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Abstract
New Intent Discovery (NID) aims to recognize known and infer new intent categories with the help of limited labeled
and large-scale unlabeled data. The task is addressed as a feature-clustering problem and recent studies augment
instance representation. However, existing methods fail to capture cluster-friendly representations, since they show
less capability to effectively control and coordinate within-cluster and between-cluster distances. Tailored to the NID
problem, we propose a Robust and Adaptive Prototypical learning (RAP) framework for globally distinct decision
boundaries for both known and new intent categories. Specifically, a robust prototypical attracting learning (RPAL)
method is designed to compel instances to gravitate toward their corresponding prototype, achieving greater within-
cluster compactness. To attain larger between-cluster separation, another adaptive prototypical dispersing learning
(APDL) method is devised to maximize the between-cluster distance from the prototype-to-prototype perspective.
Experimental results evaluated on three challenging benchmarks (CLINC, BANKING, and StackOverflow) of our
method with better cluster-friendly representation demonstrate that RAP brings in substantial improvements over
the current state-of-the-art methods (even large language model) by a large margin (average +5.5% improvement).
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1. Introduction

Due to the success of conventional intent detec-
tion in dialogue systems (Wu et al., 2019; Liu
and Mazumder, 2021; Zhang et al., 2023a, 2022),
the vast majority of learning algorithms under the
closed-world scenario with static data distribution
only consider pre-defined intents. To handle the
new intents outside the existing known intent cat-
egories, it is necessary to equip dialogue systems
with new intent discovery (NID) abilities (Raedt
et al., 2023; Mou et al., 2022; Siddique et al., 2021;
Fini et al., 2021; Chrabrowa et al., 2023).

Early works (Hakkani-Tür et al., 2013, 2015; Shi
et al., 2018; Padmasundari and Bangalore, 2018)
mainly adopt unsupervised clustering with unla-
beled data. They always ignore prior knowledge
of the available labeled data and fail to generate
highly accurate and granular intent groups, leading
to inapplicability in the open-world scenario. Re-
cent studies are adept to semi-supervised settings
to efficiently utilize the limited labeled data, such
as pairwise similarities (Lin et al., 2020), iterative
pseudo-labeling (Zhang et al., 2021a), probabilis-
tic architecture (Zhou et al., 2023b) and prototyp-
ical network (An et al., 2023). Due to the trans-
ferability of injecting structural knowledge from
known categories into the intent representation,
the semi-supervised methods can be extended to
real-world scenarios with better NID performance.
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Figure 1: Embedding distribution of intent in-
stances and the prototype of each class in a
shared sphere semantic space. The circle and star
shape denote the instance and the prototype, re-
spectively. The discriminative representations fail
to be extracted due to insufficient (a) within-cluster
compactness and (b) between-cluster separation.

However, existing semi-supervised methods still
face two challenges: (C1): Lacking sufficient
within-cluster compactness within the learned in-
tent representations. (C2): Requiring the explicit
modeling of between-cluster dispersion in the rep-
resentation space. In Figure 1(a), different intent
categories overlap with each other with varying
distributions, where the large class-specific vari-
ances result in distant instance embeddings from
the cluster centers. In Figure 1(b), embeddings
in different categories tend to gather in the same
region, due to the narrow distance among cluster
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centers. Previous baselines encounter difficulty
in capturing clear and accurate cluster boundaries
for known and novel categories. Therefore, Jointly
constraining both within- and between-cluster dis-
tance to yield cluster-friendly discriminative repre-
sentations still requires further exploration.

In this work, we propose a Robust and Adaptive
Prototypical learning (RAP) framework for the joint
identification of known intents and discovery of
the novel intents. To mitigate the issue of insuf-
ficient within-cluster compactness, we introduce
a robust prototypical attracting learning (RPAL)
method to reduce the overlarge variances from
an instance-to-prototype perspective. Specifically,
we first compute class prototypes as normalized
mean embeddings and enforce each instance em-
bedding to be closer to its corresponding class pro-
totypes. To avoid the negative impact of pseudo-
label noise, a novel interpolation training strategy
is used to construct virtual training samples for the
maintenance of the same linear relationship with
its prototypes. To address the concern of insuffi-
cient between-cluster separation, we propose an
adaptive prototypical dispersing learning (APDL)
to explicitly enlarge the between-cluster distance
from a prototype-to-prototype perspective. By min-
imizing the total prototype-to-prototype similarities,
APDL adaptively maximizes the distance between
prototypes to form well-separated clusters. A
weighted training objective is used to adaptively
impose large penalties on nearer prototypes to
push them further apart, helping achieve better
dispersion among prototypes. Finally, RPAL and
APDL are jointly optimized with multitask learning
to guide the model to learn cluster-friendly intent
representations for both known and novel intents.

Experimental results on multiple NID bench-
marks demonstrate our method brings substantial
improvements over previous state-of-the-art meth-
ods by a large margin of +5.5% points. Our key
contributions are summarized as follows:

• A new prototype-guided learning framework
is designed to learn cluster-friendly discrim-
inative representations with stronger within-
cluster compactness and larger between-
cluster separation.

• We propose a robust prototypical attracting
learning method and an adaptive prototypi-
cal dispersion learning method, which solve
the problems of insufficient within-cluster com-
pactness and between-cluster separation.

• Extensive experiments on three benchmark
datasets show that our model establishes
state-of-the-art performance on the semi-
supervised NID task (average+5.5% improve-
ment), which demonstrates competitive NID
performance.

2. Related Work

2.1. New Intent Discovery
Existing NID methods can be divided into two cat-
egories: unsupervised and semi-supervised. For
the former, pioneering works (Hakkani-Tür et al.,
2013, 2015) primarily rely on statistical features
of the unlabeled data to cluster similar queries
for discovering new user intents. Subsequently,
some studies (Xie et al., 2016; Yang et al., 2017;
Shi et al., 2018) endeavor to leverage deep neu-
ral networks to learn robust representations con-
ducive to new intent clustering. However, these
methods lack the capacity to leverage prior knowl-
edge for clustering guidance. Addressing this
limitation, some studies (Basu et al., 2004; Hsu
et al., 2018, 2019; Han et al., 2019) begin to ex-
plore the use of semi-supervised clustering meth-
ods to better leverage prior knowledge. For ex-
ample, Lin et al. (2020) combines the pairwise
constraints and target distribution to discover new
intents while Zhang et al. (2021a) introduces an
alignment strategy to improve the clustering con-
sistency. Further, Shen et al. (2021); Kumar et al.
(2022); Vaze et al. (2022); Zhang et al. (2022) de-
signs contrastive learning strategies in both the
pre-training phase and the clustering stage to learn
discriminative representations of intents. Recently,
Zhou et al. (2023b) introduces a principled proba-
bilistic framework and An et al. (2023) proposed
a decoupled prototypical network to enhance the
performance of the NID. However, these methods
fail to effectively capture discriminative representa-
tions with strong within-cluster compactness and
large between-cluster separation. This difficulty
makes it challenging to differentiate between the
characteristics of known and novel intents.

2.2. Prototypical Learning
Prototypical learning (PL) methods (Snell et al.,
2017) have become promising approaches due
to their simplicity and effectiveness and they
have been widely applied in various scenarios,
such as unsupervised domain adaptation (Yue
et al., 2021), out-of-domain detection (Zhang et al.,
2023b,c), machine translation (Yang et al., 2021b,
2019, 2021c, 2020; Chai et al., 2024), and named
entity recognition (Zhou et al., 2023a; Yang et al.,
2022; Mo et al., 2023). Among them, prototypical
contrastive learning (Li et al., 2021) is proposed
to generate compact clusters. It employs clus-
ter centroids as prototypes and trains the network
by drawing instance embeddings closer to its as-
signed prototypes. Here, we explore the utilization
of the interpolation training strategy to enhance
cluster compactness while mitigating the effects of
label noise, thus rendering it more robust.
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3. Approach

In this section, we describe the proposed RAP
framework for new intent discovery in detail. As
shown in Figure 2, the architecture of the RAP
framework contains four main components: (1) In-
tent representation learning, which pre-trains a fea-
ture extractor Eθ on both labeled and unlabeled
intent data to optimize better representation learn-
ing (Sec. 3.2); (2) Categorical prototypes genera-
tion, which derives the prototypes of the training
data by a clustering method (Sec. 3.3); (3) Ro-
bust prototypical attracting, which mitigates the ef-
fects of noisy pseudo-labels while minimizes the
instance-to-prototype distance for stronger within-
cluster compactness (Sec. 3.4); (4) Adaptive proto-
typical dispersing, which maximizes the prototype-
to-prototype distance for larger between-cluster
dispersion (Sec. 3.5).

