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Abstract
Neural topic models can successfully find coherent and diverse topics in textual data. However, they are limited in
dealing with multimodal datasets (e.g., images and text). This paper presents the first systematic and comprehensive
evaluation of multimodal topic modeling of documents containing both text and images. In the process, we propose
two novel topic modeling solutions and two novel evaluation metrics. Overall, our evaluation on an unprecedented
rich and diverse collection of datasets indicates that both of our models generate coherent and diverse topics.
Nevertheless, the extent to which one method outperforms the other depends on the metrics and dataset combina-
tions, which suggests further exploration of hybrid solutions in the future. Notably, our succinct human evaluation
aligns with the outcomes determined by our proposed metrics. This alignment not only reinforces the credibility of
our metrics but also highlights the potential for their application in guiding future multimodal topic modeling endeavors.
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1. Introduction

The vast amount of text that is constantly gener-
ated has led to the development of several algo-
rithms designed to interpret and summarize large
sets of documents (Peter et al., 2015). A well-
known automatic mechanism is topic modeling, a
robust approach for extracting core themes from
large text corpora. In practice, when topic modeling
is applied to a corpus (e.g., news articles), the re-
sults will include a set of topics. Usually, each topic
is represented by a list of related terms (e.g., tropi-
cal, storm, hurricane, cyclone, weather, rain) (Zhao
et al., 2021). Domain experts (e.g., journalists,
physicians, and marketers) can use topic model-
ing to analyze large document collections without
reading every document (Boyd-Graber et al., 2017;
Ge et al., 2019).

Since most topic modeling algorithms have been
designed specifically to process textual data, their
performance is limited in corpora containing in-
formation in other modalities (e.g., images and
videos). Some work has attempted to address
this limitation by expanding well-known probabilis-
tic (Bian et al., 2013; Zhang et al., 2022) or neu-
ral topic models (Zosa and Pivovarova, 2022a) to
multimodal settings, especially considering images
in the documents. Yet, it remains unclear which
method works better for which dataset, and what
evaluation metrics are more appropriate in this new
multimodal scenario. This paper addresses this
gap by conducting the first systematic and com-
prehensive evaluation of multimodal topic model-
ing applied to documents containing both text and
images. In this process, we make several con-
tributions with respect to neural topic modeling
algorithms, evaluation metrics, and datasets.

Neural topic modeling algorithms: We have de-
veloped two novel neural multimodal topic mod-
eling algorithms by adapting SOTA solutions1.
First, we extend ZeroShotTM (Bianchi et al.,
2021b), a neural topic model that only uses pre-
trained textual embeddings, to the multimodal
Multimodal-ZeroShotTM , which additionally em-
beds images. In particular, both the Bag-Of-Words
(BOW) and the Image Features associated with
each document are reconstructed during decod-
ing. Secondly, we present Multimodal-Contrast,
derived from M3L-Contrast (Zosa and Pivovarova,
2022a), a recent multimodal multilingual neural
topic model that uses Contrastive Learning to map
texts from multiple languages and images into
a shared topic space. Our Multimodal-Contrast
simply omits the encoder and inference networks
associated with a second language.
Metrics: The quality of a given set of topics can be
automatically assessed primarily based on their co-
herence and diversity. For topic modeling methods
that only process textual data, coherence metrics
such as NPMI (Lau et al., 2014), Cv (Röder et al.,
2015), and WE (Fang et al., 2016) evaluate the
semantic relatedness of the topic keywords; while
diversity metrics like TD (Dieng et al., 2020) and
I-RBO (Bianchi et al., 2021a) measure the lexical
overlap between the descriptors of different topics.
However, in a multimodal setting, each topic is rep-
resented not only by a set of keywords, but also
by a set of images. Yet, there are no automatic
metrics to assess the coherence and segregation
of the images representing a topic. In this paper, to
fill this gap, we propose two new metrics, namely
Image Embedding-based Coherence (IEC) and Im-

1Our code is available at : https://github.com/
gonzalezf/multimodal_neural_topic_modeling/

https://github.com/gonzalezf/multimodal_neural_topic_modeling/
https://github.com/gonzalezf/multimodal_neural_topic_modeling/
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age Embedding-based Pairwise Similarity (IEPS),
which appear to align with human judgment in our
preliminary user study.

