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Abstract
The superior performance of supervised classification methods in the information extraction (IE) area heavily relies
on a large amount of gold standard data. Recent zero-shot classification methods converted the task to other NLP
tasks (e.g., textual entailment) and used off-the-shelf models of these NLP tasks to directly perform inference on the
test data without using a large amount of IE annotation data. A potentially valuable by-product of these methods
is the large-scale silver standard data, i.e., pseudo-labeled data by the off-the-shelf models of other NLP tasks.
However, there is no further investigation into the use of these data. In this paper, we propose a new framework,
Clean-LaVe, which aims to utilize silver standard data to enhance the zero-shot performance. Clean-LaVe includes
four phases: (1) Obtaining silver data; (2) Identifying relatively clean data from silver data; (3) Finetuning the
off-the-shelf model using clean data; (4) Inference on the test data. The experimental results show that Clean-LaVe
can outperform the baseline by 5% and 6% on TACRED and Wiki80 dataset in the zero-shot relation classification
task, and by 3% ~7 % on Smile (Korean and Polish) in the zero-shot cross-lingual relation classification task, and by

8% on ACEO05-E+ in the zero-shot event argument classification task.
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1. Introduction

Information Extraction (IE) is a fundamental prob-
lem in natural language processing. The predomi-
nant approaches to solve IE tasks are supervised
methods (Shen et al., 2022; Zhu and Li, 2022;
Zhong and Chen, 2021; Lyu and Chen, 2021; Yang
et al., 2019; Lu et al., 2023a). Supervised meth-
ods require a large amount of gold standard data,
which restricts their applications to real-world sce-
narios where large-scale annotated data are not
available. Zero-shot methods (Lyu et al., 2021;
Sainz et al., 2021) have been proposed to allevi-
ate this issue. We focus on zero-shot classifica-
tion tasks in IE such as relation extraction (RE),
cross-lingual relation extraction, and event argu-
ment classification (EAC). Zero-shot (cross-lingual)
RE aims to identify the semantic relation between
two entities in unstructured texts without using any
annotated RE data (in the target language). Zero-
shot EAC aims to assign roles to argument spans
using any annotated EAC data.

Recent works (Sainz et al., 2021, 2022a,b; Lu
et al., 2022) attempt to convert the zero-shot RE
task and EAC task to other NLP tasks and used off-
the-shelf models of these tasks to infer the relation
types without using a large amount of RE or EAC
annotated data. Sainz et al. (2021) used a well-
trained textual entailment (TE) model to directly
infer relation types on the RE test data by convert-
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ing a RE task to a TE task. Their subsequent work
(Sainz et al., 2022a) also used a TE model to in-
fer argument roles on the test data by converting
an EAC task to a TE task. This series of work is
named LaVeEntail. SURE (Lu et al., 2022) formu-
lated a RE task to a summarization task, and used
a small amount of RE annotated data to finetune a
well-trained summarization model thus it can per-
form inference on the RE test data. We term the
TE model and summarization model in the above
methods as pre-trained models. The concept of
pretraining derives from transfer learning (Pan and
Yang, 2009). A model is first pre-trained on the
source task, i.e., textual entailment or summariza-
tion, and then finetuned on the target task, i.e.,
relation extraction and event argument classifica-
tion.

Since pre-trained models can directly infer the
categories of unlabeled data, they can serve as
low-cost annotators, producing large-scale silver
standard data. However, in the above works, silver
standard data are not well-exploited. The straight-
forward way to utilize them is to directly train a
supervised classifier on silver standard data. How-
ever, the performance is usually unsatisfactory due
to the noisy nature of silver standard data. Learn-
ing with noisy labels has been well studied in the
literature (Frénay and Verleysen, 2013; Algan and
Ulusoy, 2021; Han et al., 2020). One direction is to
develop noise-robust losses that can mitigate the
effect of noisy labels (Ghosh et al., 2017; Zhang
and Sabuncu, 2018; Charoenphakdee et al., 2019;
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Figure 1: The diagram shows the procedure of Clean-LaVe in the zero-shot relation extraction task. First,
we apply LaVeEntail on an unlabeled dataset, obtaining standard silver data. The clean data detection
module uses confidence scores to distinguish the clean and noisy samples. The selected clean data are
used to finetune the TE model. Finally, we use this TE model to infer relation types on the test set.

