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Abstract 
Polymers are widely used in diverse fields, and the demand for efficient methods to extract and organize information about 
them is increasing. An automated approach that utilizes machine learning can accurately extract relevant information from 
scientific papers, providing a promising solution for automating information extraction using annotated training data. In this 
paper, we introduce a polymer-relevant ontology featuring crucial entities and relations to enhance information extraction in 
the polymer science field. Our ontology is customizable to adapt to specific research needs. We present PolyNERE, a high-
quality named entity recognition (NER) and relation extraction (RE) corpus comprising 750 polymer abstracts annotated 
using our ontology. Distinctive features of PolyNERE include multiple entity types, relation categories, support for various 
NER settings, and the ability to assert entities and relations at different levels. PolyNERE also facilitates reasoning in the 
RE task through supporting evidence. While our experiments with recent advanced methods achieved promising results, 
challenges persist in adapting NER and RE from abstracts to full-text paragraphs. This emphasizes the need for robust 
information extraction systems in the polymer domain, making our corpus a valuable benchmark for future developments. 
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1. Introduction 
With the increasing use of polymers in various fields, 
there is a growing need for efficient methods to collect 
and organize information about them. One important 
source of information about polymers is scientific 
papers in the materials domain. These papers contain 
information about newly introduced polymers' 
properties, synthesis methods, etc. However, tracking 
relevant information about polymer entities can be 
challenging due to the vast amount of data. 
Recent advancements in natural language 
processing (NLP) and machine learning have enabled 
the development of automated methods for extracting 
information from scientific papers. A named entity 
recognition (NER) and relation extraction (RE) system 
can be used to automatically recognize important 
terms (entities) or groups of terms/expressions that 
align with specific categories in the data (NER), and it 
can extract relationships between these entities (RE).  
In the context of polymer research, automated 
methods can extract new polymer-relevant names, 
property names and values of existing materials and 
other useful information from scientific papers, thus 
reducing the effort of manual extraction. As a practical 
application, the extracted data can be used to 
enhance polymer databases such as PoLyInfo1 
(Otsuka et al, 2011), which currently depends on 
manual updates by human experts. 
Nonetheless, the development of NER and RE 
systems is applicable if manually annotated corpora 
are available. These corpora allow for training and 
evaluating NER and RE models. In addition, one of 
the main challenges in using machine learning for 
information extraction in polymer science is the 
complex and diverse language used to describe 

 
1 https://polymer.nims.go.jp/ 
2 See Appendix A for the challenges of the polymer science 
domain. 

polymer entities and their properties. For example, 
polymers can be referred to by different names or 
abbreviations, and properties can be described using 
a range of terminology2. This complexity makes it 
difficult for automated methods to accurately extract 
information. To address these challenges and 
accelerate the research in polymer science, there is 
an urgent need for a substantial, high-quality 
manually annotated dataset that encompasses rich 
information, covering not only polymers but also 
essential related entities and their relationships. 
In our study, we aim to develop a corpus that 
confronts the gap in information extraction from 
polymer science literature. Specifically, our focus is 
on simultaneous extraction of entities (polymers and 
relevant materials), relations (involving associations 
between materials and their corresponding property 
names and values, etc.) and other supporting 
relations (including abbreviations and coreference). 
Our contributions are as follows. First, we present 
an ontology comprising key polymer-related entities 
and relationships, emphasizing fundamental 
concepts in the polymer domain, while also enabling 
a focus on specific entities and relations of interest3. 
This ontology's flexibility enables customization to 
improve information extraction systems within the 
field of polymers.  
We have developed PolyNERE, a newly created and 
high-quality corpus for NER and RE. It consists of 750 
polymer paper abstracts with text sources closely 
matching the PolymerAbstracts corpus (Shetty et al. 
2023). Each includes raw text and DOI information, 
annotated as per our ontology. 
Our corpus possesses several distinctive features: (i) 
fourteen types of entities and eight types of relations,  

3 This ontology differs from the PoLyInfo ontology and 
conceptual schema (https://doi.org/10.48505/nims.4413), 
which aims to systematize polymer chemistry. 
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allowing for the effective handling of intricate 
contextual scenarios, particularly with the inclusion of  
special relations. (ii) Various settings for NER, 
encompassing flat, overlapped, and discontinuous 
mentions. (iii) Annotated entities and relations can be 
asserted at the sentence- or document-level. (iv) It 
provides reasoning capabilities for the RE task 
through supporting evidence derived from our two 
supporting relations. We expect that the corpus will 
serve as a benchmark for advancing information 
extraction in the polymer domain. We plan to release 
our corpus to the research community. 
To assess the challenges of PolyNERE, we adopt a 
variety of recent advanced NER and RE methods 
under various settings. The experiments show that, 
despite promising results in extracting our target 
entities and relations, there is considerable room for 
improvement in general-purpose NER and RE 
systems. Additionally, our error analysis in extracting 
N-ary relation tuples, especially in unseen material 
paragraphs, highlights the challenges faced in 
adapting NER and RE systems from abstracts to full-
text paragraphs, emphasizing the need for robust 
information extraction systems in the polymer domain. 