3.1. Problem Definition
New Intent Discovery follows an open-world set-
ting, which aims to recognize all intents with the aid
of limited labeled known intent data and unlabeled
data containing all classes. Let Ik and In repre-
sent the sets of known and novel intents respec-
tively, where {Ik ∩ In} = ∅ and |Ik| + |In| = C,
where C represents the total number of intent cat-
egories. A typical NID task comprises a set of la-
beled training set Ds = {(xi, yi)}Ni=1, wherein each
intent yi ∈ Ik, and a set of unlabeled intent utter-
ances Du = {(xi)}Mi=1, where the intent of each ut-
terance xi belongs to {Ik ∪ In}. The goal of semi-
supervised NID is to use Ds as prior knowledge
to help learn clustering-friendly representations to
recognize known and discover new intent groups.
After training, the model performance will be eval-
uated on the testing set Dt = {xi|yi ∈ Ik ∪ In}.

3.2. Intent Representation Learning
Considering the excellent generalization capability
of the pre-trained model, we use the pretrained lan-
guage model BERT (Devlin et al., 2019) as our fea-
ture extractor (Eθ : X → RH). Firstly, we feed the
ith input sentence xi to BERT, and take all token
embeddings [T0, . . . , TL] ∈ R(L+1)×H from the last
hidden layer (T0 is the embedding of the [CLS]
token). The sentence representation si ∈ RH is
first obtained by applying mean-pooling operation
on the hidden vectors of these tokens:

si = mean-pooling([[CLS], T1, ..., TL]) (1)

where [CLS] is the vector for text classification,
L is the sequence length, and H is the hidden
size. Motivated by (Zhang et al., 2021a), we aim
to effectively generalize prior knowledge through
pre-training to unlabeled data, we fine-tuned BERT

on labeled data (Ds) using the cross-entropy (CE)
loss. Furthermore, we follow (Zhang et al., 2022)
to use the masked language modeling (MLM) loss
on all available data (D = Ds∪Du) to learn domain-
specific semantics. We concurrently pre-train the
model with the aforementioned two types of loss:

Lpre = Lce(Ds) + Lmlm(Ds ∪ Du) (2)

where Ds and Du are labeled and unlabeled in-
tent corpus, respectively. The masked language
model is trained on the whole corpus D = Ds∪Du.
After pretraining, models can acquire diverse gen-
eral knowledge for both known and novel intents,
enabling them to learn meaningful semantic repre-
sentations for subsequent tasks.

3.3. Categorical Prototypes Generation
The prototype of an intent class computed as the
text average embeddings within the class is de-
fined as a representative embedding for a group
of semantically similar instances. We first obtain
the intent embedding Eθ (xi) for each xi ∈ Da and
then perform k-Means clustering on the training in-
stances Da to generate C clusters Q = {Qc}Cc=1,
where C represents the total number of intent cat-
egories. The prototype matrix Pr = {µc}Cc=1 are
generated based on their clusters. Concretely, for
each cluster Qc, the prototype µc is computed by:

µc =
1

|Qc|
∑

xi∈Qc

Eθ (xi) (3)

where we presume prior knowledge of C following
previous works (Zhang et al., 2021a) to make a
fair comparison and we tackle the problem of es-
timating this parameter in the experiment (refer to
Sec. 5.4 for a detailed discussion on more accu-
rately estimating C within RAP).

3.4. Robust Prototypical Attracting
The key idea of the robust prototypical attracting
learning (RPAL) method aims to acquire cluster-
friendly discriminative representations with strong
within-cluster compactness. To minimize the dis-
tance between instances and their correspond-
ing prototypes, we employ prototypical contrastive
learning (PCL). PCL brings instance represen-
tations closer to their matched prototypes while
pushing them away from other prototypes as:

Lp = −Ei≤Nb
log exp (zi · µyi/τ)∑C

k=1 exp
(
zi · µk/τ

) (4)

where the normalized sentence embeddings zi

matches the prototype µyi of its ground truth la-
bel yi, Nb is the size of the training set and τ is a
scalar temperature.
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Figure 2: Overview of RAP. Our method is jointly optimized by Lr, La, and Lce. Lr mitigates the ef-
fects of noisy pseudo-labels while minimizes the instance-to-prototype distance, while La maximizes the
prototype-to-prototype distance. Lce is a cross-entropy loss to prevent knowledge forgetting.

Interpolation Training Strategy Since the map-
ping between instances and prototypes derives
from pseudo-labels generated by k-means clus-
tering, the standard PCL objective is susceptible
to noise influence, resulting in suboptimal perfor-
mance (Jiang et al., 2020). The encoder neces-
sitates a regularization technique to avoid overfit-
ting from forcefully memorizing hard training labels.
To further address this issue, we extend the PCL
objective by introducing the interpolation training
strategy (ITS). By constructing virtual training sam-
ples that are linear interpolations of two random
samples, the model is forced to predict less confi-
dently on interpolations and produce smoother de-
cision boundaries. Specifically, we first perform
convex combinations of instance pairs as:

xmix = ηxa + (1− η)xb (5)

where η ∈ [0, 1] ∼ Beta(α, α) and xmix denotes
the training sample that combines two samples xa

and xb, which are randomly chosen from the same
minibatch. We then impose a linear relation in the
contrastive loss, which is defined as a weighted
combination of the two Lp with respect to class ya
and yb. It enforces the embedding for the interpo-
lated input to have the same linear relationship with
its corresponding prototypes:

Lr = ηLp
(
zmix,ya

)
+ (1− η)Lp

(
zmix,yb

)
(6)

where zmix be the normalized embedding forxmix,
ya and yb are the classes of xa and xb.

3.5. Adaptive Prototypical Dispersing

To ensure that the generated intent representa-
tions with adequate between-cluster separation to
establish distinct cluster boundaries, we draw in-

spiration from instance-wise contrastive learning:

Lc = −
1

τ
Ei,js (zi,zj)︸ ︷︷ ︸

Instance Alignment

+Ei log
2Nb∑
k=1

1[k ̸=i]e
s(zi,zk)

︸ ︷︷ ︸
Instance Uniformity

(7)

where the second term is referred to uniformity
since it encourages instance representation to
be uniformly distributed in the hypersphere. But
instance-wise constraints may inevitably lead to
the class collision issue (Saunshi et al., 2019).

Derived from Eq. 7, we devise a novel adaptive
prototypical dispersing learning (APDL) method to
maximize the prototype-to-prototype distance and
improve distribution uniformity by extending the
instance-wise contrastive loss. To facilitate large
angular distances among different class proto-
types, APDL utilizes the distances between proto-
types as adaptive weights. This imposes stronger
penalties on close prototypes and produces well-
separated clusters. The APDL loss is given by:

La = Ei≤C log
∑C

j=1 1[j ̸=i]D(µi,µj)e
s(µi,µj)

C − 1︸ ︷︷ ︸
Prototypical Uniformity

(8)

where s(·, ·) is the cosine similarity to evaluate se-
mantic similarities among prototypes (s(µi,µj) =
cos(µi,µj)/τ ). It is worth noting that D(·, ·) is
an adaptive constraint term (ACT) that adaptively
maximizes the distance between nearer proto-
types by taking the reciprocal of their distances:

D(µi,µj) =
1∥∥µi − µj

∥∥
2

(9)

where µi and µj represent prototypes of any two
intent classes in the intent representation space.

3.6. Dynamic Prototypes Update
It is crucial to continuously update the class proto-
types over the course of training. Although µk can
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be calculated by averaging the representations of
class k across the entire dataset at the end of an
epoch, it means the prototypes will remain static
during the next full epoch. This is not ideal, as dis-
tributions of intent representations and clusters are
rapidly changing, especially in the earlier epochs.
So we use the exponential moving average (EMA)
algorithm to learn more robust prototypes:

µk = σ(λµk + (1− λ)zi) (10)

where the σ is the layer normalization, λ is a mo-
mentum factor and zi is normalized embeddings.