Datasets: While previous work on multimodal topic
modeling has been tested only on a few rather ho-
mogeneous datasets, we are the first to propose
and leverage six diverse datasets that vary sub-
stantially in terms of the document size (ranging
from 6 to 2,425 words per document on average),
the source of the documents (e.g., Flickr, Twitter,
Wikipedia), the underlying task/domain (e.g., Ob-
ject recognition, Visual Storytelling) as well as in
the way the gold-standard data was collected (e.g.,
crowd-sourcing, automatic classification).

Armed with a comprehensive set of metrics
and a diverse collection of datasets, we per-
form the first systematic evaluation of multi-
modal neural topic modeling methods, compar-
ing our novel proposals, Multimodal-ZeroShotTM
and Multimodal-Contrast, among themselves and
against only textual SOTA topic modeling methods.

2. Related Work

With the recent developments of deep neural net-
works, several Neural Topic Models (NTMs) have
been proposed. For instance, Srivastava and
Sutton (2017) proposed Product-of-Experts LDA
(ProdLDA), a topic modeling algorithm that, like
the original (LDA) (Blei et al., 2003a), still uses
a BOW representation of documents, but lever-
ages it in a more sophisticated way by combining
a variational autoencoder (VAE) (Blei et al., 2017)
with a Product of Experts (PoE) approach (Hin-
ton, 2002). As a result, ProdLDA not only consis-
tently identifies more coherent and diverse topics
than LDA (Srivastava and Sutton, 2017; Sridhar
et al., 2022), but it also process data more effi-
ciently (Srivastava and Sutton, 2017). Despite
progress, both LDA and ProdLDA are still limited
to BOW document representations. By ignoring
critical syntactic and semantic relationships among
words, they sometimes fail to identify high-quality
topics (see (Bianchi et al., 2021a) and (Burkhardt
and Kramer, 2019)). In order to incorporate se-
mantic relationships into topic models, Dieng et al.
(2020) proposed Embedding Topic Models (ETM),
a generative probabilistic model that relies on static
word embeddings (Mikolov et al., 2013) to identify
interpretable topics.

Nevertheless, a remaining key shortcoming
of ETM is that by relying on static embed-
dings, it does not consider contextual relations
among words. This limitation was recently ad-
dressed by Bianchi et al. (2021a) and Bianchi
et al. (2021b), which proposed Contextualized
Topic Models (CTM). CTM is a family of neu-
ral topic models based on a variational autoen-

coder (VAE) (i.e., CombinedTM (Bianchi et al.,
2021a), ZeroShotTM (Bianchi et al., 2021b)), that
relies instead on contextual embeddings (e.g.,
SBERT (Reimers and Gurevych, 2019a)), obtain-
ing higher quality topics than all previous ap-
proaches. One of the two neural topic models
we propose in this paper, Multimodal-ZeroShotTM,
is based on this recent work.

In contrast to the aforementioned neural topic
models, BERTopic (Grootendorst, 2022), takes
a distinct approach by employing a clustering
methodology. Unlike the neural topic models
that infer a mixture of topics within documents,
BERTopic assumes each document correlates with
a single topic. This model incorporates heuristic
techniques to manage this limitation, yet the effec-
tiveness of these strategies remains an area for fur-
ther exploration. Our investigation concentrates on
neural topic models, which inherently consider the
presence of multiple topics in documents, provid-
ing a broader understanding of the data’s thematic
structure.

Only a few topic modeling algorithms have been
proposed to process more than textual data. A
notable exception is M3L-Contrast (Zosa and Pivo-
varova, 2022a), a neural topic model that maps
texts from multiple languages and images into a
shared topic space by using pre-trained image
(CLIP (Radford et al., 2021b)), and text embed-
dings (SBERT (Reimers and Gurevych, 2019b))
to abstract the complexities between different lan-
guages and modalities. The second neural topic
model we propose here, Multimodal-Contrast, is
based on this recent work.

Given the recent success of decoder-only GPT-
like systems (Achiam et al., 2023) in so many NLP
tasks, it may seem surprising that they have not
been applied yet to the topic modeling task. How-
ever, the plain reason is that they are still severely
limited in their input size, currently in the 10,000s of
tokens (Bubeck et al., 2023), and therefore cannot
process the large corpora for which topic model-
ing is actually needed. Very recent work (e.g., (Yu
et al., 2023)) may inspire ideas on how to overcome
this limitation in the future. Tellingly, the evaluation
framework and baselines presented in this paper
will be critical in assessing these new solutions.