2. Polymer Corpus Construction 
Our goal is to construct a polymer corpus for abstract-
level named entity recognition (NER) and relation 
extraction (RE) from plain text, featuring high-quality 
annotations and rich information content. The dataset 
captures essential information about polymer-related 
entities and their relations frequently found in polymer 
and materials abstracts. 
2.1 Data Source 
To construct our corpus, we start with the collected 
abstracts in the PolymerAbstracts corpus (Shetty et 
al., 2023). The texts were obtained from APIs and 
websites of publishers such as Elsevier, Wiley, etc. 
750 abstracts from this corpus were annotated and 
utilized to train NER models. Unlike some other 
studies, Shetty et al. (2023) did not employ the BIO 
tagging scheme, which denotes the Beginning-Inside-
Outside of the labeled entity. Instead, a simpler IO 
labeling approach was employed where only tokens 
belonging to target entities are annotated while all 
other tokens are labeled as "OTHER". Consequently, 
only flat entity mentions can be annotated. In addition, 

Entity Type Definition Example 
POLYMER Material entities that are polymers “Sulfonated poly(phthalazinone ether 

ketone nitrile)”, “polyethylene” 
POLYMER_FAMILY Material entities that refer to a class of polymers “bio-polyimides”, “PIs”, “epoxy”, 

“poly(amic acid)s”, “polyanhydride” 
PROP_NAME Entity type which indicates a specific material property “ion conductivity”, “power density”, 

“glass transition temperature” 
PROP_VALUE Entity type which includes a numeric value and its unit 

for a specific material property 
“9400 g/mol”, “less than 16 wt%”, “> 
100,000 g/mol” 

MONOMER Material entities which are explicitly indicated as being 
the repeat units for a POLYMER entity 

“N-isopropylacrylamide”, “4,4′-
bisphenol” 

ORGANIC Material entities that are organic but not polymers “hydroxy urea”, “divinyl benzene”, 
“maleic acid”, “PFSA” 

INORGANIC Material entities which are inorganic and are typically 
used as additives in a polymer formulation 

“Ag”, “indium(III) oxide”, “In2O3” 

MATERIAL_AMOUNT Entity type which indicates the amount of a particular 
material in a material formulation 

“90%”, “5 wt.%”, “10 mass%” 

COMPOSITE A material formed by combining two or more distinct 
components to achieve improved properties not 
present in the individual constituents 

“TiO2-DA-PEI”, “GO/PVA”, 
“PVdF:PEMA” 

OTHER_MATERIAL Materials entities that do not fall under the specific 
entity types mentioned above. They can be described 
without chemical specificity, or can indicate other 
materials besides existing entity types, including 
mixtures, etc. 

“anion exchange membranes”, 
“ethanol/water”, “porous film” 

CONDITION A condition in which the value of the property is 
measured 

“at 50°C”, “using air O2”, “between 15 
and 60°C”, “with increasing Mn” 

SYN_METHOD Any technique for synthesising a material “ring-opening polymerization”, “radical 
terpolymerization” 

CHAR_METHOD Any method used to characterize a material “dynamic light scattering”, “Neutron 
transmission measurements” 

REF_EXP Short for referring expression, i.e., a phrase which is 
usually used to refer to an entity in the previous 
context 

“They”, “this polymer”, “the 
resulting copolymers”, “the 
materials”, “Its” 

Table 1: Definitions of annotated entity types according to our ontology 
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annotations were supplied for abstract texts that were 
tokenized. This may impact the performance of 
automated NER systems. 
Initially, these collected data were meant to recognize 
named entities. However, in this work, we use them 
for the purpose of developing a NER and RE corpus. 
The annotations in our dataset are derived from 
manually collected raw texts, drawing from similar 
sources found in PolymerAbstracts. Each raw 
abstract contains DOI information, potentially aiding 
in alignment with other components of papers, such 
as full texts, titles, tables, etc. Moreover, our raw text 
version closely aligns with the original abstract texts. 
For instance, in terms of property values, we use "0.2 
cm3 m-2·day-1" as the text, instead of "0.2 cm^{3 } 
m^{- 2}*day^{-1 }" in PolymerAbstracts. 
2.2 Entity Annotations 
Our dataset provides annotations for various types of 
polymer-relevant materials, which were categorized 
primarily based on their usefulness for downstream 
polymer science tasks. We define a total of fourteen 
(14) entity types, which are detailed in Table 1. 
We retained similar entities such as POLYMER, 
POLYMER_FAMILY, MONOMER, ORGANIC, 
INORGANIC, and MATERIAL_AMOUNT as defined 
in (Shetty et al., 2023). However, we made slight 
adjustments to the definitions of PROP_NAME and 
PROP_VALUE to focus on specific property details. 
Additionally, we developed an entity ontology 
containing concepts relevant to polymers. Our 
ontology incorporates other novel entity types, 
namely COMPOSITE, OTHER_MATERIAL,  
CONDITION, SYN_METHOD, CHAR_METHOD, and 
REF_EXP. 
Figure 1 shows an example of entity annotations 
highlighted and visualized with BRAT (Stenetorp et 
al., 2012) annotation tool. 
For a clearer understanding of the ontology of all 
entities, please refer to Figure 2, where entity types 
are highlighted in bold text. Wherever hierarchies of 
concepts are present (e.g., 
ORGANICàMONOMER), it is desirable to annotate 
the entity with the more specific type (i.e., 
MONOMER) unless it is unclear from the context. 
While our primary focus is on entities and relations 
related to polymers and their associated information, 