Kim et al., 2019; Lyu and Tsang, 2019; Menon
et al., 2020; Thulasidasan et al., 2019). Another
direction is to identify noisy data or clean data and
deal with them separately either by re-weighting
or converting to a semi-supervised learning task.
(Han et al., 2018; Jiang et al., 2018; Arazo et al.,
2019; Kim et al., 2019; Shu et al., 2019; Yao et al.,
2019; Li et al., 2020). The setting of traditional
noisy labels learning does not consider the exis-
tence of a pre-trained model. Is there a better way
to utilize silver standard data when a pre-trained
model is available? According to our best knowl-
edge, there is no further investigation on the use
of potentially valuable silver standard data when
there exists a pre-trained model.

In this paper, we propose a novel framework
called Clean-LaVe. The framework involves two
main steps: firstly, detecting a small subset of
clean data from the silver standard data using the
clean data detection module, and secondly, uti-
lizing the selected clean data to finetune the pre-
trained model. The overall procedure is illustrated
in Figure 1.

Within the clean data detection module, we in-
troduce a iteratively weighted negative learning
algorithm to obtain confidence scores that allow us
to distinguish clean data from noisy data. The orig-
inal negative learning algorithm (Kim et al., 2019)
only performs well when the dataset is balanced
(Huang et al., 2022b; Lu et al., 2023b). However,
in real-world scenarios, this assumption may not

hold. To address this issue, we introduce an iter-
ative weighting strategy to allow the algorithm to
handle an imbalance dataset.

To select clean data, confidence scores serve
as a straightforward metric (Kim et al., 2019). How-
ever, data from certain classes possibly have high
confidence scores while others yield low scores. In
such cases, selecting data solely based on con-
fidence scores may lead to a narrow range of
classes being selected, potentially harming overall
performance. To mitigate this issue, we develop a
class-aware data selector that enables the selec-
tion of data from a broader range of classes.

Clean-LaVe is a general framework that can
be used in scenarios where a pre-trained model
serves as an annotator. In our experiments, we
demonstrate the usability of Clean-LaVe in various
zero-shot classification tasks, such as zero-shot
RE, zero-shot cross-lingual RE, and zero-shot EAC.
For these aforementioned zero-shot tasks, we uti-
lize a TE model as the pre-trained model to acquire
silver standard data.

Our contributions are summarized as follows,

e We propose Clean-LaVe to first detect a small
amount of clean data which are later used to fine-
tune the pre-trained model. We then use the fine-
tuned model to infer the categories on the test
data.

e We propose a clean data detection module
that enhances the selection process through It-
eratively Weighted Negative Learning and Class-
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Aware Data Selector.

e The experimental results demonstrate that our
method can outperform the baseline by a large
margin on various zero-shot classification tasks.
The code is shared in https://github.com/ZeroNLP/
Clean_LaVe.

2. Related Work

Zero-shot Relation Extraction. In classical zero-
shot learning settings, the classes in the training
and test phases are disjoint. In the training phase,
it requires a large amount of annotated RE data
from seen classes. In the test phase, zero exam-
ple for each unseen relation type during the test
phase is needed. Recent works (Levy et al., 2017;
Obamuyide and Vlachos, 2018; Zhao et al., 2023)
formulated the zero-shot RE to other NLP tasks
such as reading comprehension (Levy et al., 2017;
Zhao et al., 2023) and textual entailment (Oba-
muyide and Vlachos, 2018).

However, the classical zero-shot setting still re-
quires a large amount of annotated data in the
training phase. Recent works (Goswami et al.,
2020; Sainz et al., 2021; Tran et al., 2021; Lu et al.,
2022; Rahimi and Surdeanu, 2023) push the zero-
shot setting to an extreme case where annotated
data is not available in the training phase. They ob-
tained supervision from other available resources
such as language models (Tran et al., 2021; Zhang
et al., 2023), relation descriptions, and off-the-shelf
models from other NLP tasks. QA4RE (Zhang
et al., 2023) aligns RE with question answering.
QAA4IE (Zhang et al., 2023) is the state-of-the-art
method in the zero-shot RE task, primarily owing to
the powerful capacity of Large Language Models.
In this paper, we focus on this extreme zero-shot
setting.

Zero-shot Cross-lingual Information Extraction.
Existing approaches to zero-shot cross-lingual In-
formation Extraction (IE) can be categorized into
three main types: translation-based (Lou et al.,,
2022), feature-based (Huang et al., 2022a; Ma
et al., 2023), and distillation-based methods (Wu
et al., 2020; Ma et al., 2022). However, all of these
methods require significant manual effort to ob-
tain labeled data for the source languages, which
could potentially be replaced by readily available
resources in the target language domain, such as
off-the-shelf TE models.