3.7. Multitask Learning

Our approach learns cluster-friendly intent repre-
sentations with stronger within-cluster compact-
ness and larger between-cluster separation by
jointly performing RPAL and APDL. To mitigate the
risk of catastrophic forgetting of knowledge gained
from labeled data, we integrate cross-entropy loss
into the training process. The multitask learning
objective for NID can be denoted as:

Lall = ωLr + La + Lce (11)

where ω is a hyperparameter that controls the
weight of loss. For inference, we perform the non-
parametric clustering method k-means to obtain
cluster assignments for testing data.

4. Experiments

4.1. Datasets

To validate the effectiveness and generality of our
method, we conducted experiments on three di-
verse and challenging real-world datasets. De-
tailed statistics are described in Table 1.

• CLINC (Larson et al., 2019) is a dataset spe-
cially designed for OOD detection and intent
discovery, which contains 22.5K samples of
user queries in total and 150 unique labeled
intents from 10 domains.

• BANKING (Casanueva et al., 2020) is a
dataset about banking. The dataset provides
user queries and labeled intents from the
banking domain, with a total of 13K samples
and 77 types of intents.

• StackOverflow (Xu et al., 2015) is a dataset
published in Kaggle.com. It contains 20K
samples across 20 classes of technical ques-
tions collected from the Kaggle website.

Dataset |Ik| |In| |Ds| |Du| |Dt|

CLINC 113 37 1344 16656 2250
BANKING 58 19 673 8330 3080
StackOverflow 15 5 1350 16650 1000

Table 1: Statistics of datasets. We set the known
class ratio |Ik|/|Ik ∩In| to 75%. The columns rep-
resent the number of known categories, novel cat-
egories, labeled data, unlabeled data, and testing
data, respectively.

4.2. Baselines

We compare our approach with unsupervised and
semi-supervised models:

• Unsupervised: k-means (MacQueen
et al., 1967), Agglomerative Clustering
(AC) (Gowda and Krishna, 1978), SAE-KM
and Deep Embedded Cluster (DEC) (Xie
et al., 2016), Deep Clustering Network
(DCN) (Yang et al., 2017), DAC (Chang et al.,
2017), DeepCluster (Caron et al., 2018).

• Semi-supervised: PCK-means (Basu et al.,
2004), KCL (Hsu et al., 2018), MCL (Hsu et al.,
2019), DTC (Han et al., 2019), CDAC+ (Lin
et al., 2020), GCD (Vaze et al., 2022),
DeepAligned (Zhang et al., 2021a), MTP-
CLNN (Zhang et al., 2022), ProbNID (Zhou
et al., 2023b), DPN (An et al., 2023).

4.3. Evaluation Metrics

To evaluate the quality of the discovered intent
clusters, we use three broadly used evaluation
metrics (Zhang et al., 2021a, 2022; Zhou et al.,
2023b): (1) Normalized Mutual Information (NMI)
measures the normalized mutual dependence be-
tween the predicted labels and the ground-truth
labels. (2) Adjusted Rand Index (ARI) measures
how many samples are assigned properly to dif-
ferent clusters. (3) Accuracy (ACC) is measured
by assigning dominant class labels to each cluster
and taking the average precision. Higher values of
these metrics indicate better performance. Specif-
ically, NMI is defined as:

NMI(ygt, yp) =
MI(ygt, yp)

1
2
(H(ygt) +H(yp))

, (12)

where ygt and yp are the ground-truth and pre-
dicted labels, respectively. MI(ygt, yp) represents
the mutual information between ygt and yp, and
H(·) is the entropy. MI(ygt, yp) is normalized by
the arithmetic mean of H(ygt) and H(yp), and the
values of NMI are in the range of [0, 1]. ARI is
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Methods
CLINC BANKING StackOverflow

NMI ARI ACC NMI ARI ACC NMI ARI ACC

Unsupervised

K-means 70.89 26.86 45.06 54.57 12.18 29.55 8.24 1.46 13.55
AC 73.07 27.70 44.03 57.07 13.31 31.58 10.62 2.12 14.66
SAE-KM 73.13 29.95 46.75 63.79 22.85 38.92 32.62 17.07 34.44
DEC 74.83 27.46 46.89 67.78 27.21 41.29 10.88 3.76 13.09
DCN 75.66 31.15 49.29 67.54 26.81 41.99 31.09 15.45 34.56
DAC 78.40 40.49 55.94 47.35 14.24 27.41 14.71 2.76 16.30
DeepCluster 65.58 19.11 35.70 41.77 8.95 20.69 - - -

Semi-supervised

PCK-Means 68.70 35.40 54.61 48.22 16.24 32.66 17.26 5.35 24.16
KCL (BERT) 86.82 58.79 68.86 75.21 46.72 60.15 8.84 7.81 13.94
MCL (BERT) 87.72 59.92 69.66 75.68 47.43 61.14 66.81 57.43 72.07
CDAC+ 86.65 54.33 69.89 72.25 40.97 53.83 69.84 52.59 73.48
DTC (BERT) 90.54 65.02 74.15 76.55 44.70 56.51 63.17 53.66 71.47
GCD♡ 91.13 67.44 77.50 77.86 46.87 58.95 64.74 47.70 67.71
DeepAligned 93.95 80.33 87.29 79.91 54.34 66.59 76.47 62.52 80.26
MTP-CLNN♡ 94.88 84.77 88.25 84.22 63.10 73.98 77.03 69.50 83.18
ProbNID 95.01 83.00 88.99 84.02 62.92 74.03 77.32 65.70 80.50
DPN♡ 95.14 84.30 89.22 84.31 63.26 74.45 79.89 70.27 84.59

RAP(Ours) 95.93 86.28 91.24 85.16 65.79 76.27 82.36 71.73 86.60

Table 2: Comparison against the unsupervised and semi-supervised baselines on three benchmarks. ♡
denotes results obtained from running the provided code and other results are retrieved from Zhou et al.
(2023b). Results are averaged over different random seeds and the bold fonts denote the best scores.

defined as:

ARI =
∑

i,j

(ni,j
2

)
− [

∑
i

(ui
2

)∑
j

(vj
2

)
]/
(n
2

)
1
2
[
∑

i

(ui
2

)
+

∑
j

(vj
2

)
]− [

∑
i

(ui
2

)∑
j

(vj
2

)
]/
(n
2

)
(13)

where ui =
∑

j ni,j , and vj =
∑

i ni,j . n is the
number of samples, and ni,j is the number of the
samples that have both the ith predicted label and
the jth ground-truth label. The values of ARI are in
the range of [-1, 1]. ACC is defined as:

ACC(ygt, yp) = max
m

∑n
i=1 I

{
ygti = m

(
ypi

)}
n

(14)

where m is a one-to-one mapping between the
ground-truth label ygt and predicted label yp of the
ith sample. The Hungarian algorithm is used to ob-
tain the best mapping m efficiently. The values of
ACC are in the range of [0, 1].

4.4. Experimental Settings
In experiments, we utilize the pre-trained 12-layer
bert-uncased BERT model1 (Devlin et al., 2019) as
the backbone encoder and only fine-tune the last
transformer layer parameters to expedite the train-
ing process. For model optimization, we adopt the
AdamW (Loshchilov and Hutter, 2019) optimizer
with a learning of 1e-5. The wait patience for early
stopping is set to 20. For masked language mod-
eling, the mask probability is set to 0.15 follow-
ing previous work. For MTP-CLNN, the external

1https://huggingface.co/
bert-base-uncased

dataset is not used as in other baselines, the pa-
rameter of top-k nearest neighbors is set to {100,
50, 500} for CLINC, BANKING, and StackOver-
flow, respectively, as utilized in Zhang et al. (2022).
For all experiments, we split the datasets into train,
valid, and test sets, and randomly select 25% of
categories as unknown and only 10% of training
data as labeled (Zhang et al., 2021a). The num-
ber of intent categories is set as ground truth. we
set the temperature scale as τ = 0.1 in Eq. (4) and
Eq. (8), the parameter in beta distribution α = 1 in
Eq. (5) (i.e. η is sampled from a uniform distribu-
tion), the momentum factor λ = 0.9 in Eq. (10). All
the experiments are conducted on 4 Tesla V100
GPUs and averaged over 10 different seeds.