we also included entities like organic and inorganic, 
which are commonly found in composites or other 
material types. These additional entities play a crucial 
role in distinguishing polymers from other potentially 
confusing entities in the polymer domain. Moreover, 
our ontology can serve as a foundation for extending 
the development of general-purpose information 
extraction systems. 
For entity annotations, we focus on: (i) Annotate the 
most specific material mentions, e.g., the complete 
phrase “sulfonated poly(ether ether ketone)” should 
be preferred over “poly(ether ether ketone)” as it is 
more specific. (ii) Annotate minimum necessary text 
spans for an entity, i.e., without brackets, punctuation 
marks, etc. For example, for a PROP_VALUE 
(property value), we choose "120 °C" instead of "120 
°C." which contains a redundant '.' character, or for a 
PROP_NAME (property name), we choose "Tg" 
instead of "(Tg)" with a redundant pair of brackets. 
2.3 Relation Annotations 
In our ontology, MATERIAL_GROUP is defined as the 
group that contains the following material entities: 
POLYMER, POLYMER_FAMILY, MONOMER, 
ORGANIC, INORGANIC, COMPOSITE, and 
OTHER_MATERIAL. 
We define eight (8) relation types as illustrated in 
Figure 2: 

has_property: Indicates that the 
MATERIAL_GROUP entity possesses or exhibits the 
property described by the PROP_NAME entity. 

has_value: Describes the relation between a specific 
property name (PROP_NAME) and its corresponding 
property value (PROP_VALUE). 
When PROP_NAME is not present or lacks clarity in 
describing the association between the 
<PROP_NAME, PROP_VALUE> pair, it becomes 
essential to annotate the same relationship label 
‘has_value’ to the <MATERIAL_GROUP, 
PROP_VALUE> pair. 

has_amount: Indicates a relation between a 
MATERIAL_GROUP entity and a 
MATERIAL_AMOUNT entity, indicating the 
proportion or quantity of the material involved. 

Figure 1: Annotation sample 
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has_condition: Captures a relation between a 
property value (PROP_VALUE) and a condition 
(CONDITION). A single property value may have 
multiple conditions. 
When PROP_VALUE is not present or lacks clarity in 
describing the association between the 
<PROP_VALUE, CONDITION> pair, it becomes 
essential to annotate the same relationship label 
‘has_condition’ to the <PROP_NAME, CONDITION> 
pair. 

synthesised_by: Indicates that the SYN_METHOD 
entity is the particular synthesis method used in the 
production of the MATERIAL_GROUP entity. 

characterized_by: Indicates that the 
CHAR_METHOD entity is a particular analytical 
method or test utilized to understand and describe the 
properties and characteristics of the 
MATERIAL_GROUP entity. 
When MATERIAL_GROUP is not present or lacks 
clarity in describing the association between the 
<MATERIAL_GROUP, CHAR_METHOD> pair, it 
becomes essential to annotate the same relationship 
label ‘characterized_by’ to the <PROP_NAME, 
CHAR_METHOD> pair. 

abbreviation_of: Indicates a relation between two 
terms, where one term is an abbreviation or acronym 
of the other term. Abbreviation pairs are applicable 
not only to MATERIAL_GROUP entities, but also to 
PROP_NAME, SYN_METHOD and 
CHAR_METHOD. 

refers_to: Indicates a relation between two terms that 
refer to the same entity or concept in a text. Our aim 
is to minimize the distance between two arguments 
involved in this relation. Consequently, the 'refers_to' 
relation is most desirable when connecting the closest 
entity mentions. The key objective is to establish 
connections between the most prominent REF_EXP 
mentions, both within and across sentences, to offer 
detailed insights into coreference. 