Zero-shot Event Argument Classification. Ex-
iting zero-shot event argument classification tasks
are based on label representations (Huang et al.,
2018; Zhang et al., 2021b), reading comprehen-
sion (Liu et al., 2020; Lyu et al., 2021; Mehta et al.,
2022), and pre-trained language models (Huang

et al., 2022a; Lin et al., 2023). Lin et al. (2023) is
the state-of-the-art zero-shot EAC method, which
prompts the pre-trained language models and reg-
ularizes the prediction by global constraints.

Learning with Noisy Labels. One direction of
learning with noisy labels is to develop noise-robust
loss. The widely-used cross entropy (CE) loss
in classification tasks has been shown to be not
robust against label noise (Ghosh et al., 2017).
Several noise-robust losses have been proposed
for training models with noisy labels (Reed et al.,
2015; Zhang and Sabuncu, 2018; Wang et al.,
2019; Ma et al., 2020; Menon et al., 2020; Jin et al.,
2021; Zhou and Chen, 2021), which were shown
to be more robust than CE. However, since current
deep networks have a large number of parameters,
these methods can still memorize the noisy labels
given sufficient training time (Zhang et al., 2017).
Another direction is to identify noisy data or clean
data and cope with them separately either by re-
weighting them or converting the problem to a
semi-supervised learning task. (Arpit et al., 2017;
Charoenphakdee et al., 2019) found out the mem-
orization effect which is stated as although deep
networks can memorize noise data, they tend to
learn simple patterns first. Based on the memoriza-
tion effect (Arpit et al., 2017; Zhang et al., 2021a),
many methods separate clean and noisy samples
by using loss value (Han et al., 2018; Jiang et al.,
2018; Arazo et al., 2019; Shu et al., 2019; Yao et al.,
2019; Li et al., 2020) or forgetting events (Malach
and Shalev-Shwartz, 2017; Yu et al., 2019). The
setting of traditional noisy labels learning does not
consider the existence of a pre-trained model.

3. Method

Due to the versatility of LaVeEntail (Sainz et al.,
2021, 2022a) across multiple tasks such as RE
and EAC, we employ LaVeEntail as the backbone
to obtain silver standard data. We will introduce the
LaVeEntail method in §3.1; the clean data detec-
tion module of Clean-LaVe in §3.2; the finetuning
and inference stage in Clean-LaVe in §3.3.

3.1. LaVeEntail

LaVeEntail (Sainz et al., 2021, 2022a) includes
two processes for relation extraction and event
argument extraction, i.e., label verbalization and
textual entailment model inference.

3.1.1. Label Verbalization

The label verbalization process creates templates
of classes (i.e., relation types and argument roles)
and then uses them to generate hypotheses. The
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templates can be easily created because rela-
tion labels and argument roles naturally impli-
cate such verbalization templates. For example,
the relation per: schools_attended can be ver-
balized as {subj} studied in {obj}, where
{subj} and {obj} are placeholders for subject
and objective entities. For example, giver can
be expressed as {arg} gave something to
someone, where {arg} is the placeholder for an
argument span.

3.1.2. Textual Entailment Model Inference

For each input sentence, LaVeEntail constructed
hypotheses that are generated by verbalization
templates of all relation types (or argument roles),
and fed them to a TE model, and obtained entail-
ment scores of all hypotheses. LaVeEntail inferred
that the predicted relation (or role) type of the input
sentence is the relation (or role) type whose hy-
pothesis yields the highest entailment score. Fig-
ure 1 shows the inference procedure of relation
extraction.

Entity type information is helpful to infer rela-
tion types (Tran et al., 2020). A relation naturally
indicates entity types of subject and object. For
instance, the relation per:city_of_death im-
plicates that the entity type of subject and object
should be PERSON and CITY respectively. In the
inference stage, when the entity type information
is given, we could rule out some relation types
that are impossible to be ground truth. LaVeEntalil
created entity type constraint(s) for each relation
according to the meaning of the relation. If the
entity types in the input sentence do not match
the entity type constraints of a relation, then the
entailment score(s) of all hypotheses related to this
relation is set to zero. In the case where there is
no relation between two entities, a threshold-based
approach is used to detect no_relation. If the
entailment scores of all hypotheses are less than
a threshold, the prediction is no_relation.

3.2. Clean Data Detection

The clean data detection module aims to select rel-
atively clean data for subsequent finetuning from
silver standard data annotated by LaVeEntail. To
alleviate the impact of imbalanced noisy data, we
introduce an iteratively weighted negative learn-
ing (IWNL) algorithm. Additionally, we employ a
class-aware data selector (CADS) to choose clean
samples from a boarder range of classes.