3. Our New Multimodal Algorithms

3.1. Multimodal-ZeroShotTM

We propose Multimodal-ZeroShotTM, a novel mul-
timodal topic modeling algorithm based on Ze-
roShotTM (Bianchi et al., 2021b). Figure 1 shows
the architecture of our model. Given a document
with a textual and visual component (e.g., an image
and its caption), we encode each element using
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Figure 1: High-level schema of the architecture
for Multimodal-ZeroShotTM. The loss function is
detailed in Equation 1.

a modality-specific encoder (e.g., by using CLIP
image and text encoders). Then, we concatenate
those embeddings and pass them to an inference
network as input. After that, the model samples a
latent representation from a Gaussian distribution
parameterized by µ and σ2, as is done in related
works (Bianchi et al., 2021b; Zosa and Pivovarova,
2022a; Srivastava and Sutton, 2017). The crucial
difference between our model and ZeroShotTM
is that our decoder network reconstructs both the
BoW and the Image Features associated with each
document (bottom right of Figure 1). Advanta-
geously, by embedding images and reconstructing
their features, the model can capture complemen-
tary information not present in the textual parts of
the document, thus plausibly identifying topics that
are more representative of the multimodal corpus.
Our per document loss function L now includes
three components:

L = Eq

[
w⊤ log (softmax (βθ))

]
−

KL (Q (θ | x) ∥P (θ)) + λ(1− cos(ximg, γθ))
(1)

where the first term measures the loss asso-
ciated with the BoW vector reconstruction of the
document (see (Srivastava and Sutton, 2017) for
more details). The second term corresponds to the
sum of the Kullback-Leibler divergence (KL) loss
between the posterior and prior distributions for the
document embedding x (i.e., the concatenation
of the text and image embeddings). The mean µ
and variance σ2 of the posterior distributions are
estimated in each inference network, and θ is the
sampled topic distribution per document embed-
ding. Finally, the third term corresponds to the loss
associated with the reconstruction of Image Fea-

Text
Encoder

Inference
network

Sampled
representation

BoW 
reconstruction

i-th text in
language A

Image
Encoder

Inference
network

Sampled
representation

i-th image

Loss computation

Text
Encoder

Inference
network

Sampled
representation

BoW 
reconstruction

i-th text in
language B

Figure 2: M3L-Contrast topic model architecture.
It includes language-specific and modality-specific
encoders and inference networks. We highlight
with a dashed line (- - -) the components that we
removed during our adaptation.

tures, as the cosine embedding loss2 between the
estimated image features γθ and the actual value
ximg. This loss measures the similarity between
the two vectors and is often used for learning non-
linear embeddings. λ is a parameter to explore the
trade-off between textual and image losses but has
been kept equal to 1 in the main experiments.

3.2. Multimodal-Contrast

We propose Multimodal-Contrast, an adaptation
specifically derived from M3L-Contrast (Zosa and
Pivovarova, 2022a). While M3L-Contrast is a neu-
ral topic modeling technique tailored for analyzing
datasets that are both multilingual and multimodal,
Multimodal-Contrast shifts the focus to solely mul-
timodal data. In M3L-Contrast, each document
must contain an image and textual content in two
languages (e.g., English and German), with the
model’s architecture including three encoders and
inference networks (see Figure 2), each one pro-
cessing either text in one of the two languages
or an image. In our adaptation, we essentially re-
moved from the architecture the encoder and infer-
ence network for one of the two languages (dashed
in Figure 2, i.e., the components for language B).

The main difference be-
tween Multimodal-Contrast and
Multimodal-ZeroShotTM is the third compo-
nent of the loss function L. In particular, while
Multimodal-ZeroShotTM considers the loss asso-
ciated with the reconstruction of Image Features,
Multimodal-Contrast uses the InfoNCE Con-
trastive Learning loss (Oord et al., 2018) to align

2Using MSE as this loss delivers similar performance.
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topic distributions sampled from the different
modalities of the document (i.e., its textual and
visual parts). This Contrastive Learning loss maps
similar instances close to each other and keeps
non-related instances apart. Overall, L combines
three components:

L = Eq

[
w⊤ log (softmax (βθtxt))