4.5. Main Results

Table 2 shows the main results on three datasets.
It is observed that RAP achieves the overall
best performances compared to other baselines
across all datasets. The in-depth observations
can be derived from the results: (1) Compared
with unsupervised methods (Unsupervised), semi-
supervised methods (Semi-supervised) achieve
much better results, which demonstrates the ad-
vantage of prior knowledge transfer for subse-
quent tasks. (2) Under the semi-supervised set-
ting (Semi-supervised), our method achieves new
state-of-the-art results across all datasets and met-
rics. The effectiveness of our method can be at-
tributed to its ability to efficiently control and co-
ordinate both within-cluster and between-cluster

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased


12199

Methods
CLINC BANKING StackOverflow

NMI ARI ACC NMI ARI ACC NMI ARI ACC

RAP 95.93 86.28 91.24 85.16 65.79 76.27 82.36 71.73 86.60

¬ w/o Lrpal 93.77 81.42 87.05 80.82 59.15 71.33 76.06 66.55 80.72
­ w/o Lapdl 93.13 82.58 88.39 82.37 62.03 72.15 79.15 69.07 83.67
® w/o Lce 95.02 85.27 90.17 84.49 65.27 75.00 81.18 71.06 85.44
¯ w/o ITS 94.93 85.09 90.90 83.72 63.18 74.96 81.77 70.50 85.21
° w/o ACT 95.49 85.70 89.84 84.58 63.91 75.77 82.19 70.44 86.34

Table 3: Experimental results of ablation study on the CLINC, BANKING, and StackOverflow datasets.

distances, even with limited labeled data as prior
knowledge. It is helpful to establish distinct global
decision boundaries between known and novel in-
tent categories, thereby excelling in NID. We also
find our method yields competitive results on im-
balanced datasets like BANKING, underscoring
the robust generalization capabilities of our model.
This indicates that our method is better tailored for
real-world NID tasks.

4.6. Ablation Study

To investigate the contribution of each compo-
nent within RAP, we conduct an ablation study
across all datasets in Table 3 and consider five sub-
modules as variants. Removing any component
will lead to performance degradation, emphasiz-
ing the essence of each independent component.
Specifically, (1) RAP (w/o Lrpal) refers to remov-
ing the robust prototypical attracting learning ob-
jective. Experiment ¬ indicates that our method
is adept at minimizing the instance-to-prototype
distances, thereby enhancing within-cluster com-
pactness. (2) RAP (w/o Lapdl) involves remov-
ing adaptive prototypical dispersing learning ob-
jective. Experiment ­ suggests that augmenting
between-cluster dispersion is pivotal for optimizing
NID performance. Without explicitly constraining
prototype-to-prototype distances, prior methods
hinder the model from acquiring cluster-friendly
representations. (3) RAP (w/o Lce) indicates the
exclusion of the cross-entropy loss term during the
joint optimization process for our method. Experi-
ment ® highlights the importance of Lce in mitigat-
ing catastrophic forgetting of knowledge learned
from labeled data. (4) RAP (w/o ITS) refers to re-
moving the interpolation training strategy in Eq. (6),
which implies substituting Eq.(4) in place of Eq. (6).
Experiment ¯ connotes the efficacy of the ITS
in mitigating pseudo-label noise. (5) RAP (w/o
ACT) refers to removing the adaptive constraint
term dist(·, ·) in Eq. (8). Experiment ° verifies
the importance of imposing stricter penalties on
nearer prototypes to optimize the between-cluster
distances.

5. Discussion

5.1. Compactness and Separability
RAP aims to generate cluster-friendly representa-
tions with two vital characteristics: Compactness
and Separability. We investigate these two prop-
erties from the following perspectives.
Stronger within-cluster compactness. To show
the capability of our method in promoting tight
within-cluster representations, we measure the
within-cluster distance by average cosine similar-
ity calculation between each intent embedding and
its corresponding prototype in Table 4. We can
see that our method achieves a significantly lower
within-cluster distance compared to previous lead-
ing methods. This phenomenon may be attributed
to the pivotal role of RPAL in enhancing within-
cluster compactness.
Larger between-cluster dispersion. To further
analyze whether our method truly enlarges the dis-
tances among prototypes, we compute the mean
cosine similarity for all pairs of class prototypes.
In Table 4, the proposed RAP consistently obtains
larger between-cluster distances compared to pre-
vious competitive methods. We speculate that the
primary reason for this finding is that APDL plays a
crucial role in enlarging the between-cluster disper-
sion. This also fully conforms to our expectations
that the APDL effectively improves the uniformity
of the intent representation space.

5.2. Representation Visualization
To further validate the effectiveness of our method
in learning discriminative intent representations,
we adopt the t-SNE to visualize projected repre-
sentation on the StackOverflow dataset. Compar-
ing Figure 3(a) and Figure 3(d), we can clearly see
that the clusters obtained by our method are gener-
ally more compact and well-separated than those
obtained by the strong baseline model. This in-
dicates that our model learns cluster-friendly fea-
tures for NID. Looking at Figure 3(b) and Fig-
ure 3(d), it evidently shows that the RPAL effec-
tively pulls instances closer to their corresponding
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(a) Strong Baseline (b) RAP w/o RPAL (Ours) (c) RAP w/o APDL (Ours) (d) RAP (Ours)

Figure 3: t-SNE visualization of learned representation.
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Figure 4: Sensitivity of the models to the number of initial clusters on three datasets.

Methods Within (↓) Between (↑)

DTC (BERT) 22.40 11.82
DeepAligned 11.75 13.91
DPN 9.03 17.38
Ours (CLINC) 8.68 23.36

DTC (BERT) 20.31 22.49
DeepAligned 10.28 13.14
DPN 7.96 11.08
Ours (BANKING) 7.22 17.50

DTC (BERT) 17.11 7.98
DeepAligned 9.73 11.53
DPN 7.30 14.66
Ours (StackOverflow) 4.07 20.81

Table 4: Statistics of within-cluster and between-
cluster distances (Islam et al., 2021).

prototypes, achieving strong within-cluster com-
pactness. Moreover, the difference between Fig-
ure 3(c) and Figure 3(d) shows that the APDL sig-
nificantly pushes prototypes away from each other
and builds distinct cluster boundaries.

5.3. Effect of the Number of Clusters
To explore the sensitivity of the models to the initial
number of clusters C, we adjust C from its ground-
truth value up to four times that amount. In Fig-
ure 4, we observe that most methods show a per-
formance drop with an increasing initial value of
C. This is because the unreasonably assigned
C leads to the generation of noisy pseudo-labels,
which substantially impacts the clustering results.
Notably, our method still achieves the best perfor-
mance on three datasets, validating the capacity of

Methods
CLINC BANKING StackOverflow

C E C E C E

DTC (BERT) 112 25.33 58 24.68 26 30.00
DeepAligned 129 14.00 67 12.99 17 15.00
ProbNID 130 13.30 73 5.48 - -
DPN 137 8.67 71 7.80 18 10.00

Ours 141 6.00 75 2.60 22 10.00

Table 5: Estimation of the number of clusters
C, where E represents the error rate, which is
obtained by calculating the estimated C and the
ground truth number.

our model to mitigate the impact of noisy pseudo-
labels and augment robustness. This also shows
the superiority of our method in the same semi-
supervised NID setting.

5.4. Estimate Number of Clusters
The above experiments assume the number of
clusters C to be the ground truth. But this is un-
realistic in practice. Therefore, in order to further
validate the effectiveness of our method in practi-
cal scenarios, we conduct experiments to estimate
the number of clusters. We use the same settings
as Zhang et al. (2021a) and firstly assign the num-
ber of intents as two times the ground truth number
to investigate the ability to estimate C. In Table 5,
we notice that our method can predict the number
of intents more accurately and achieve better re-
sults at the same time. The results indicate that our
method more easily learns cluster-friendly discrim-
inative representations that assist in accurately es-
timating the number of clusters.
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Figure 5: Impact of varying the known class ratio
on two datasets. The x-axis represents different
models and the y-axis denotes their corresponding
accuracy values.
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Figure 6: Weight of the multitask learning ω.