3.2.1. lteratively Weighted Negative Learning

Negative Learning (Kim et al., 2019) loss is ro-
bust to noise. Different from positive learning loss
(e.g., cross entropy loss) which tells the model

what is correct, the negative learning loss provides
the model with the complementary label(s), telling
what is not correct, e.g., the input image is not
a dog. The complementary label is randomly se-
lected from the label space excluding the input la-
bel (possibly noisy). For noisy data, the probability
of selecting the ground truth as the complementary
label is low. Hence, using negative learning loss
can decrease the risk of overfitting noisy labels.
The formula of NL loss is shown as follows,

1V

Acneg = - Z Z?f 10g(1 - pg)v (1)

deD i=1

where d is a sample in the dataset D, |)| is the
number of relation types, y¢ is a one-hot vector
with the complementary label being one, y¢ is the
i-th element of y¢, p? is the output probability dis-
tribution of a smaple d, and p¢ is the i-th element
of p?.

The original NL loss in equation (1) treats each
class equally, which may not be appropriate when
dealing with real-world datasets that exhibit se-
vere class imbalance. In these datasets, majority
classes often have a significantly higher number of
data samples compared to minority classes. Con-
sequently, the model encounters much fewer sam-
ples in the minority classes, leading to underfitting
(i.e., high loss values) during the training process.
It poses a challenge to distinguish between clean
and noisy samples in minority classes as they both
have high loss values. We propose a iteratively
weighted NL loss to alleviate this issue, giving more
weight on minority classes.

1Y
Lheg = =D > wl-yllogl—pf) (2
deD i=1
J—1
4 j—1 17?‘—1
w; = w] e 3)
Yl 0
0o _ k=1 k
w? = = (4)
where L7 represents the negative loss for j-th

neg
epoch, w] denotes the weight for class 7 in j-th
epoch, which is dynamically updated by prediction
in previous epoch according to equation (3). c{‘l
is the quantity of class i in j — 1 th epoch and ¢/;
is the average quantity across all classes in j — 1
th epoch. The quantity of class i is the number
of samples that are predicted as class . Initial
weight w? is computed according to labels of silver
data, as described in equation (4). According to
Eq. (4) and Eqg. (4), minority classes have more
weight. If the dataset is initially balanced, our IWNL
algorithm can degenerate to the original negative
learning algorithm.
Iterative weight can fix the problem that initial
weight may be wrong. Our silver dataset is noisy
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and is likely to give wrong weight in initial. Wrong
weight can degrade the performance of Clean-
LaVe. Iterative weight can make some correction
to wrong proportions in initial.

We use BERT (Devlin et al., 2019) as the rela-
tion classifier when using IWNL loss. Although it
is possible to train a TE model as a relation classi-
fier using IWNL loss, its performance falls short of
that of BERT-based classifier. After being trained
with IWNL loss, the classifier attempts to assign
high confidence scores to clean data while give
low confidence scores to noisy data. These con-
fidence scores can be leveraged for subsequent
data selection.

3.2.2. Class-Aware Data Selector

A straightforward approach to selecting clean data
is sorting all samples according to their confidence
scores and then selecting a fixed proportion n of
whole data as the clean data set. Given that S(D,)
is the total confidence scores of all samples in D,
and n is a hyperparameter representing selection
proportion, the clean data set D_,..., are selected
as follows,

S(Ds). (%)

However, it does not consider class diversity. Sam-
ples in some classes can yield very high confi-
dence scores while some classes have very low
confidence scores. Large quantities of samples in
those classes are selected in D,;.., While some
classes even do not have any clean data in D.cqn,
which harms performance badly.

We propose a class-aware data selection algo-
rithm that considers confidence scores as well as
class diversity. First, we select a proportion n of
data with high confidence scores. This step can
ensure that samples with low noise levels are se-
lected. Next, we select m more samples to encour-
age diversity. n is used to select high confidence
data and m is used to make supplement accord-
ing to label distribution. For each class, we select
some samples with high confidence scores in this
class. The number of selected samples for a class
is proportional to the number of samples that are
predicted as the class. The class-aware data se-
lection algorithm is presented in Algorithm 1.

The low confidence scores observed in certain
classes can be attributed to two factors: either they
are minority classes and suffer from underfitting, or
the samples in these classes are noisy. The class-
Aware data selector serves as a compensatory
mechanism to mitigate the impact of underfitting
in minority classes. However, class-aware data
selectors carry the risk of inadvertently noisy data.
This risk becomes even more pronounced when
the dataset is balanced, as evidenced by the ex-
perimental results in Table 2.