]
−

k∑
l=1

KL
(
Q
(
θl | xl

)
∥P

(
θl
))

−

ω

k∑
a,b=1
a̸=b

log
exp

((
θa · θb

)
/τ

)∑N
j=1

∑k
c,d=1 exp

((
θc · θdj

)
/τ

)
(2)

The first term corresponds to the standard BoW
reconstruction loss given the textual component
of the document. The second term corresponds
to the KL loss between posterior and prior distri-
butions for every component k (i.e., image, text)
of a document. So, it is similar but not the same
as in Multimodal-ZeroShotTM. Here, the mean µ
and variance σ2 of the posterior distributions are
estimated in each inference network; x can be a
textual or visual embedding, and θ is a sampled
topic distribution given a textual or visual compo-
nent of a document. Finally, the third term is the
InfoNCE loss, where (θa · θb) are positive pairs
and (θc · θd) are negative pairs. Positive terms
are aligned components of a document (e.g., an
image and its caption). N is the batch size, τ
is the temperature, and ω is a parameter (like λ
for Multimodal-ZeroShotTM) to explore the trade-
off between contrastive and other losses, but has
been kept equal to 100 in the main experiments as
(Zosa and Pivovarova, 2022a).

4. Automatic Metrics

The quality of topic models is commonly assessed
based on their coherence and diversity. Automatic
coherence metrics identify the degree of lexical
and semantic relatedness between the terms that
describe each topic, while automatic diversity met-
rics measure the lexical overlap between the terms
of different topics. In our evaluation, we apply stan-
dard metrics to assess the quality of the textual
descriptors of the topics, namely NPMI (Lau et al.,
2014), Cv (Röder et al., 2015), and WE (Fang et al.,
2016) for coherence and TD (Dieng et al., 2020)
and I-RBO (Bianchi et al., 2021a) for diversity3.

However, in multimodal topic models, each topic
is represented not only by a set of keywords but
also by a set of images. Since there are cur-
rently no automatic metrics for evaluating the co-

3We use the implementations of these metrics pro-
vided in the OCTIS library (Terragni et al., 2021a).

herence and diversity of images representing top-
ics, we propose two new metrics, namely Image
Embedding-based Coherence (IEC) and Image
Embedding-based Pairwise Similarity (IEPS), to
fill this gap.
Image Embedding-based Coherence (IEC) is
based on WE (Fang et al., 2016), a metric that
has been validated and widely used (Bianchi et al.,
2021a; Li et al., 2023). While the WE metric was
designed to gauge the semantic relatedness be-
tween word embeddings, our IEC evaluates the
semantic relatedness between images represent-
ing a topic. Formally, let T be the set of topics, and
Wt be the set of top-N images in topic t ∈ T , The
average pairwise image similarity for topic t is:

sim(Wt) =
1(|Wt|
2

) |Wt|∑
i=1

|Wt|∑
j=i+1

cosine(wi, wj) (3)

where cosine(wi, wj) computes relatedness be-
tween any two images wi and wj as the cosine
similarity between their corresponding embeddings.
Finally, our new metric, IEC, is simply the average
of the topic-level similarity scores across all topics:

IEC =
1

|T |
∑
t∈T

sim(Wt) (4)

IEC ranges between [0,1], where a higher value
suggests more coherent topics.
Image Embedding-based Pairwise Similarity
(IEPS) measures the diversity of a topic model by
computing the similarity between all the topics and
then considering lower scores as a sign of higher di-
versity. Formally, by adapting the Word Embedding-
Based Pairwise Similarity metric (WEPS) (Terragni
et al., 2021c) (a validated metric originally de-
signed for assessing the similarity between word
embeddings), we first define the similarity between
the top-N images that describe any two topics ti
and tj as follows:

IEPSpair(ti, tj) =
1

N2

∑
v∈ti

∑
u∈tj

cosine(ev, eu) (5)

where ev, and eu denote the image embeddings
associated with images v and u respectively.

Next, to estimate the overall IEPS score for a
topic model with k topics, we compute the pairwise
similarities between all pairs of topics and then
aggregate them into a single score. Let S denote
the set of all pairs of topics in the model, i.e., S =
(ti, tj) | 1 ≤ i < j ≤ k. Then, we can define the
overall IEPS score as:

IEPS =
1

|S|
∑

(ti,tj)∈S

IEPSpair(ti, tj) (6)

This similarity metric ranges between [0,1] with a
lower score indicating more diverse topics.
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MS COCO VIST T4SA MMHS150K HC-4chan MEWA

there are some
children playing a
soccer game

Having a good
time bonding and
talking.