5.5. Effect of Known Class Ratio
To investigate the influence of the number of
known intents, we vary the known class ratio in
the range of 25%, 50% and 75% during training.
From Figure 5, it is evident that the performance
of all strong methods gradually decreases as the
known intent rate decreases. As the known in-
tent rate decreases, there is less labeled data
available to guide model training, which compli-
cates the transfer of prior knowledge for discov-
ering new intents. However, with the decrease in
the known intent rate, our proposed RAP demon-
strates more significant improvements. We sur-
mise that as the number of intent categories in-
creases, the pivotal factor for enhancing perfor-
mance is the learning of cluster-friendly represen-
tations, which establish distinct boundaries for
both known and novel categories. This highlights
the proficiency of our model in optimizing both
within-cluster and between-cluster distances, re-
sulting in well-defined cluster boundaries.

5.6. Weight of Multitask Learning
The weight of the multitask learning ω in Eq. 11
adjusts the contribution of two objectives RPAL
and APDL. To pursue the optimal performance,
we conduct experiments varying ω across
{0.0, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0}. In Figure 6, the
model performance continues improving with the
value of ω increasing to 1.0. The model keeps a
relatively stable performance after reaching 3.0
but encounters performance degradation with a
large value of ω = 10.0. The ability of the RPAL

Methods KACC NACC NMI ARI

ChatGPT3.5 84.14 25.45 73.58 37.88
Ours (CLINC) 68.56 82.00 88.53 47.06

ChatGPT3.5 80.41 32.69 87.69 46.68
Ours (BANKING) 71.42 85.00 89.60 58.66

ChatGPT3.5 71.53 50.00 72.20 47.17
Ours (StackOverflow) 82.35 89.41 81.50 62.13

Table 6: Comparison between RAP and LLM.

cannot be fully exploited with a small value of
ω, while the ability of the APDL is suppressed
leading to a worse clustering performance with a
large value of ω. Empirically, we choose ω = 2.0
for all datasets.

5.7. Comparison with LLM
To conduct a comprehensive performance com-
parison with the large language model (LLM) on
the NID task, we randomly select 1.5% of train-
ing data as labeled and choose 75% of all in-
tents as known. For evaluation, our compre-
hensive assessment covers 600 instances from
three datasets (200 samples randomly from each
dataset). The metrics are comprised of known
intents accuracy (KACC), novel detection accu-
racy (NACC), and clustering performance (NMI
and ARI) for novel intents. In Table 6, our method
consistently outperforms ChatGPT3.52 across all
datasets and evaluation metrics with a small model
size and fast inference speed, demonstrating the
superior performance of our approach. Moving for-
ward, we plan to explore the integration of RAP
with LLM to boost the performance in NID.

6. Conclusion

In this work, we propose a robust and adaptive
prototypical learning (RAP) framework for new in-
tent discovery, which aims to learn cluster-friendly
discriminative representations. Specifically, we
design the robust prototypical attracting learning
(RPAL) method and the adaptive prototypical dis-
persion (APDL) method to control within-cluster
and between-cluster distances, respectively. Ex-
perimental results on three benchmarks demon-
strate that RAP significantly outperforms the previ-
ous unsupervised and semi-supervised baselines
and even defeats the large language model (Chat-
GPT3.5). Extensive probing analysis further ver-
ifies that RPAL is helpful for realizing stronger
within-cluster compactness while mitigating the ef-
fects of noisy pseudo-labels and APDL is benefi-
cial for attaining larger between-cluster dispersion.
We hope our work can provide useful insights for
further research.

2We utilize OpenAI gpt-3.5-turbo-0301, see index.

https://platform.openai.com/docs/models/overview
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Limitations

Despite the promising results obtained by our RAP,
it is crucial to acknowledge several limitations: (1)
Improving pseudo-labels assignments. The
pseudo-labels obtained using the k-means method
are not sufficiently reliable, as it is highly sensitive
to noisy intent data. We plan to explore more re-
liable pseudo-label assignment approaches. (2)
Leveraging LLMs to facilitate interpretability.
While our clustering method can assign cluster la-
bels to unlabeled utterances, it cannot generate
meaningful and interpretable names for each iden-
tified cluster or intent. We intend to investigate the
combination of our method with LLMs to assign ac-
curate category names to newly discovered intent
categories.

Acknowledgements

This work was supported in part by the National
Natural Science Foundation of China (Grant Nos.
U1636211, U2333205, 61672081, 62302025,
62276017), a fund project: State Grid Co., Ltd.
Technology R&D Project (ProjectName: Research
on Key Technologies of Data Scenario-based Se-
curity Governance and Emergency Blocking in
Power Monitoring System, Proiect No.: 5108-
202303439A-3-2-ZN), the 2022 CCF-NSFOCUS
Kun-Peng Scientific Research Fund and the Open-
ing Project of Shanghai Trusted Industrial Control
Platform and the State Key Laboratory of Com-
plex & Critical Software Environment (Grant No.
SKLSDE-2021ZX-18).

7. Bibliographical References

Wenbin An, Feng Tian, Qinghua Zheng, Wei Ding,
Qianying Wang, and Ping Chen. 2023. Gener-
alized category discovery with decoupled proto-
typical network. In Thirty-Seventh AAAI Con-
ference on Artificial Intelligence, AAAI 2023,
Thirty-Fifth Conference on Innovative Applica-
tions of Artificial Intelligence, IAAI 2023, Thir-
teenth Symposium on Educational Advances in
Artificial Intelligence, EAAI 2023, Washington,
DC, USA, February 7-14, 2023, pages 12527–
12535. AAAI Press.

Sugato Basu, Arindam Banerjee, and Raymond J.
Mooney. 2004. Active semi-supervision for pair-
wise constrained clustering. In Proceedings of
the Fourth SIAM International Conference on
Data Mining, Lake Buena Vista, Florida, USA,
April 22-24, 2004, pages 333–344. SIAM.

Mathilde Caron, Piotr Bojanowski, Armand Joulin,
and Matthijs Douze. 2018. Deep clustering for
unsupervised learning of visual features. In
Computer Vision - ECCV 2018 - 15th European
Conference, Munich, Germany, September 8-
14, 2018, Proceedings, Part XIV, volume 11218
of Lecture Notes in Computer Science, pages
139–156. Springer.

Iñigo Casanueva, Tadas Temčinas, Daniela Gerz,
Matthew Henderson, and Ivan Vulić. 2020. Ef-
ficient intent detection with dual sentence en-
coders. In Proceedings of the 2nd Workshop
on Natural Language Processing for Conversa-
tional AI, pages 38–45, Online. Association for
Computational Linguistics.

Linzheng Chai, Jian Yang, Tao Sun, Hongcheng
Guo, Jiaheng Liu, Bing Wang, Xiannian Liang,
Jiaqi Bai, Tongliang Li, Qiyao Peng, et al.
2024. xcot: Cross-lingual instruction tuning for
cross-lingual chain-of-thought reasoning. arXiv
preprint arXiv:2401.07037.

Jianlong Chang, Lingfeng Wang, Gaofeng Meng,
Shiming Xiang, and Chunhong Pan. 2017. Deep
adaptive image clustering. In IEEE International
Conference on Computer Vision, ICCV 2017,
Venice, Italy, October 22-29, 2017, pages 5880–
5888. IEEE Computer Society.

Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett,
Cynthia Rudin, and Jonathan Su. 2019. This
looks like that: Deep learning for interpretable
image recognition. In Advances in Neural Infor-
mation Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 8928–8939.