Dclean = arg maXDS:|DS |=n-|D

silve'r’l

Algorithm 1 Class-Aware Data Selector

Input: silver standard data set Dy;;,:-, proportion
7, diversity number m, the set of classes C, the
total confidence scores function S(-).

1 Dclean = g.

2: Obtain D_..,, using Eq. 5 by setting the pro-
portion to 7.

3: Drest = Dsilver - Dcleans divide Drest into |C|
subsets according to class predictions. The
subset for class c is denoted as De°.

4: for ¢ in C do

5. DS, = arg maXDs:IDslzw‘)Dc' l_mS(Ds)
rest

6 Dclean - Dclean U Dglean

7: end for

Output: clean data set D jean-

Algorithm 2 Finetuning and Inference

Input: silver standard data set Dy, test set
Dyest, textual entailment model M.

1: Obtain D .., using Algorithm 1.

2: Generate premise hypothesis pairs dataset
D.}oun based on D jean.

3: Finetune M using D,
model M’.

4: Use M’ to infer relation (role)types on D;g;.

and obtain finetuned

clean?

Output: relation (role) types of samples on Dy.g;.

3.3. Finetuning and Inference

After running clean data detection algorithms, we
obtain D, Which consists of the input sentence
and its relation (role) type pairs. Since the input for-
mats of the TE and RE (or EAC) tasks are different,
we need to convert D .., t0 premise-hypothesis
pairs so that we can use Dy, t0 finetune the TE
model.

For each relation (or role) in the RE (or EAC) task
form, we should create entailment, contradiction,
and neutral hypothesis for the TE task. The entail-
ment hypothesis is generated with the templates
that describe the ground truth relation (or role), the
neutral hypothesis is generated by randomly select
a template that does not describe the ground truth
relation (role) and the contradiction hypothesis is
generated using the template “{sub7} and {ob7}
are not related,” or “{arg} ”is not an argument of
{trg} where {trg} is the trigger word.

We use premise hypothesis pairs constructed
from D, cqr 10 finetune the off-the-shelf TE model.
Finally, we use the finetuned TE model to infer
relation (role) types on the test set. The complete
algorithm is presented in Algorithm 2.
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Instances

Dataset Train Dev Test

Relation Types Entity Types Distribution

TACRED 42 17 Skewed 68124 22631 15509
Wiki80 80 29 Uniform 40320 10080 5600
Smiler-It 22 - Skewed 73228 746 1510
Smiler-Po 21 Skewed 16651 180 344
Smiler-Kr 28 - Skewed 18538 173 382
ACEOQ5-E+ 22 7 Skewed 4815 603 573

Table 1: The statistics of datasets.

4. Experiment

4.1. Experiemental Settings

We follow the same zero-shot setting with LaVeEn-
tail, all data used for training are unlabeled, and
only 1% development set are available for adjusting
hyperparameters. For the zero-shot cross-lingual
setting, we do not use any annotated training data
from both the source language and target lan-
guage. Traditionally, zero-shot cross-lingual meth-
ods (Huang et al., 2022a; Ma et al., 2023, 2022;
Wu et al., 2020) used a large number of annotated
data from the source language.

For the zero-shot RE task, we evaluate our
method on the TACRED (Zhong et al., 2018) and
Wiki80 (Xiao, 2022) dataset. For the zero-shot
cross-lingual RE task, we evaluate our method
on the Smile (Seganti et al., 2021) dataset which
contains 14 languages. We evaluate Clean-LaVe
in three languages, i.e., ltalian, Polish, and Ko-
rean. For the zero-shot EAC task, we evaluate
our method on ACEO05-E+ (Lin et al., 2020). The
statistics of datasets are shown in Table 1.

The TE model we used for RE and EAC tasks is
microsoft/deberta-v2-xlarge-mnil (He et al., 2021).
We use mDeBERTa-v3-base-xnli-multilingual-nli-
2mil7 (Laurer et al., 2022) for the cross-lingual RE
task as it can process multiple languages.

For each dataset, we manually created verbal-
ization templates for each relation or argument role,
as well as entity type constraints. The constraints
we used on TACRED dataset are different from
those of LaVeEntail. We delete the constraints
which leak the information of the ground truth. For
example, there is only one relation type that has the
constraint where the subject entity type is PERSON
and the object entity type is TITLE. The sentence
that satisfies this constraint has a very large proba-
bility of being inferred as per:title relation be-
cause other relations are ruled out. (Tran et al.,
2020) showed that entity types are a strong induc-
tive bias. However, in LaVeEntail, the inductive
bias is not learned by the algorithm itself but by
manually designed type constraints. It leads to ar-
tificially inflated performance, so we deleted those
type constraints. Besides, we also conduct experi-
ments using original type constraints in §4.5.