RT @AmBlujay:
This is why l
won’t interfere in
people’s relation-
ships

carol really said
f*ck yall I’m a
d*ke and I’m here
to save the uni-
verse

Yes goyim! Don’t
fight it! It’s in-
evitable

Flightradar24
is a Swedish
internet-based
service that...

Table 1: Dataset document examples. To save space, we only show the first terms of the document from
MEWA. Disclaimer: HC-4chan and MMHS150K contains hateful textual and graphic elements.

Dataset # Docs Vocab size Avg. Len Domain Data collection Source

MS COCO 30,000 2,000 10.46 Object recognition Tag-matching & crowdsourcing Flickr
VIST 30,000 2,000 9.99 Visual storytelling Crowdsourcing Flickr
T4SA 30,000 2,000 6.99 Sentiment analysis Automatic sentiment classification Twitter
MMHS150K 30,000 2,000 6.03 Hateful content detection Keywords-matching & crowdsourcing Twitter
HC-4chan 17,866 1,993 17.43 Hateful content detection Human annotations & automatic detection 4chan
MEWA 18,592 2,000 2,424.83 Information retrieval Crowdsourcing Wikipedia

Table 2: Properties of the datasets used. Vocab size is restricted to 2000 words to speed computation

5. Datasets

We propose a new benchmark for multimodal topic
modeling comprising six diverse datasets. For il-
lustration, Table 1 presents a sample document
from each dataset, while the key properties of each
dataset are shown in Table 2. We want to alert our
readers that some datasets include hateful textual
and graphic elements. The datasets are:

MS COCO (Microsoft Common Objects in Con-
text) (Lin et al., 2014) is a popular dataset for im-
age captioning, object detection, and image seg-
mentation tasks, consisting of over 200K images la-
beled with bounding boxes and category labels for
more than 80 object categories, as well as 5 cap-
tions per image. The images were sourced from
Flickr and annotated by crowd workers. We used a
randomly selected subset of 30K multimodal docu-
ments (image-caption pairs).

VIST (Visual Storytelling Dataset) (Huang et al.,
2016) is a dataset of multimodal stories comprising
sequences of images with corresponding descrip-
tions. All images come from Flickr, and the textual
stories were crowd-sourced. For our experiments,
we again randomly selected from VIST 30K mul-
timodal documents, each consisting of an image
along with the description of the portion of the story
associated with the image.

T4SA (Vadicamo et al., 2017) is a large-scale
Twitter dataset designed for Sentiment Analysis.
It contains textual and multimodal data obtained
through the TwitterAPI and each tweet is automati-
cally annotated with its sentiment polarity. In our ex-
periments, we used a random sample of 30K multi-

modal tweets balanced across sentiment classes.
MMHS150K (Gomez et al., 2020) is a hate speech
dataset consisting of 150K Twitter multimodal docu-
ments. Each document was then labeled by crowd-
sourcing with the particular community that was
attacked, such as racist, sexist, or homophobic.
Once again, we selected 30K random documents.
HC-4chan (Hateful content on 4chan)
(González-Pizarro and Zannettou, 2023) contains
posts, phrases, and images containing hateful and
discriminatory content. It consists of 21K images,
identified as presenting Antisemitic/Islamophobic
content by CLIP. We removed near-duplicate
images and documents with no text, resulting in a
dataset of about 18K multimodal documents.
MEWA (Multimodal English Wikipedia Articles)
(Zosa and Pivovarova, 2022a) comprises English
Wikipedia Articles from the Wikipedia Comparable
Corpora4, aligned with images from the Wikipedia-
based Image Text dataset (WIT) (Srinivasan et al.,
2021). Each document consists of a complete En-
glish Wikipedia Article and its corresponding image.
For our analysis, we used the publicly available
subset of 18.5K documents5.

