the feature representation of the local
relation subgraph x. ⊙ denotes the element mul-
tiplication and Vx denotes the set of nodes in the
subgraph x. Specifically, in this paper, the node rep-
resentations in the subgraph are feature-weighted
and summed, where the prompt vector pt is dimen-
sionally re-weighted in order to extract the most
relevant a priori knowledge for the relation extrac-
tion task.

There are two points to be made about this part
of the paper. First, the choice of READOUT ag-
gregation scheme is flexible, including sum pooling
and more advanced techniques. In the implementa-
tion of this paper, sum pooling is used. Second, this
paper uses learnable prompt vectors pt instead of
language-based prompts. The main reason is that
the present prompts are designed for graph struc-
tures. Thus, they are more abstract and cannot be
language-based instructions. Instead, they should
be topology-related and aligned with the core of
graph learning. In particular, the critical properties
may differ for different relation classes in the task.

After obtaining the average representation S̃r of
the local relation subgraphs, given a node vj that
is not in the labeled set D, its class label lj can be
represented as:

ℓj = argmax
r∈R

sim
(
Svj , S̃r

)
(13)

Intuitively, a node should belong to the relation
class most similar to the local relation subgraph.

4.3.2. Loss of Local Relation Subgraph
Modules

This paper formulates the loss based on subgraph
similarity to optimize the learnable prompt pt. In
the labeled training set for the relation extraction
task T = {(x1, y1), · · · , (xi, yi), · · · , (xn, yn)}. xi is
the training sample (i.e., node representation), and
yi ∈ R is the labeling of xi in the set of relation
classes R. The loss of prompt tuning Lprompt is
defined as:

Lprompt(pt) =

−
∑

(xi,yi)∈T

ln
exp(sim(Sxi

, S̃yi
)/k)∑

r∈R exp(sim(Sxi , S̃r)/k)

(14)

where the local relation subgraph aggregation fea-
ture for relation r is represented by S̃r, which is
also generated by the prompting aid READOUT .
The prompt tuning loss is only generated by the
learnable prompt vector pt. Since no fine-tuning
is required, this greatly reduces the number of pa-
rameters that need to be updated. Not only does
it improve the computational efficiency of learning
and inference, but it also reduces the dependence
on labeled data.

4.4. Joint Training

In this paper, a total of four types of losses are de-
fined in the joint training: the cross-entropy loss
LCE in relation type prediction, the structuring loss
Lstruct in the knowledge injection module, the link
prediction loss LLink in the global relation graph
module, and the learnable prompts loss Lprompt in
the local relation subgraphs. For LCE is obtained
using equation 2. For Lstruct calculated using equa-
tion 5. For LLink calculated using equation 9. For
Lprompt is calculated using equation 14. The to-
tal loss of the joint training is equal to the sum of
the four types of losses. The overall loss Loss is
calculated as follows:

Loss = LCE +αLstruct+βLLink+γLprompt (15)

where α, β and γ are the weight parameters be-
tween losses. This model is jointly trained by mini-
mizing Loss.

Table 2: Statistical results of dataset information
Dataset Train Val Test Rel
SemEval 6,507 1,493 2,717 19
TACRED 68,124 22,631 15,509 42
TACREV 68,124 22,631 15,509 42

Re-TACRED 58,465 19,584 13,418 40
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Table 3: Comparative results of models

Model TACRED TACREV Re-TACRED SemEval
K=8 K=16 K=32 K=8 K=16 K=32 K=8 K=16 K=32 K=8 K=16 K=32

Fi
ne

-tu
ni

ng

SpanBERT
(Joshi et al., 2020) 8.4 17.5 17.9 5.2 5.7 18.6 14.2 29.3 43.9 - - -

LUKE
(Yamada et al., 2020) 9.5 21.5 28.7 9.8 22.0 29.3 14.1 37.5 52.3 - - -

GDPNet
(Xue et al., 2021) 11.8 22.5 28.8 8.3 20.8 28.1 18.8 48.0 54.8 42.0 67.5 81.2

TANL
(Paolini et al., 2021) 18.1 27.6 32.1 18.6 28.8 32.2 26.7 50.4 59.2 - - -

Pr
om

pt
-tu

ni
ng

TYP Marker
(Zhou and Chen, 2021) 28.9 32.0 32.4 27.6 31.2 32.0 44.8 54.1 60.0 - - -

PTR
(Han et al., 2022) 28.1 30.7 32.1 28.7 31.4 32.4 51.5 56.2 62.1 70.5 81.3 84.2

KnowPrompt
(Chen et al., 2022) 32.0 35.4 36.5 32.1 33.1 34.7 55.3 63.3 65.0 74.3 82.9 84.8

ours 32.7 36.5 39.2 33.9 36.3 38.1 58.8 64.4 66.3 79.0 83.0 84.6

Table 4: Ablation study results

Model TACRED TACREV
K=8 K=16 K=32 K=8 K=16 K=32

ours 32.7 36.5 39.2 33.9 36.3 38.1
-global relation graph 31.9 36.0 36.2 32.8 35.1 36.6

-local relation subgraph 32.2 36.1 36.4 32.2 35.4 36.7
-knowledge injection 32.4 35.8 35.3 32.4 35.5 37.9

5. Experiment

This paper evaluates the validity of the methodol-
ogy on four datasets. The method is compared
with state-of-the-art baseline models, and further
experiments and analyses are conducted on the
essential components of the model.