"LaVeEntail direct infers on the test set and does not
involve any training process, resulting in zero variance.

4.2. Compared Methods

To demonstrate the effectiveness of our method,
we compare our model with the following baselines:

We consider training a supervised relation clas-
sification model on silver standard data using CE
(Cross Entropy loss) and different noise-robust
losses including GCE (Generalized Cross Entropy
loss) (Zhang and Sabuncu, 2018), SCE (Symmet-
ric Cross Entropy loss) (Wang et al., 2019), and Co-
Regularization (Zhou and Chen, 2021) as base-
lines.

We also include the following representative
noise-robust learning algorithms which identify
noisy data or clean data and convert the problem
to a semi-supervised learning problem as baseline
methods: 02U (Overfiting to Underfitting) (Huang
et al., 2019), and DivideMix (Li et al., 2020).

We also consider the SOTA zero-shot RE
method QA4RE (Zhang et al., 2023) and the SOTA
zero-shot EAC method Global_Constraints (Lin
et al., 2023) as baselines. QA4RE is based on
ChatGPT (Al, 2023), which is easily adapted to
the zero-shot EAC task. Global_Constraints is deli-
cately designed for the zero-shot EAC task.

LaVeEntail (Sainz et al., 2021) utilized an off-
the-shelf textual entailment model to directly infer
the test data. Labeled Data Finetune randomly
select a proportion of labeled training data to fine-
tune the off-the-shelf TE model. Clean-LaVe is
our proposed method. Additionally, we conduct
comparisons by removing the weighted negative
learning module, the class-aware data selector,
and both of them respectively to assess their im-
pact on the results. Silver-LaVe can be considered
as Clean-LaVe without a clean data detection mod-
ule, which uses all silver standard data to finetune
an off-the-shelf TE model.

4.3. Result Analysis

As shown in the first and second block of Table 2,
Clean-LaVe outperforms noise-robust loss based
methods and semi-supervised based noisy labels
learning methods across all datasets. Directly
applying noisy labels learning methods on silver
standard data is straightforward but not effective.
Hence, there is a need to investigate how to use
silver data.

As shown in the third block, Clean-LaVe out-
performs the SOTA methods by 3% ~15% on all
datasets except on the Smiler-It. On Smiler-It,
QA4RE outperforms Clean-LaVe by 1%. Despite
facing a stronger competitor based on ChatGPT,
Clean-LaVe delivers commendable overall perfor-
mance.

As shown in the fourth block, Clean-LaVe can
gain significant improvement compared to LaVeEn-
tail by 10% ~16%. Additionally, our method is
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| RE | Cross-lingual RE | EAC

| TACRED Wikig0 | Smiler-lt Smiler-Po  Smiler-Kr | ACE05-E+
CE 45.35+0.58 40.76+0.29 | 40.79+0.12 41.56+0.19 49.7540.50 | 71.7940.96
GCE (Zhang and Sabuncu, 2018) 45.93+0.67 41.28+0.61 | 47.27+0.21 45.9940.60 53.35+0.49 | 71.61+0.79
SCE (Wang et al., 2019) 45.82+0.92 41.12+0.24 | 40.97+0.70 40.41+0.31 47.79+0.09 | 71.88+0.26
Co-Regularization (Zhou and Chen, 2021) | 48.864+0.34 28.48+0.42 | 42.17+0.61 41.8640.19 50.1640.70 | 72.9340.17
02U (Huang et al., 2019) 47.52+0.81 42.62+0.03 | 41.12+0.23 44.47+0.66 49.67+0.49 | 69.83+0.06
DivideMix (Li et al., 2020) 49.7840.80 45.5240.26 | 41.94+0.78 43.7940.69 52.48+0.80 | 69.13+0.64
Global_Constraints (Lin et al., 2023) - - - - - - 66.1*
QA4RE (Zhang et al., 2023) 58.55+0.05 43.93+0.09 | 56.42+0.84 38.09+0.19 56.0840.73 | 64.74+0.84
LaVeEntail' (Sainz et al., 2021) 52.18 41.16 39.96 37.84 44.30 71.60
Labeled Data Finetune (1%) 56.61+1.29 47.3940.33 | 51.854+0.96 46.44+0.66 47.3340.91 | 76.214+1.50
Labeled Data Finetune (5%) 63.72+1.03 53.89+0.46 | 52.56+0.57 49.56+0.54 55.304+0.14 | 78.87+0.17
Silver-LaVe 54.67+0.58 44.57+0.31 | 48.91+0.55 50.604+0.38 54.64+0.81 | 80.18+0.08
Clean-LaVe 63.36+1.03 51.5340.53 | 55.0940.05 52.99+0.88 59.41+0.84 | 81.2240.38
— lteratively Weighted Negative Learning 58.66+0.93 48.44+0.44 | 54.20+0.97 48.09+0.59 57.18+0.95 | 78.0740.82
— Class-Aware Data Selector 59.55+0.98 52.52+0.21 | 54.97+0.33 50.14+0.64 57.34+0.26 | 78.14+0.61
— Above Both 56.41+1.82 52.34+0.38 | 54.28+0.65 45.99+0.41 54.97+0.74 | 77.37+0.67