The initial six relations in our corpus capture 
fundamental connections between the entities, 
typically within the sentence level. In contrast, the 
'abbreviation_of' and 'refers_to' relations provide 
reasoning abilities to the RE task by offering 
supporting evidence across multiple sentences. 
Figure 1 illustrates relation annotations that have 
been visualized using the BRAT tool, relying on the 
previously introduced entity ontology. 
For relation annotations, we focus on: (i) Properly 
annotate the relation pairs with their corresponding 
directions. (ii) annotated relations which are explicitly 
mentioned in the text. (iii) three (3) special cases 
when the context is either unclear or missing. For 
accurate depictions of relationship directions and 
special relations (i.e., ‘has_value’, ‘has_condition’ and 
‘characterized_by’), please refer to Figure 2. 
2.4 Annotation Process 
In this section, we elaborate on our thorough 
annotation process, following the new annotation 
assumption and guided by our entity and relation 
ontology, thus establishing PolyNERE as a novel and 
unique corpus when compared to existing corpora. 
The annotation was carried out using the BRAT tool 
(Stenetorp et al., 2012) which allows for annotating 
flat, overlapped, and discontinuous mentions. For 
instance, to annotate for discontinuous entities in the 
following sentence “Photoluminescence maxima of 
P1, P2 and P3 films are 564, 559 and 558 nm, 
respectively.”, three property values are annotated: 
“564 nm”, “559 nm” and “558 nm”. 
Our PolyNERE corpus consists of 750 polymer 
relevant abstracts, each accompanied by its raw text 
and DOI information. A single annotator labeled all the 
entities and relations to ensure maximal coherence in 
the entity-relation schema. This approach was also 
used in annotating widely used datasets like 
Matscholar (Weston et al., 2019). 
Our annotation process, consisting of three main 
rounds, is described as follows: 

ENTITY

POLYMER_
GROUP

PROP_
NAME

POLYMER

POLYMER_
FAMILY

PROP_
VALUE

MATERIAL_
GROUP

MATERIAL_
AMOUNT

MONOMER

INORGANIC

ORGANIC

CONDITION
OTHER_
MATERIAL

CHAR_
METHOD

COMPOSITE

SYN_METHOD

REF_EXP

MATERIAL
_GROUP

| REF_EXP
PROP_NAME

PROP_VALUEMATERIAL_
AMOUNT

CONDITION

CHAR_
METHOD

has_value

has_condition

has_amount

characterized_by3

MATERIAL_GROUP
| PROP_NAME 

| SYN_METHOD
| CHAR_METHOD

abbreviation_of

REF_EXP
refers_to

has_property

MATERIAL_GROUP
| PROP_NAME 

| SYN_METHOD
| CHAR_METHOD

characterized_by

(1) When PROP_NAME is missing or unclear
(2) When PROP_VALUE is missing or unclear
(3) When MATERIAL_GROUP is missing or unclear

has_value1 has_condition2

SYN_
METHOD

synthesised_by

MATERIAL_GROUP
| PROP_NAME 

| SYN_METHOD
| CHAR_METHOD | REF_EXP

Figure 2: Left: Ontology of entities separates types by their definitions; monomers are organic; polymers can 
be inorganic or organic; Right: Illustration of material entity relationships 
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Table 2: Corpus statistics 
 1st round: In the first round, we annotate entities 
such as POLYMER, POLYMER_FAMILY, 
MONOMER, ORGANIC, INORGANIC, and 
MATERIAL_AMOUNT by referencing the 
PolymerAbstracts corpus (Shetty et al., 2023). Our 
aim is to enhance the accuracy of annotations by 
adding, removing, or modifying inconsistent 
mentions. We also annotate PROP_NAME and 
PROP_VALUE according to our definitions and 
requirements for more precise mentions, including 
phrases like 'around', 'higher than', etc. Our focus 
extends to more specific property names and values. 
Under our new annotation assumption, we have 
expanded the scope of material entities. Previously, 
only material entities explicitly linked to a 
<PROP_NAME, PROP_VALUE> pair in the abstract 
were labeled (Shetty et al., 2023). However, 
recognizing the potential impact on NER and RE  
models, we aim to include as many entity mentions 
and their relations as possible within our coverage. 
Subsequently, we manually check and add missing 
annotations in 750 abstracts. Our relation schema 
captures detailed information about the relationships 
between polymer-related entities. 
Following the annotation of the eight (8) 
aforementioned entity types, we observe that 44.07% 

of mentions in the PolymerAbstracts corpus have 
been altered in our PolyNERE corpus, signifying a 
substantial degree of modification. 
Furthermore, we carry out annotations for the six (6) 
new entity types incorporated into our ontology. 
2nd round: In the second round, our emphasis is on 
annotating eight (8) types of relations, along with 
three (3) special relations designed to handle complex 
and varied contexts (e.g., coordination structures) 
used to describe entities relevant to polymers and 
their relationships. 
3rd round: In the third round, we conduct a re-check 
to ensure data consistency. This includes addressing 
issues such as overly generic entity mentions and the 
removal of certain relation pairs which involve those 
entities. 
Also, in each round, the refined annotation guidelines 
and consistent annotations are enhanced through 
ongoing discussions between the annotator and a 
polymer expert. The annotator seeks guidance from 
the polymer expert when necessary, with revisions 
are primarily retained as the final version after the 
third round. 