5.1. Dataset
In this paper, experiments are conducted on four
widely used public datasets, SemEval 2010 Task 8
(SemEval)(Hendrickx et al., 2019), TACRED(Zhang
et al., 2017), TACREV(Alt et al., 2020) and Re-
TACRED(Stoica et al., 2021). Table 2 lists the de-
tails of each dataset.

5.2. Baseline Comparison
Table 3 reports the experimental results of the dif-
ferent models on the four datasets. In this paper,
all models are classified into two categories: one is
fine-tuning-based, and the other is prompt-based.
This paper sets each dataset up as three different
low-resource scenarios for separate experiments.
Specifically, it includes the scenario with sample
size K=8, the scenario with sample size K=16 and

the scenario with sample size K=32. The results
show that the proposed method performs well on
all four datasets, which indicates that the proposed
method is effective.

This paper finds that the present model performs
better by comparing it with recent work. Specifically,
the present model outperforms the baseline model
in both the fine-tuning-based and prompt-based
approaches. Furthermore, the present model per-
forms well in very low-resource scenarios with four
datasets.

5.3. Ablation Study
In order to validate the effectiveness of the main
components in the model, this paper conducts abla-
tion studies on two publicly available datasets. The
effects of different components on the model perfor-
mance are compared by removing one component
at a time, and the results of the ablation studies are
shown in Table 4.

In this paper, a total of three types of abla-
tion studies are conducted on two public datasets,
namely: removing the global relation graph mod-
ule (-global relation graph), removing the local re-
lation subgraph module (-local relation subgraph)
and removing the knowledge injection module (-
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(a) Results of feature visualization af-
ter adding knowledge injection

(b) Results of feature visualization af-
ter adding global relation graph

(c) Results of feature visualization af-
ter adding local relation subgraphs

Figure 3: Results of the visualization of the features at each stage

(a) Feature visualization results for
KnowPrompt with K=8

(b) Feature visualization results for
KnowPrompt with K=16

(c) Feature visualization results for
KnowPrompt with K=32

(d) Feature visualization results of our
model for K=8

(e) Feature visualization results of our
model for K=16

(f) Feature visualization results of our
model for K=32

Figure 4: Results of feature visualization comparison between our model and KnowPrompt

knowledge injection). The experimental results
show that the model’s performance is degraded
to varying degrees when the essential components
are removed. This shows that the critical compo-
nents in this paper are effective.

5.4. Feature Visualization and Analysis

In order to visualize the changes in feature distri-
bution more intuitively, this paper uses t-SNE on
the Re-TACRED dataset to map the feature distri-
bution in two-dimensional space. Firstly, this paper
performs feature visualization at various stages of
the model to verify the validity of the components.
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Second, this paper compares with a similar method,
KnowPrompt.

5.4.1. Visualization of Features at Each Stage
of the Model

In order to verify the validity of each component
in the model, this paper visualizes the features at
each stage of the model. The distribution of fea-
tures at each stage is shown in Fig. 3. Among
them, Fig. 3(a) represents the feature visualization
results after adding knowledge injection, Fig. 3(b)
represents the feature visualization results after
adding a global relation graph based on knowledge
injection, and Fig. 3(c) represents the feature visu-
alization results after adding local relation subgraph
based on global relation graph.

As shown in Fig. 3(a), the features have pro-
duced a more obvious aggregation phenomenon
after introducing knowledge injection based on
prompt-tuning. However, the distance between
different relations is close, and the distribution of
features within the same relation is loose. This
may lead to misclassification when the relations
are finally judged. From Fig. 3(b), which intro-
duces the global relation graph, it can be seen that
the distance between different relations becomes
farther. As can be seen in Fig. 3(c), which intro-
duces the local relation subgraph, the distribution
of features within the same relation also becomes
more clustered. However, when the relations are
more similar (e.g., blue relation and red relation),
the model still cannot distinguish them well. t-SNE
visualization also indirectly proves the validity of
the present model.

5.4.2. Comparison of Model Visualizations
Under Different Conditions

Since the KnowPrompt method is more similar to
the one in this paper, a detailed comparison is
made. In this paper, the feature visualization re-
sults of the two methods are set for K=8, K=16 and
K=32, respectively. The visualization results of the
two methods under different settings are shown
in Fig. 4. Among them, Fig. 4(a), Fig. 4(b) and
Fig. 4(c) represent the feature visualization results
of the KnowPrompt method under three settings.
Fig. 4(d), Fig. 4(e) and Fig. 4(f) represent the
feature visualization results of our method under
three settings.

The results show that this method exhibits better
aggregation than the KnowPrompt method for K=8
and K=16. This is due to the constraints of the
global relation graph and local relation subgraph
optimizing the representation of features. Whereas
at K=32, both methods show better performance
with little difference in results. This is because
the number of samples for each type of relation

has reached 32, and both methods have enough
sample size to learn a better feature representation.

6. Conclusion

This paper proposes prompt tuning for few-shot
relation extraction via modeling global and local
graphs. The method constructs a global relation
graph based on the labeling consistency between
samples, thus optimizing the feature representa-
tion of samples between different relations. The
global relation graph is then further divided to form
local relation subgraphs, thus optimizing the feature
representations of samples within the same rela-
tion. This fully uses the limited supervised informa-
tion and improves the tuning efficiency. This paper
validates the method’s effectiveness on four pub-
licly available datasets. The results show that the
proposed model performs better in low-resource
scenarios than existing methods.
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