Table 2: Results of zero-shot classification tasks. We report the average of micro F1 scores in 3 runs.
The best F1 scores are marked in bold. SOTA baselines are highlighted with underline. Results marked

with * are retrieved from the original paper.

comparable to or even outperforms the supervised
LaVeEntail with 5% labeled data.

As shown in the last block, we surprisingly find
Silver-LaVe outperforms LaVeEntail by 2% ~13%.
It indicates that, to some content, our proposed
framework (i.e., finetuning pre-trained model with
silver standard data) can be beneficial, regardless
of the quality of silver standard data. Clean-LaVe
outperforms Silver-LaVe, indicating the effective-
ness of the clean data detection module.

We also provide results after removing Iteratively
Weighted Negative Learning, Class-Aware Data
Selector, and both of them respectively. After
removing the IWNL component, we observe de-
creases in performance across all datasets, which
validates the effectiveness of this component. Af-
ter removing the CADS, we observe decreases
in performance across all datasets except Wiki80,
which validates the effectiveness of this compo-
nent. Removing the CADS leads to a slight im-
provement (1%) on Wiki80. This improvement can
be attributed to the fact that Wiki80 is a balanced
dataset. The reason has been stated in §3.2.2.

4.4. Case Analysis

We conduct an in-depth analysis on TACRED re-
garding the effectiveness of Iteratively Weighted
Negative Learning (IWNL) and Class-Aware Data
Selector (CADS). The clean data detection accu-
racy (referred to as detection accuracy for brevity)
is the percentage of clean data whose predictions
are equal to ground truths. We sort the class ac-
cording to the number of samples in the class in
descending order and consider the former (latter)
half as the majority (minority) classes. The pro-

portion n indicates how much proportion of data is
selected as clean data.

Iteratively Weighted Negativing Learning
(IWNL) can alleviate the effect of underfitting and
improve the clean data detection accuracy of mi-
nority classes. As depicted in Figure 2(a) (left),
IWNL yields consistently higher detection accuracy
scores than w/o IWNL on minority classes. Without
IWNL, the detection accuracy for minority classes
is almost negligible when the selection proportion
is small. As depicted in Figure 2(a) (right), the
performance of IWNL on majority classes is com-
parable to w/o IWNL.

Class-Aware Data Selector (CADS) can en-
courage clean samples from a broader range of
classes. As depicted in Figure 2(b) (left), there
are more orange bars than blue bars, indicating
CADS selects samples from more classes, espe-
cially from minority classes. As depicted in Fig-
ure 2(b) (right), the detection accuracy scores of
classes that are only selected by CADS are sat-
isfying overall. For classes that are selected by
both CADS and w/o CADS, the accuracy scores
of some classes increase but some decrease after
applying CADS. The possible reason for decreased
accuracy is that it involves noisy data, as we have
discussed in §3.2.2.

4.5. Full Constraints Comparison

As previously mentioned, we remove some con-
straints defined in LaVeEntail to prevent informa-
tion leakage. In this section, we compare our
method with LaVeEntail using full constraints. As
table 3 is shown, our method still outperforms
LaVeEntail given full constraints. Under full type
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Figure 2: Analysis of IWNL and CADS on TACRED.

constraints, LaVeEntail and Clean-LaVe obtain im-
provement compared to partial constraints results
in table 2. But the improvement is inflated.

‘ Pr. ‘ Rec. ‘ F1
LaVeEntail*™ | 63.20* | 59.80* 61.40*
Clean-LaVet | 72.60 | 59.98 65.591 4.1

Table 3: The results of using original constraints
defined in LaVeEntail. Upper + means full con-
straints and the results of LaVeEntail marked with
* are retrieved from the original paper.