3. Corpus Statistics 
Our PolyNERE corpus consists of a total of 750 
abstracts, divided into three sets: 637 for training, 38 
for development, and 75 for testing. The maximum 
number of entities and relations per abstract is 76 and 
79, respectively. 
Table 2 displays the statistics for our corpus, 
presenting details about the annotation type, and the 
number of annotations across various categories 
within PolyNERE. Overall, our PolyNERE corpus 
provides a rich source of information for training and 
evaluating models in the field of polymer science, 
particularly for tasks related to NER and RE. 
PolyNERE contains 18,930 entity mentions, which is 
1.74 times higher than the number found in 
PolymerAbstracts corpus. There are 2,148 
overlapped entity mentions, constituting 11.35% of all 
entity mentions. The number of discontinuous entity 
mentions is 269, representing 1.42% of all mentions. 
While the proportion of discontinuous mentions is 
relatively low, it is worth noting that crucial entities 
associated with property information such as 
PROP_VALUE and PROP_NAME still include such 
mentions. 
Moreover, the total count of relation pairs is 11,471, 
and to the best of our knowledge, none of the prior 
works in polymer research have incorporated such a 
large number of relation annotations. 
To assess the quality of the corpus, we randomly 
selected 10 polymer abstracts from the test set, in 
which only the annotator was involved in all 
annotation rounds. We then compare the annotator's 
annotations with the corresponding annotations 
provided by a polymer expert. The true positives (tp), 
false positives (fp), and false negatives (fn) were 
determined to be 287, 8, and 85, respectively. Using 
these annotation statistics, we computed the 
precision, recall, and F1 scores, resulting in the 
following scores: P=97.29%, R=77.15%, and 

#abstracts 750 
#sentences/abstract 15.25 
#tokens/sentence 11.87 
#entities/abstract 25.24 
#relations/abstract 15.29 
Overlapped entities 2,148 mentions 
Discontinuous entities 269 mentions 
ENTITY (14) Total: 18,930 mentions 
POLYMER 3,988 (577/750 abstracts) 
POLYMER_FAMILY 1,145 (308) 
PROP_NAME 3,823 (715) 
PROP_VALUE 1,815 (586) 
MONOMER 1,470 (311) 
ORGANIC 617 (158) 
INORGANIC 908 (202) 
MATERIAL_AMOUNT 485 (238) 
COMPOSITE 392 (171) 
OTHER_MATERIAL 175 (85) 
CONDITION 717 (351) 
SYN_METHOD 378 (231) 
CHAR_METHOD 1,747 (433) 
REF_EXP 1,270 (459) 
RELATION (8 +3 special) Total: 11,471 pairs 
has_property 3,447 (660/750 abstracts) 
has_value 1,879 (581) 
has_amount 349 (185) 
has_condition 970 (345) 
synthesised_by 278 (193) 
characterized_by 1,343 (389) 
abbreviation_of 1,869 (617) 
refers_to 1,336 (458) 
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F1=86.06%. We achieved a Cohen's Kappa 
coefficient of 0.819. 

Table 3: Performance of NER models on test set 

4. Experiments 
4.1 Experimental Settings 
To assess the challenges of the PolyNERE corpus, 
we conducted experiments to show the performance 
of recent advanced NER and RE models. 
For NER, most entities could be inferred from the 
context within the same sentence. Therefore, we 
focused on performing sentence-level NER to identify 
all possible entities in a given abstract. Given the low 
ratio of discontinuous mentions (1.42%), we exclude 
them from the evaluation. Specifically, we only 
consider flat and overlapped mentions, while 
discontinuous ones are omitted. 
On the other hand, the identification of relationships 
between entities requires cross-sentence reasoning, 
which is equivalent to abstract-level or paragraph-
level relation extraction. 
Standard precision, recall and F-score metrics are 
reported for both NER and RE. Initially, the training 
and development sets are used for model 
development and parameter optimization, followed by 
the evaluation of a trained model on the test set 
consisting of 75 abstracts. 

4.2 NER Performance 
We use the following models as baselines: (1) 
Sequence labeling-based models: LinearedCRF 
(Strakova et al., 2019), Second-best (Shibuya and 
Hovy, 2020), (2) Span-based models: Biaffine (Yu et 
al., 2020), Pyramid (Wang et al., 2020), (3) MRC-
based model (Li et al., 2020), (4) Generation-based 
models: Seq2seq (Strakova et al., 2019), BARTNER 
(Yan et al., 2021). 
To ensure a fair comparison, we employ the BERT-
large encoder (Devlin et al., 2019) for all experiments 
and only BART-large (Lewis et al., 2020) for the 
BARTNER model. Our default optimizer is Adam 
(Kingma and Ba, 2015), supplemented with a linear 