6. Experiment Setup

Textual Baselines: We consider LDA (Blei et al.,
2003b), ZeroShotTM (Bianchi et al., 2021b), and
CombinedTM (Bianchi et al., 2021a) as strong tex-
tual baselines. For LDA, we use the OCTIS (Ter-

4 linguatools.org/tools/corpora/wikipedia-comparable-corpora/
5https://github.com/ezosa/M3L-topic-model/tree/master/data
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ragni et al., 2021b) implementation. The parame-
ters controlling the document-topic and word-topic
distribution for LDA are estimated during training,
as in prior work (Bianchi et al., 2021a). For the neu-
ral topic models, ZeroShotTM and CombinedTM,
we utilize their publicly available implementations6.
In training these models, we employ the Adam
optimizer and apply a 20% dropout rate.
Configurations: We encode text and images with
OpenAI’s CLIP (Radford et al., 2021a), which cap-
tures content similarity across modalities. We
use the text and image encoder of clip-ViT-B-32,
which is available in the SBERT’s library7 (Reimers
and Gurevych, 2019b). For hyperparameter set-
tings, we follow (Bianchi et al., 2021b) and (Zosa
and Pivovarova, 2022a). We train models for 100
epochs, computing all the metrics for 25, 50, 75,
and 100 topics. Results for each metric are aver-
aged over 5 random seeds. The data is prepro-
cessed following (Bianchi et al., 2021b). We restrict
the vocabulary size to the top 2,000 most frequent
terms to speed up computation. We remove En-
glish stopwords by using the NLTK library8. We
also remove punctuation and digits as suggested
by prior work.

For the development of the
Multimodal-ZeroShotTM model, we adapt Ze-
roShotTM (Bianchi et al., 2021b) and rely on
the original implementation. Consistent with the
original setup, our inference network structure
comprises one fully connected hidden layer
followed by a softplus layer with 100 dimensions.

For Multimodal-Contrast model, we adapt M3L-
Contrast (Zosa and Pivovarova, 2022a) and base
our code on the author’s original implementation9.
We use a batch size of 32, set the temperature τ
to 0.07, and the contrastive weight ω to 100, as in
the original model’s configurations.
Topic descriptors: VAE-based neural topic
models like our Multimodal-ZeroShotTM and
Multimodal-Contrast obtain the representative
keywords of each topic from the topic-vocab weight
matrix used for reconstructing the BoW. However,
Multimodal-Contrast does not reconstruct image
features (see Figure 2), so a different approach
is needed to obtain the most relevant images per
topic. To this end, after model training, we rely on
the document-topic distributions associated with
the input documents and select the images of
the N documents with the highest contribution
for each topic. We use this same approach for
Multimodal-ZeroShotTM to ensure a fair compari-
son. All our experiments are run considering the
top 10 words and top 10 images per topic. This de-

6https://github.com/MilaNLProc/contextualized-topic-models
7https://www.sbert.net/
8https://www.nltk.org/
9https://github.com/ezosa/M3L-topic-model

cision is based on prior work (Bianchi et al., 2021a;
Ding et al., 2018; Hoyle et al., 2021; Li et al., 2023;
Newman et al., 2010), who identified that the top
10 terms typically account for about 30% of the
topic mass, providing sufficient information to de-
termine the subject area and distinguish one topic
from another (Newman et al., 2010). We apply IEC
and IEPS over 10 images, maintaining consistency
with the most respected prior work.
Dataset size: To ensure computational feasibil-
ity for our extensive experiments, we restricted
the datasets size to 30K documents. Notice that
testing on 30K documents considerably outnum-
bered assessments of previous topic modeling al-
gorithms, such as CombinedTM (Bianchi et al.,
2021a) and our baseline, M3L-Contrast (Zosa and
Pivovarova, 2022b), which were initially assessed
using a sample of only 20K documents.
Topic Models Overlap: Two topic models might
exhibit similar coherence and diversity, but actually
generate different topics. So, as part of our system-
atic comparison between Multimodal-ZeroShotTM
and Multimodal-Contrast, we also explore the
overlap between the topics they generate. Specifi-
cally, given a pair of topic models, we construct a
topic similarity matrix based on the most relevant
keywords using the I-RBO diversity metric (Bianchi
et al., 2021a), ranging in [0-1] with higher scores
indicating more substantial topic overlap. Then,
to align the topics between models, we apply the
Hungarian method (Kuhn, 1955). In the results, we
report the mean M and standard deviation SD of
the topic overlap between models across multiple
datasets, numbers of topics, and random seeds.
Visual learned features: In order to re-
construct image embeddings from the input,
Multimodal-ZeroShotTM uses a weight topic-image
features matrix. After training the model, analyzing
such structure can provide valuable insights on the
relevance of specific visual attributes to each topic
as well as into the neural model’s limitations. In
our experiments, we use a CLIP Guided Diffusion
model (Dhariwal and Nichol, 2021)10 to generate
an image per topic given the weight topic-image
feature matrix.
User Study: We conduct a user study with two
core objectives. Firstly, we validate our proposed
metrics, IEC and IEPS, ensuring their alignment
with human judgments. Secondly, we perform a
qualitative analysis to discern variations between
our proposed models. Nine computer scientists
participated in the study, evaluating the coherence
and diversity of keyword and image sets generated
by our multimodal solutions.