Aleksandra Chrabrowa, Tsimur Hadeliya, Dariusz
Kajtoch, Robert Mroczkowski, and Piotr Rybak.
2023. Going beyond research datasets: Novel
intent discovery in the industry setting. In Find-
ings of the Association for Computational Lin-
guistics: EACL 2023, Dubrovnik, Croatia, May
2-6, 2023, pages 895–911. Association for Com-
putational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language un-
derstanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume
1 (Long and Short Papers), pages 4171–4186.
Association for Computational Linguistics.

https://doi.org/10.1609/aaai.v37i11.26475
https://doi.org/10.1609/aaai.v37i11.26475
https://doi.org/10.1609/aaai.v37i11.26475
https://doi.org/10.1137/1.9781611972740.31
https://doi.org/10.1137/1.9781611972740.31
https://doi.org/10.1007/978-3-030-01264-9_9
https://doi.org/10.1007/978-3-030-01264-9_9
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://doi.org/10.1109/ICCV.2017.626
https://doi.org/10.1109/ICCV.2017.626
https://proceedings.neurips.cc/paper/2019/hash/adf7ee2dcf142b0e11888e72b43fcb75-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/adf7ee2dcf142b0e11888e72b43fcb75-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/adf7ee2dcf142b0e11888e72b43fcb75-Abstract.html
https://aclanthology.org/2023.findings-eacl.68
https://aclanthology.org/2023.findings-eacl.68
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423


12203

Enrico Fini, Enver Sangineto, Stéphane Lathuil-
ière, Zhun Zhong, Moin Nabi, and Elisa Ricci.
2021. A unified objective for novel class dis-
covery. In 2021 IEEE/CVF International Con-
ference on Computer Vision, ICCV 2021, Mon-
treal, QC, Canada, October 10-17, 2021, pages
9264–9272. IEEE.

K. Chidananda Gowda and G. Krishna. 1978. Ag-
glomerative clustering using the concept of mu-
tual nearest neighbourhood. Pattern Recognit.,
10(2):105–112.

Dilek Hakkani-Tür, Asli Celikyilmaz, Larry P.
Heck, and Gökhan Tür. 2013. A weakly-
supervised approach for discovering new user
intents from search query logs. In INTER-
SPEECH 2013, 14th Annual Conference of the
International Speech Communication Associa-
tion, Lyon, France, August 25-29, 2013, pages
3780–3784. ISCA.

Dilek Hakkani-Tür, Yun-Cheng Ju, Geoffrey Zweig,
and Gökhan Tür. 2015. Clustering novel in-
tents in a conversational interaction system with
semantic parsing. In INTERSPEECH 2015,
16th Annual Conference of the International
Speech Communication Association, Dresden,
Germany, September 6-10, 2015, pages 1854–
1858. ISCA.

Kai Han, Andrea Vedaldi, and Andrew Zisserman.
2019. Learning to discover novel visual cat-
egories via deep transfer clustering. In 2019
IEEE/CVF International Conference on Com-
puter Vision, ICCV 2019, Seoul, Korea (South),
October 27 - November 2, 2019, pages 8400–
8408. IEEE.

Yen-Chang Hsu, Zhaoyang Lv, and Zsolt Kira.
2018. Learning to cluster in order to transfer
across domains and tasks. In 6th International
Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenRe-
view.net.

Yen-Chang Hsu, Zhaoyang Lv, Joel Schlosser,
Phillip Odom, and Zsolt Kira. 2019. Multi-class
classification without multi-class labels. In 7th
International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net.

Ashraful Islam, Chun-Fu Chen, Rameswar Panda,
Leonid Karlinsky, Richard J. Radke, and
Rogério Feris. 2021. A broad study on the
transferability of visual representations with con-
trastive learning. In 2021 IEEE/CVF Interna-
tional Conference on Computer Vision, ICCV
2021, Montreal, QC, Canada, October 10-17,
2021, pages 8825–8835. IEEE.

Lu Jiang, Di Huang, Mason Liu, and Weilong Yang.
2020. Beyond synthetic noise: Deep learning
on controlled noisy labels. In Proceedings of
the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proceedings of Machine
Learning Research, pages 4804–4815. PMLR.

Rajat Kumar, Mayur Patidar, Vaibhav Varshney,
Lovekesh Vig, and Gautam Shroff. 2022. Intent
detection and discovery from user logs via deep
semi-supervised contrastive clustering. In Pro-
ceedings of the 2022 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, NAACL 2022, Seattle, WA, United States,
July 10-15, 2022, pages 1836–1853. Associa-
tion for Computational Linguistics.

Stefan Larson, Anish Mahendran, Joseph J.
Peper, Christopher Clarke, Andrew Lee, Parker
Hill, Jonathan K. Kummerfeld, Kevin Leach,
Michael A. Laurenzano, Lingjia Tang, and Ja-
son Mars. 2019. An evaluation dataset for in-
tent classification and out-of-scope prediction.
In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing
and the 9th International Joint Conference on
Natural Language Processing, EMNLP-IJCNLP
2019, Hong Kong, China, November 3-7, 2019,
pages 1311–1316. Association for Computa-
tional Linguistics.

Junnan Li, Richard Socher, and Steven C. H. Hoi.
2020. Dividemix: Learning with noisy labels as
semi-supervised learning. In 8th International
Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net.

Junnan Li, Pan Zhou, Caiming Xiong, and Steven
C. H. Hoi. 2021. Prototypical contrastive learn-
ing of unsupervised representations. In 9th In-
ternational Conference on Learning Represen-
tations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net.

Ting-En Lin, Hua Xu, and Hanlei Zhang. 2020. Dis-
covering new intents via constrained deep adap-
tive clustering with cluster refinement. In The
Thirty-Fourth AAAI Conference on Artificial In-
telligence, AAAI 2020, The Thirty-Second Inno-
vative Applications of Artificial Intelligence Con-
ference, IAAI 2020, The Tenth AAAI Sympo-
sium on Educational Advances in Artificial Intel-
ligence, EAAI 2020, New York, NY, USA, Febru-
ary 7-12, 2020, pages 8360–8367. AAAI Press.

Bing Liu and Sahisnu Mazumder. 2021. Life-
long and continual learning dialogue systems:
Learning during conversation. In Thirty-Fifth

https://doi.org/10.1109/ICCV48922.2021.00915
https://doi.org/10.1109/ICCV48922.2021.00915
https://doi.org/10.1016/0031-3203(78)90018-3
https://doi.org/10.1016/0031-3203(78)90018-3
https://doi.org/10.1016/0031-3203(78)90018-3
https://doi.org/10.21437/Interspeech.2013-598
https://doi.org/10.21437/Interspeech.2013-598
https://doi.org/10.21437/Interspeech.2013-598
https://doi.org/10.21437/Interspeech.2015-70
https://doi.org/10.21437/Interspeech.2015-70
https://doi.org/10.21437/Interspeech.2015-70
https://doi.org/10.1109/ICCV.2019.00849
https://doi.org/10.1109/ICCV.2019.00849
https://openreview.net/forum?id=ByRWCqvT-
https://openreview.net/forum?id=ByRWCqvT-
https://openreview.net/forum?id=SJzR2iRcK7
https://openreview.net/forum?id=SJzR2iRcK7
https://doi.org/10.1109/ICCV48922.2021.00872
https://doi.org/10.1109/ICCV48922.2021.00872
https://doi.org/10.1109/ICCV48922.2021.00872
http://proceedings.mlr.press/v119/jiang20c.html
http://proceedings.mlr.press/v119/jiang20c.html
https://doi.org/10.18653/v1/2022.naacl-main.134
https://doi.org/10.18653/v1/2022.naacl-main.134
https://doi.org/10.18653/v1/2022.naacl-main.134
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
https://openreview.net/forum?id=HJgExaVtwr
https://openreview.net/forum?id=HJgExaVtwr
https://openreview.net/forum?id=KmykpuSrjcq
https://openreview.net/forum?id=KmykpuSrjcq
https://doi.org/10.1609/aaai.v34i05.6353
https://doi.org/10.1609/aaai.v34i05.6353
https://doi.org/10.1609/aaai.v34i05.6353
https://doi.org/10.1609/aaai.v35i17.17768
https://doi.org/10.1609/aaai.v35i17.17768
https://doi.org/10.1609/aaai.v35i17.17768


12204

AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Ap-
plications of Artificial Intelligence, IAAI 2021,
The Eleventh Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2021, Vir-
tual Event, February 2-9, 2021, pages 15058–
15063. AAAI Press.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

James MacQueen et al. 1967. Some methods for
classification and analysis of multivariate obser-
vations. In Proceedings of the fifth Berkeley sym-
posium on mathematical statistics and probabil-
ity, 14, pages 281–297. Oakland, CA, USA.