warmup and linear decay learning rate schedule. Our 
experiments are conducted using a batch size of 8 
and run for a total of 30 training epochs. We follow 
similar settings for other hyperparameters, such as 
the learning rate, etc. in each baseline. 
Table 3 shows the evaluation of NER on the test set. 
The BARTNER model achieves the best performance 
on PolyNERE, achieving the highest recall (75.86) 
and F1 score (75.02) in comparison to other 
approaches. It outperforms the previous best F1 
score, represented by the Biaffine model, by a margin 
of 0.6%. The Biaffine model also achieved a highest 
precision of 78.37%. The MRC model obtains a lower 
F1 score on the PolyNERE dataset. In fact, the MRC 
model heavily relies on the definitions of entity types 
for constructing queries to extract semantic relations 
between entities. Further improvement in MRC 
model’s performance requires a thorough 
investigation of entity definitions. 
The experimental results demonstrate the 
advantages of generation-based and span-based 
methods over sequence labeling-based approaches 
on our PolyNERE corpus, with the highest F1 score 
reaching 75.02%. This aligns with recent 
developments in NER for material datasets, such as 
SC-CoMIcs (Yamaguchi et al., 2020). In the 
PolymerAbstracts corpus (Shetty et al., 2023), our 
best-performing NER system, utilizing the same 
BARTNER architecture, obtains an F1 score of 67.57 
for eight (8) entity types. This indicates the improved 
consistency and quality of our PolyNERE corpus. 

Table 4: NER performance across entity types 
Using the best trained model following the BARTNER 
method, we investigate the NER performance across 
entity types. The results are shown in Table 4. 
Due to our specific focus on the polymer science 
domain, we only showed scores for ten entity types 
primarily related to polymers. The F1 scores for 
POLYMER, PROP_NAME, and PROP_VALUE are 
81.91%, 82.72%, and 81.69%, respectively, 
demonstrating relatively strong performance for our 
primary entities of interest at this stage. However, the 
F1 score for recognizing POLYMER_FAMILY is 
64.35%, revealing challenges in classifying entity 
mentions as either POLYMER or 
POLYMER_FAMILY. 
Also, the BARTNER model performs worse for other 
entities like CONDITION and REF_EXP, potentially 

Type Method P R F1 

Sequence 
Labeling 

LinearedCRF 
(Strakova et 

al., 2019) 
75.93 69.79 72.73 

Second-best 
(Shibuya and 
Hovy, 2020) 

75.78 72.02 73.85 

Span-
based 

Biaffine (Yu et 
al., 2020) 78.37 70.86 74.42 
Pyramid 

(Wang et al., 
2020) 

73.50 71.43 72.45 

MRC-
based 

MRC (Li et al., 
2020) 77.52 68.78 72.89 

Generation-
based 

Seq2seq 
(Strakova et 

al., 2019) 
75.56 71.30 73.37 

BARTNER 
(Yan et al., 

2021) 
74.20 75.86 75.02 

Entity Type P R F1 
POLYMER 84.17 79.76 81.91 

POLYMER_FAMILY 59.68 69.81 64.35 
MATERIAL_GROUP 73.58 69.86 71.67 

PROP_NAME 83.25 82.19 82.72 
PROP_VALUE 78.91 84.67 81.69 

MATERIAL_AMOUNT 72.34 77.27 74.72 
CONDITION 53.52 46.91 50.00 

SYN_METHOD 64.58 86.11 73.81 
CHAR_METHOD 87.72 93.75 90.63 

REF_EXP 60.66 60.16 60.41 
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due to the diverse contextual expressions of these 
entity mentions and the difficulty in annotating them 
throughout the corpus. In the case of 
MATERIAL_GROUP, the F1 score of 71.67% 
suggests substantial potential for enhancement in 
NER systems. 

Table 5: Performance of RE models on test set 

4.3 RE Performance 
We use the following models as baselines: (1) ATLOP 
(Zhou et al., 2021), a document-level RE (DocRE) 
model which aggregates contextual information by 
the Transformer attentions and adopts an adaptive 
threshold for different entity pairs, (2) DocuNet (Zhang 
et al., 2021), which models DocRE as a semantic 
segmentation task. We use the implementations of 
baseline models and apply to our polymer data, and 
mostly follow the hyperparameters used in the 
baseline models. 
We define the RE task on our PolyNERE corpus as a 
DocRE problem, where the gold entities are given in 
advance. An entity can have multiple mentions within 
the abstract, and a relation between two entities (e1, 
e2) exists if it is expressed by any pair of their 
mentions. During the inference step, the target is to 
predict relations between all possible entity pairs. 
We also employ a rule-based approach to extract 
relations between two entity mentions and 
experimentally determined that the optimal distance 
between these mentions is within two sentences. The 
rule-based method is applied to six relations: 
has_property, has_value, has_amount, 
has_condition, synthesized_by, and 
characterized_by. The type constraints for each head 
and tail entity mention are derived from our proposed 
relation schema, as depicted in Figure 2. 
In the case of ATLOP and DocuNet models, we use 
three different encoders: BERT-base, BERT-large, 
and SciBERT (Beltagy et al., 2019), and then report 
the performance results for RE. We run each model 5 
times and use the deveulopment data to pick the best 
model. 