For coherence evaluation, our approach, in-
spired by prior studies (Aletras and Stevenson,

10https://github.com/nerdyrodent/CLIP-Guided-Diffusion
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2013; Hoyle et al., 2021), involves presenting par-
ticipants with either 10 keywords or 10 images
representing a topic. Participants use a 5-point
Likert scale, where higher scores indicate higher
similarity, to gauge the relatedness between these
topics’ descriptors. For diversity evaluation, par-
ticipants assess the similarity between two topics
at a time, each represented by a set of 10 key-
words or 10 images, using the same Likert scale,
with higher values indicating greater similarity (i.e.,
lower diversity). We restrict the evaluation to topics
generated solely from the MS COCO dataset due
to time constraints, supported by our pilot study’s
findings.

The inter-annotator agreement (IAA) is com-
puted as the average Spearman correlation be-
tween each respondent’s scores and the averages
of scores from other respondents. For coherence,
the IAA is 0.71 and 0.62 for keywords and images,
respectively, indicating a strong agreement among
participants. For diversity, it is 0.75 and 0.84, point-
ing to a very strong consensus. To assess the align-
ment between humans and our proposed metrics,
IEC, and IEPS, we calculate the mean Spearman
correlation between the automatic metrics and hu-
man ratings, following the methodology suggested
by prior work (Aletras and Stevenson, 2013; Hoyle
et al., 2021).

7. Results

As an example, Table 3 presents topics that can be
retrieved from MS COCO using our multimodal so-
lutions. We report the models’ performance below.

Topic Coherence and Diversity: Table 4 shows
the overall performance of the models in terms of
coherence and diversity of the topics’ descriptors.

For the metrics assessing the coherence of
the textual descriptors, as expected, LDA per-
forms worse, while both Multimodal-ZeroShotTM
and Multimodal-Contrast perform similarly
to ZeroShotTM and CombinedTM, indicating
that processing the images of the corpus
does not influence the coherence of the
textual descriptors. Interestingly, we also
observe subtle differences in the NPMI and
Cv scores between Multimodal-ZeroShotTM
and Multimodal-Contrast. As shown in Ta-
ble 5, depending on the metrics and dataset
combinations, one model outperforms the
other without a clear winner. For instance,
Multimodal-ZeroShotTM can generate more
coherent topics than Multimodal-Contrast in
the VIST, T4SA, and MMHS150 datasets but
not in MS COCO and MEWA. As for image
descriptors, the top relevant images of each topic
identified by Multimodal-Contrast seem more
related (i.e., higher IEC) than those selected

Model Topics descriptors

M-Z snow, person, skis, covered, mountain, ski,
snowy, slope, hill, skiing

M-C snow, covered, skis, slope, hill, snowy, ski,
mountain, skiing, snowboard

M-Z mirror, toilet, bathroom, sink, wall, tub, shower,
window, door, bath

M-C bathroom, toilet, mirror, sink, tub, shower, bath,
wall, tiled, door

M-Z water, boat, body, beach, ocean, river, boats,
lake, sandy, shore

M-C beach, water, boat, body, ocean, boats, kite,
river, kites, sandy

Table 3: Topics retrieved using
Multimodal-ZeroShotTM (M-Z) and
Multimodal-Contrast (M-C) on MS COCO

Coherence Diversity

Metrics NPMI Cv WE IEC TD I-RBO IEPS

LDA -0.14 .39 .15 .84 .97
CombinedTM .04 .52 .21 .50 .96
ZeroShotTM .03 .51 .22 .60 .98

Multimodal-Contrast .04 .50 .22 .67 .47 .94 .41
Multimodal-ZeroShotTM .03 .51 .22 .56 .60 .98 .44

Table 4: Average topic coherence and diversity
scores across all datasets. Top scores are bold.

by Multimodal-ZeroShotTM overall and across
datasets.