Ying Mo, Jian Yang, Jiahao Liu, Qifan Wang,
Ruoyu Chen, Jingang Wang, and Zhoujun Li.
2023. mcl-ner: Cross-lingual named entity
recognition via multi-view contrastive learning.
arXiv preprint arXiv:2308.09073.

Yutao Mou, Keqing He, Yanan Wu, Pei Wang, Jin-
gang Wang, Wei Wu, Yi Huang, Junlan Feng,
and Weiran Xu. 2022. Generalized intent dis-
covery: Learning from open world dialogue sys-
tem. In Proceedings of the 29th International
Conference on Computational Linguistics, COL-
ING 2022, Gyeongju, Republic of Korea, Octo-
ber 12-17, 2022, pages 707–720. International
Committee on Computational Linguistics.

Padmasundari and Srinivas Bangalore. 2018. In-
tent discovery through unsupervised semantic
text clustering. In Interspeech 2018, 19th Annual
Conference of the International Speech Com-
munication Association, Hyderabad, India, 2-6
September 2018, pages 606–610. ISCA.

Maarten De Raedt, Fréderic Godin, Thomas De-
meester, and Chris Develder. 2023. IDAS: in-
tent discovery with abstractive summarization.
CoRR, abs/2305.19783.

Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora,
Mikhail Khodak, and Hrishikesh Khandeparkar.
2019. A theoretical analysis of contrastive un-
supervised representation learning. In Proceed-
ings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Pro-
ceedings of Machine Learning Research, pages
5628–5637. PMLR.

Xiang Shen, Yinge Sun, Yao Zhang, and Mani Na-
jmabadi. 2021. Semi-supervised intent discov-
ery with contrastive learning. In Proceedings of

the 3rd Workshop on Natural Language Process-
ing for Conversational AI, pages 120–129.

Chen Shi, Qi Chen, Lei Sha, Sujian Li, Xu Sun,
Houfeng Wang, and Lintao Zhang. 2018. Auto-
dialabel: Labeling dialogue data with unsuper-
vised learning. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Lan-
guage Processing, pages 684–689, Brussels,
Belgium. Association for Computational Linguis-
tics.

A. B. Siddique, Fuad T. Jamour, Luxun Xu, and
Vagelis Hristidis. 2021. Generalized zero-shot
intent detection via commonsense knowledge.
In SIGIR ’21: The 44th International ACM SI-
GIR Conference on Research and Development
in Information Retrieval, Virtual Event, Canada,
July 11-15, 2021, pages 1925–1929. ACM.

Jake Snell, Kevin Swersky, and Richard S. Zemel.
2017. Prototypical networks for few-shot learn-
ing. In Advances in Neural Information Process-
ing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, Decem-
ber 4-9, 2017, Long Beach, CA, USA, pages
4077–4087.

Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew
Zisserman. 2022. Generalized category discov-
ery. In IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2022, New
Orleans, LA, USA, June 18-24, 2022, pages
7482–7491. IEEE.

Tongzhou Wang and Phillip Isola. 2020. Un-
derstanding contrastive representation learning
through alignment and uniformity on the hyper-
sphere. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume
119 of Proceedings of Machine Learning Re-
search, pages 9929–9939. PMLR.

Chien-Sheng Wu, Andrea Madotto, Ehsan
Hosseini-Asl, Caiming Xiong, Richard Socher,
and Pascale Fung. 2019. Transferable multi-
domain state generator for task-oriented
dialogue systems. In Proceedings of the
57th Conference of the Association for Com-
putational Linguistics, ACL 2019, Florence,
Italy, July 28- August 2, 2019, Volume 1:
Long Papers, pages 808–819. Association for
Computational Linguistics.

Junyuan Xie, Ross B. Girshick, and Ali Farhadi.
2016. Unsupervised deep embedding for clus-
tering analysis. In Proceedings of the 33nd
International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June
19-24, 2016, volume 48 of JMLR Workshop

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/2022.coling-1.59
https://aclanthology.org/2022.coling-1.59
https://aclanthology.org/2022.coling-1.59
https://doi.org/10.21437/Interspeech.2018-2436
https://doi.org/10.21437/Interspeech.2018-2436
https://doi.org/10.21437/Interspeech.2018-2436
https://doi.org/10.48550/arXiv.2305.19783
https://doi.org/10.48550/arXiv.2305.19783
http://proceedings.mlr.press/v97/saunshi19a.html
http://proceedings.mlr.press/v97/saunshi19a.html
https://doi.org/10.18653/v1/D18-1072
https://doi.org/10.18653/v1/D18-1072
https://doi.org/10.18653/v1/D18-1072
https://doi.org/10.1145/3404835.3462985
https://doi.org/10.1145/3404835.3462985
https://proceedings.neurips.cc/paper/2017/hash/cb8da6767461f2812ae4290eac7cbc42-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/cb8da6767461f2812ae4290eac7cbc42-Abstract.html
https://doi.org/10.1109/CVPR52688.2022.00734
https://doi.org/10.1109/CVPR52688.2022.00734
http://proceedings.mlr.press/v119/wang20k.html
http://proceedings.mlr.press/v119/wang20k.html
http://proceedings.mlr.press/v119/wang20k.html
http://proceedings.mlr.press/v119/wang20k.html
https://doi.org/10.18653/v1/p19-1078
https://doi.org/10.18653/v1/p19-1078
https://doi.org/10.18653/v1/p19-1078
http://proceedings.mlr.press/v48/xieb16.html
http://proceedings.mlr.press/v48/xieb16.html


12205

and Conference Proceedings, pages 478–487.
JMLR.org.

Jiaming Xu, Peng Wang, Guanhua Tian, Bo Xu,
Jun Zhao, Fangyuan Wang, and Hongwei Hao.
2015. Short text clustering via convolutional neu-
ral networks. In Proceedings of the 1st Work-
shop on Vector Space Modeling for Natural Lan-
guage Processing, pages 62–69, Denver, Col-
orado. Association for Computational Linguis-
tics.

Bo Yang, Xiao Fu, Nicholas D. Sidiropoulos, and
Mingyi Hong. 2017. Towards k-means-friendly
spaces: Simultaneous deep learning and clus-
tering. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017, vol-
ume 70 of Proceedings of Machine Learning Re-
search, pages 3861–3870. PMLR.

Jian Yang, Shaohan Huang, Shuming Ma, Yuwei
Yin, Li Dong, Dongdong Zhang, Hongcheng
Guo, Zhoujun Li, and Furu Wei. 2022. CROP:
zero-shot cross-lingual named entity recognition
with multilingual labeled sequence translation.
In Findings of EMNLP 2022, pages 486–496.

Jian Yang, Shuming Ma, Li Dong, Shaohan Huang,
Haoyang Huang, Yuwei Yin, Dongdong Zhang,
Liqun Yang, Furu Wei, and Zhoujun Li. 2023.
Ganlm: Encoder-decoder pre-training with an
auxiliary discriminator. In Proceedings of the
61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 9394–9412, Toronto, Canada. Associa-
tion for Computational Linguistics.

Jian Yang, Shuming Ma, Haoyang Huang, Dong-
dong Zhang, Li Dong, Shaohan Huang, Alexan-
dre Muzio, Saksham Singhal, Hany Hassan,
Xia Song, and Furu Wei. 2021a. Multilingual
machine translation systems from microsoft for
WMT21 shared task. In WMT 2021, pages 446–
455. Association for Computational Linguistics.

Jian Yang, Shuming Ma, Dongdong Zhang, Zhou-
jun Li, and Ming Zhou. 2020. Improving neu-
ral machine translation with soft template predic-
tion. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 5979–5989.

Jian Yang, Shuming Ma, Dongdong Zhang,
Juncheng Wan, Zhoujun Li, and Ming Zhou.
2021b. Smart-start decoding for neural machine
translation. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2021, On-
line, June 6-11, 2021, pages 3982–3988. Asso-
ciation for Computational Linguistics.