 
4 The DOIs of papers containing these 250 paragraphs will 
be made openly accessible. 

As shown in Table 5, when employing the BERT-base 
encoder, the results are quite comparable, with F1 
scores of 78.34 and 78.75 for ATLOP and DocuNet, 
respectively. However, for models based on BERT-
large, significantly better results are achieved, 
yielding an F1 score of 81.93% for ATLOP and 
84.98% for DocuNet, which is the highest score 
observed for the latter. On the contrary, using the 
SciBERT encoder reveals the opposite trend: ATLOP 
reaches the highest F1 score (85.63), while DocuNet 
obtains a lower score of 81.46, even falling below the 
performance of the same model based on BERT-
large. 
Moreover, the rule-based method achieved an F1 
score of 39.57%, while ATLOP and DocuNet 
significantly improved upon this, achieving an F1 
score of 85.63% and 84.98%, respectively. This 
represents a substantial enhancement in 
performance when transitioning from the rule-based 
approach to the automated DocRE methods such as 
ATLOP and DocuNet. 

4.4 Applications Involving Polymer 
Property Information Extraction  

To assess the practical applicability and robustness 
of our trained NER and RE models, we choose an 
additional set of 250 paragraphs from diverse material 
papers, primarily featuring the 'poly' prefix in their 
abstracts. They have been included in the papers 
under our licensing agreement with publishers, 
including Elsevier, the American Chemical Society, 
and others. We converted the XML files to plain text 
files using our processing script. These polymer 
paragraphs4 serve as the input for evaluating the 
performance of our top-performing NER and RE 
systems, as outlined in sections 4.2 and 4.3. 
More specifically, we employ the trained 
BARTNERBART-large model to identify entity mentions in 
each sentence of the input paragraph. These 
predicted entity mentions are then aggregated into the 
corresponding abstract. Subsequently, we utilize the 
trained ATLOPBERT-large model to extract relations 
between pairs of entities at the document level. We 
choose ATLOPBERT-large for the RE model to align with 
the BERT-large encoder utilized in most of our NER 
models. 
At the current stage of our research, our primary focus 
is on developing an end-to-end practical RE system, 
with a specific emphasis on the polymer entity and its 
associated property information. Therefore, based on 
the output of the ATLOP model, we retain only the 
following relations, 'has_property', 'has_value', and 
'refers_to', which involve four entity types, POLYMER, 
PROP_NAME, PROP_VALUE and REF_EXP. 
By utilizing the predicted entity mentions and relation 
pairs within each polymer paragraph, we can derive 
tuples related to polymer property information in the 
following format: t=<POLYMER | REF_EXP, 

Method Pre-trained 
Model P R F1 

Rule-
based - 31.77 52.46 39.57 

ATLOP 
(Zhou et 
al., 2021) 

BERT- 
base 77.60 79.10 78.34 

BERT- 
large 82.20 81.67 81.93 

SciBERT 82.44 89.07 85.63 

DocuNet 
(Zhang et 
al., 2021) 

BERT- 
base 80.74 76.85 78.75 

BERT- 
large 84.44 85.53 84.98 

SciBERT 83.96 79.10 81.46 
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PROP_NAME, PROP_VALUE1, PROP_VALUE2, 
…>. This is achieved by aggregating relation pairs 
that share common head or tail entities. 
Each tuple t can be regarded as an n-ary relation 
mention, with n>=3. Specifically, each tuple t 
comprises exactly one POLYMER entity (or one 
REF_EXP entity), one PROP_NAME entity, and at 
least one PROP_VALUE entity. 
A tuple, denoted as t = <POLYMER, PROP_NAME, 
PROP_VALUE1, PROP_VALUE2, …>, is deemed 
correctly extracted and receives a score of 1.0 if it 
accurately represents the true facts at the paragraph 
level. This entails the correct recognition of all entities 
within t, as well as the validation of the relations as 
true positives. If t takes the form t = <REF_EXP, 
PROP_NAME, PROP_VALUE1, PROP_VALUE2, 
…> and is correctly extracted, a score of 0.5 is 
assigned. In this scenario, the REF_EXP entity 
doesn't reference other entity mentions within the 
paragraph. Otherwise, a score of zero (0.0) is given. 
Then, we report the accuracy of all extracted tuples t. 
We conduct a manual evaluation to assess the 
accuracy of the extracted tuples, aiming to 
understand the difficulties encountered when 
transitioning NER and RE systems from abstracts to 
unseen paragraphs in full articles. In total, our NER 
and RE systems, trained on abstract texts, extracted 
69 tuples related to polymer property information from 
250 polymer paragraphs. Of these, 42 were deemed 
correct, resulting in an accuracy of 60.87%. 
Figure 3 shows sample predictions produced by our 
NER and RE system: (a) The system extracts 
correctly for the POLYMER mention and its 
associated property name and values, (b) The system 
is not able to determine the target POLYMER from 
REF_EXP, i.e., there is no connection from 'Its' to 
'polyamide', (c) The citation numbers are 
mispredicted as PROP_VALUE, therefore this tuple is 
regarded as incorrect, (d) Insufficient predictions for 
relation pairs, leading to not possible to infer the 
correct tuples. In addition, there are other situations 

that require reasoning from tables or figures or from 
other parts of the articles for accurate tuple extraction. 
All of the challenges outlined above point towards 
promising directions for our future work. This includes 
extending the dataset from abstracts to full 
paragraphs and enhancing the recognition of 
"REF_EXP" chains to better provide evidence and 
support reasoning about the target relations. 