4.6. Cross-lingual Silver Standard Data

We further explore the potential of cross-lingual
silver standard data. We combine the silver data
from the source language (i.g., English) with the
silver data from the target language and fine-tune
the TE model. Note that we do not use any labeled
data from the source language as well as the target
language. Results show that by using cross-lingual
silver data from English, Clean-LaVe can further
improve 0.2% - 1.7%.

4.7. Hyper-parameter Analysis

As Section 3.2.2 mentioned, Class-Aware Data Se-
lector introduces two hyper-parameters to control
the selection. n controls the number of clean data

| Italian | Polish | Korean
LaVeEntail 39.96 37.84 44.30
Clean-LaVe 55.09 52.99 59.41
Clean-LaVe + En Silver | 56.811 1.72 | 53.231 0.24 | 60.741 1.33

Table 4: The average of F1 scores in 3 runs of
Clean-LaVe on the zero-shot cross-lingual RE task.

and m controls the number of samples from diverse
classes. We analyse these hyper-parameters on
1% development set on each dataset.

Clean Data Selection Proportion 7. We select
N - |Dsiwer| data to finetune the TE model. The
search range for n is [0.01,0.03,---,0.1], while
keeping another hyper-parameter, m, fixed at 0
to eliminate its influence. As shown in Figure 3
(left column), with the increase of parameter 7, the
performance of the Clean-LaVe method increases
first and then decreases. When 7 is too small,
although D .., has a low noise level, it only con-
tains a few samples and classes, thus the model
performance is barely satisfactory. When 7 is too
large, it easily involves too many noisy samples,
thus deteriorating performance.

Diversity Number m. We evaluate the effects of
hyper-parameter m which controls the number of
samples from diverse classes. The search range
for m is [100, 200, - - - , 1300], while we maintain the
value of 7 fixed at the best value found during pre-
vious tuning. As shown in Figure 3 (right column),
with the increase of m, the performance generally
increases since when m is too large, it easily in-

12430



0.0 Fix m (=0) Fix n (=best)
62.5 */\*7*
57.5 Y
60.0
55.0
i 57.5 3y
- -@- Wikigo - -@- Wikigo
W52.5| 4 TACRED /’\ Yiso —%— TACRED
/’/
500 s \ 5250 @
_ po
475 g el 500 \—wgi,,”mw.w
[ e
ST om0k 0w 1o 6 @0 0 % 100 1300
n m
(a) RE task
Fix m (=0) Fix n (=best)
e *
—— — —%— ACE05-E —%— ACE05-E
* -
74 * 785
78.0
72
2 SN
70 \ 77.0 >
8 76.5 \
76.0 i
oo o om 0w o1 G @0 o0 80 1000 1300
n m
(b) EAC task
Fix m (=0) Fix n (=best)
50 52 -@ Smiler-it
—e —*— Smiler-Po
48 A — 51 —+— Smiler-Kr
46 -t pe s
— e —
- w
44
i 49
42f —@— Smiler-It
40| * Smilerpo P 48
—— Smiler-K T~
miler-Kr < . x
% G 0% 0w 010 T w0 o @ 00
n m

(c) Cross-lingual RE task

Figure 3: Results of different  and m.

volves too many noisy samples, thus deteriorating
performance.

We perform manual quality checks on the filtered
data using IWNL and CADS methods. As shown
in Table 5, opting for larger values of n and m re-
sults in the inclusion of more classes and more
noise. With the optimal hyper-parameter combina-
tion, we observe significant improvements in both
data accuracy and class count. This enhancement
underscores the effectiveness of our IWNL and
CADS methods in improving the quality of filtered
data.

Fix m (=0)
n 0.01 0.05 0.1 0.5 1
Data Accuracy 92.10 | 86.02 | 80.16 | 68.51 | 64.03
Class Count 4 18 26 32 40
Fix n at best (=0.05)
m 100 200 500 700 1000
Data Accuracy 79.48 | 76.40 | 75.15 | 74.70 | 74.20
Class Count 26 34 39 40 40

Table 5: The reliability of the data filtered by IWNL
and CADS on TACRED. The results under the best
hyper-parameter are marked in bold.

5. Conclusion

We propose a framework named Clean-LaVe to
first detect a small amount of clean data from
silver standard data and then use them to fine-
tune the pre-trained model. We propose a ltera-
tively Weighted Negative Learning algorithm and
Class-Aware Data Selector in clean data detection
process to alleviate the imbalanced issue and to
broaden the range of classes during selection. The
experimental results demonstrate the effectiveness
of our proposed method.

6. Future Work

e For further improvement, our work can be eas-
ily combined with LLM, using LLM as pretrained
models.

e Clean-Lave has great potential to be extend to
other tasks and settings which is worthwhile to be
explored.
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