Jian Yang, Juncheng Wan, Shuming Ma, Haoyang
Huang, Dongdong Zhang, Yong Yu, Zhoujun Li,
and Furu Wei. 2021c. Learning to select rele-
vant knowledge for neural machine translation.
In Natural Language Processing and Chinese
Computing - 10th CCF International Conference,
NLPCC 2021, Qingdao, China, October 13-17,
2021, Proceedings, Part I, volume 13028 of Lec-
ture Notes in Computer Science, pages 79–91.
Springer.

Jian Yang, Yuwei Yin, Shuming Ma, Haoyang
Huang, Dongdong Zhang, Zhoujun Li, and Furu
Wei. 2021d. Multilingual agreement for multilin-
gual neural machine translation. In Proceedings
of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages
233–239, Online. Association for Computational
Linguistics.

Ze Yang, Wei Wu, Jian Yang, Can Xu, and Zhou-
jun Li. 2019. Low-resource response genera-
tion with template prior. In Proceedings of the
2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language
Processing, EMNLP-IJCNLP 2019, Hong Kong,
China, November 3-7, 2019, pages 1886–1897.
Association for Computational Linguistics.

Xiangyu Yue, Zangwei Zheng, Shanghang Zhang,
Yang Gao, Trevor Darrell, Kurt Keutzer, and Al-
berto L. Sangiovanni-Vincentelli. 2021. Prototyp-
ical cross-domain self-supervised learning for
few-shot unsupervised domain adaptation. In
IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2021, virtual, June 19-
25, 2021, pages 13834–13844. Computer Vi-
sion Foundation / IEEE.

Sangdoo Yun, Dongyoon Han, Sanghyuk Chun,
Seong Joon Oh, Youngjoon Yoo, and Junsuk
Choe. 2019. Cutmix: Regularization strategy
to train strong classifiers with localizable fea-
tures. In 2019 IEEE/CVF International Confer-
ence on Computer Vision, ICCV 2019, Seoul,
Korea (South), October 27 - November 2, 2019,
pages 6022–6031. IEEE.

Hanlei Zhang, Hua Xu, Ting-En Lin, and Rui
Lyu. 2021a. Discovering new intents with deep
aligned clustering. In Thirty-Fifth AAAI Confer-
ence on Artificial Intelligence, AAAI 2021, Thirty-
Third Conference on Innovative Applications of
Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI 2021, Virtual Event,
February 2-9, 2021, pages 14365–14373. AAAI
Press.

https://doi.org/10.3115/v1/W15-1509
https://doi.org/10.3115/v1/W15-1509
http://proceedings.mlr.press/v70/yang17b.html
http://proceedings.mlr.press/v70/yang17b.html
http://proceedings.mlr.press/v70/yang17b.html
https://doi.org/10.18653/v1/2023.acl-long.522
https://doi.org/10.18653/v1/2023.acl-long.522
https://doi.org/10.18653/v1/2021.naacl-main.312
https://doi.org/10.18653/v1/2021.naacl-main.312
https://doi.org/10.1007/978-3-030-88480-2_7
https://doi.org/10.1007/978-3-030-88480-2_7
https://doi.org/10.18653/v1/2021.acl-short.31
https://doi.org/10.18653/v1/2021.acl-short.31
https://doi.org/10.18653/V1/D19-1197
https://doi.org/10.18653/V1/D19-1197
https://doi.org/10.1109/CVPR46437.2021.01362
https://doi.org/10.1109/CVPR46437.2021.01362
https://doi.org/10.1109/CVPR46437.2021.01362
https://doi.org/10.1109/ICCV.2019.00612
https://doi.org/10.1109/ICCV.2019.00612
https://doi.org/10.1109/ICCV.2019.00612
https://doi.org/10.1609/aaai.v35i16.17689
https://doi.org/10.1609/aaai.v35i16.17689


12206

Hanlei Zhang, Hua Xu, Xin Wang, Fei Long, and
Kai Gao. 2023a. USNID: A framework for un-
supervised and semi-supervised new intent dis-
covery. CoRR, abs/2304.07699.

Hongyi Zhang, Moustapha Cissé, Yann N.
Dauphin, and David Lopez-Paz. 2018. mixup:
Beyond empirical risk minimization. In 6th
International Conference on Learning Rep-
resentations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net.

Jian-Guo Zhang, Trung Bui, Seunghyun Yoon,
Xiang Chen, Zhiwei Liu, Congying Xia,
Quan Hung Tran, Walter Chang, and Philip S.
Yu. 2021b. Few-shot intent detection via
contrastive pre-training and fine-tuning. In
Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Do-
minican Republic, 7-11 November, 2021, pages
1906–1912. Association for Computational
Linguistics.

Shun Zhang, Jiaqi Bai, Tongliang Li, Zhao Yan,
and Zhoujun Li. 2023b. Modeling intra-class
and inter-class constraints for out-of-domain de-
tection. In Database Systems for Advanced Ap-
plications - 28th International Conference, DAS-
FAA 2023, Tianjin, China, April 17-20, 2023,
Proceedings, Part IV, volume 13946, pages
142–158. Springer.

Shun Zhang, Tongliang Li, Jiaqi Bai, and Zhou-
jun Li. 2023c. Label-guided contrastive learn-
ing for out-of-domain detection. In IEEE In-
ternational Conference on Acoustics, Speech
and Signal Processing ICASSP 2023, Rhodes
Island, Greece, June 4-10, 2023, pages 1–5.
IEEE.

Yuwei Zhang, Haode Zhang, Li-Ming Zhan, Xiao-
Ming Wu, and Albert Y. S. Lam. 2022. New in-
tent discovery with pre-training and contrastive
learning. In Proceedings of the 60th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2022,
Dublin, Ireland, May 22-27, 2022, pages 256–
269. Association for Computational Linguistics.

Ran Zhou, Xin Li, Lidong Bing, Erik Cambria, and
Chunyan Miao. 2023a. Improving self-training
for cross-lingual named entity recognition with
contrastive and prototype learning. In Proceed-
ings of the 61st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1:
Long Papers), ACL 2023, Toronto, Canada, July
9-14, 2023, pages 4018–4031. Association for
Computational Linguistics.

Yunhua Zhou, Guofeng Quan, and Xipeng Qiu.
2023b. A probabilistic framework for discover-
ing new intents. In Proceedings of the 61st An-
nual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), ACL
2023, Toronto, Canada, July 9-14, 2023, pages
3771–3784. Association for Computational Lin-
guistics.

https://doi.org/10.48550/arXiv.2304.07699
https://doi.org/10.48550/arXiv.2304.07699
https://doi.org/10.48550/arXiv.2304.07699
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb
https://doi.org/10.18653/v1/2021.emnlp-main.144
https://doi.org/10.18653/v1/2021.emnlp-main.144
https://doi.org/10.1007/978-3-031-30678-5_12
https://doi.org/10.1007/978-3-031-30678-5_12
https://doi.org/10.1007/978-3-031-30678-5_12
https://doi.org/10.1109/ICASSP49357.2023.10095333
https://doi.org/10.1109/ICASSP49357.2023.10095333
https://doi.org/10.18653/v1/2022.acl-long.21
https://doi.org/10.18653/v1/2022.acl-long.21
https://doi.org/10.18653/v1/2022.acl-long.21
https://doi.org/10.18653/v1/2023.acl-long.222
https://doi.org/10.18653/v1/2023.acl-long.222
https://doi.org/10.18653/v1/2023.acl-long.222
https://doi.org/10.18653/v1/2023.acl-long.209
https://doi.org/10.18653/v1/2023.acl-long.209

	Introduction
	Related Work
	New Intent Discovery
	Prototypical Learning

	Approach
	Problem Definition
	Intent Representation Learning
	Categorical Prototypes Generation
	Robust Prototypical Attracting
	Adaptive Prototypical Dispersing
	Dynamic Prototypes Update
	Multitask Learning

	Experiments
	Datasets
	Baselines
	Evaluation Metrics
	Experimental Settings
	Main Results
	Ablation Study

	Discussion
	Compactness and Separability
	Representation Visualization
	Effect of the Number of Clusters
	Estimate Number of Clusters
	Effect of Known Class Ratio
	Weight of Multitask Learning
	Comparison with LLM

	Conclusion
	Bibliographical References