5. Related Work 
5.1 Automatic Extraction of Entities and 

Relations 
Extracting relevant named entities and relations in 
polymer research can present difficulties due to the 
complex terminology used (such as distinguishing 
between monomers and organic compounds, or 
between polymer families and individual polymers), 
the complex structures involved in describing various 
properties, and the various data formats used (such 
as the use of IUPAC nomenclature for naming 
scientific polymers). Accurate analysis and extraction 
in this domain require a deep understanding of 
polymer science, chemistry, and materials science. 
The main categorization of existing NER methods 
includes labeling-based (Huang et al., 2015; Lample 
et al., 2016; Chiu and Nichols, 2016), span-based 
(Luan et al., 2019; Shen et al., 2021), and generation-
based (Strakova et al., 2019; Paolini et al., 2021; Yan 
et al., 2021) methods. Sequence labeling approaches 
are limited in handling nested entities with multiple 
labels. Span-level classification is more suitable for 
handling nested entities, but it may struggle with a 
high number of entities. Generative language model-
based approaches offer an alternative approach, 
treating NER tasks as entity span sequence 
generation problems. 
Typically, relation extraction models are used in a 
pipeline after entity prediction (Huang et al., 2021). 
Alternatively, a joint entity and relation extraction 
approach can also be employed (Giorgi et al., 2022; 
Lu et al., 2022). 

(a) Correct

(b) Partially correct; can't determine target POLYMER from REF_EXP

(c) Incorrect; PROP_VALUE contains citation numbers

(d) Incorrect; complex coordination structure

Figure 3: Examples of correct and incorrect predictions 
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5.2 Resources for NER and RE 
For applied domains, such as polymer science 
research, the availability of resources and datasets for 
identifying polymer names, relevant materials, and 
their relations is limited. As far as we know, there is 
no dataset that is solely focused on the recognition of 
named entities, extraction of relationships, and 
extraction of property data in scientific literature 
concerning polymers. 
The dataset by Mysore et al. (2019) has 230 labeled 
synthesis procedures for inorganic synthesis. 
Yamaguchi et al. (2020) annotated a corpus of 1,000 
abstracts about superconductive materials for NER 
purposes. O'Gorman et al. (2021) presented the 
largest NER dataset for materials science procedural 
text. Recently, Yang et al. (2022) released PcMSP, a 
corpus for entity and relation extraction from 
polycrystalline materials synthesis procedures. Shetty 
et al. (2023) annotated 750 polymer abstracts using 
their ontology for information extraction, which 
includes eight entity types but no entity relations. 

6. Conclusion 
In this study, we developed a novel ontology and a 
corpus that enables the simultaneous extraction of 
various entities and relations in the polymer science 
domain. PolyNERE presents several advantages, 
making it a reliable benchmark for related tasks. Our 
extensive experiments have achieved promising 
outcomes for both test abstracts and previously 
unseen paragraphs. Our future plans involve 
constructing a top-level ontology to enhance reuse 
and interoperability with related domains, and 
improving task performance across various settings to 
develop robust information extraction systems for the 
polymer domain. 
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A. Challenges of Polymer Science 
Domain 

Polymer science presents unique complexities that 
distinguish it from many other domains: 

- Diverse terminology: Polymers are characterized by 
multiple names and abbreviations, reflecting the 
diverse ways researchers refer to them based on 
structural features, synthesis methods, and other 
factors. Additionally, polymer science encompasses 
various forms, including homopolymers, copolymers, 
and polymer blends, further contributing to the 
complexity of the field. Furthermore, polymer science 
relies on specialized nomenclature systems, such as 
IUPAC (International Union of Pure and Applied 
Chemistry) recommendations for polymer names. 
This introduces an additional layer of complexity 
compared to more general naming conventions. As 
an illustration, consider the example from the 
PoLyInfo Database (Otsuka et al., 2011): while 
researchers commonly use the name ''nylon 5,11'' for 
a specific polymer, its corresponding IUPAC 
structure-based name is 'poly(iminopentane-1,5-
diyliminoundecanedioyl)!poly(iminopentamethylenei
minoundecanedioyl)', and its IUPAC source-based 
name is 'poly(pentamethylene undecanediamide)'. 

- Diverse properties: Polymers present a diverse 
range of properties, and the context used to describe 
these properties can vary in scientific papers. The 
inclusion of different units, scales, and 
representations introduces complexity both in 
developing a comprehensive ontology and in creating 
automatic information extraction systems. 

 