Table 4 and 6 report the performance of the
models in terms of their ability to generate diverse
topics. LDA is one of the top performers, but it
scored the lowest for coherence by a wide margin
(see Table 4 and 5).
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Dataset MS COCO VIST T4SA MMHS150K HC-4chan MEWA

Metrics τ ϕ α γ τ ϕ α γ τ ϕ α γ τ ϕ α γ τ ϕ α γ τ ϕ α γ

LDA -.10 .37 .14 -.23 .34 .13 -.25 .36 .13 -.17 .31 .16 -.21 .40 .13 .10 .57 .20
CombinedTM .13 .55 .22 -.01 .42 .21 .02 .45 .22 .00 .45 .22 -.07 .58 .21 .13 .64 .20
ZeroShotTM .12 .54 .23 -.02 .39 .23 .02 .44 .23 .00 .44 .22 -.07 .57 .22 .14 .67 .22

Multimodal-Contrast .13 .56 .23 .75 -.03 .35 .23 .69 -.02 .38 .20 .59 -.01 .40 .23 .65 -.02 .54 .19 .65 .16 .77 .20 .68
Multimodal-ZeroShotTM .12 .54 .23 .66 -.01 .39 .23 .56 .01 .44 .23 .47 .00 .45 .22 .56 -.07 .58 .21 .57 .14 .66 .21 .54

Table 5: Topic’s coherence scores per dataset. We used the following abbreviations: NPMI (τ ), Cv (ϕ),
WE (α), and IEC (γ). Average results over 4 number of topics (K = 25, 50, 75, 100), where the results for
each K are averaged over 5 random seeds. We bold the highest scores.

Dataset MS COCO VIST T4SA MMHS150KK HC-4chan MEWA

Metrics TD I-RBO IEPS TD I-RBO IEPS TD I-RBO IEPS TD I-RBO IEPS TD I-RBO IEPS TD I-RBO IEPS

LDA .75 .98 .93 1.00 .96 1.00 .85 .90 .89 1.00 .65 .96
CombinedTM .57 .98 .40 .94 .43 .96 .41 .95 .40 .94 .76 .99
ZeroShotTM .67 .99 .60 .99 .56 .98 .50 .97 .50 .96 .77 .99
Multimodal-Contrast .65 .99 .46 .56 .98 .45 .52 .97 .28 .29 .87 .41 .23 .87 .50 .58 .98 .37
Multimodal-ZeroShotTM .68 .99 .47 .60 .99 .48 .56 .98 .34 .50 .97 .45 .50 .96 .53 .77 .99 .38

Table 6: Diversity scores of the top keywords and images. Average results over 4 number of topics
(K = 25, 50, 75, 100), with results for each K averaged over 5 random seeds. We bold best scores.

Figure 3: Images from a CLIP-Guided Diffusion Model over the latent space. Topics from left to right are
{water, lake, sand, beach}, {snow, tree, Christmas, white}, {cake, made, candles, birthday}, {art, building,
glass, amazing, architecture}, {students, graduation, speech, school}, and {family, together, happy, whole}.

We also observe that for all the datasets, the key-
words generated by Multimodal-ZeroShotTM are
significantly more diverse than those generated
by Multimodal-Contrast. Finally, we find that the
images representing the topics are more diverse
(i.e., lower IEPS) in Multimodal-Contrast than in
Multimodal-ZeroShotTM.

Plausibly, the observed superi-
ority of Multimodal-Contrast over
Multimodal-ZeroShotTM in terms of image
coherence and diversity can be attributed to their
different training objectives. Multimodal-Contrast
incorporates a Contrastive Learning loss (Chopra
et al., 2005) to maximize the similarity between
positive pairs (text-image pairs that belong
together) while minimizing the similarity between
negative pairs. Training the model to explicitly
differentiate between related and unrelated
pairs may stimulate the model to learn more
discriminative image representations (Yu et al.,
2022), which can better support similar judgments
involved in creating more coherent and diverse
topic models. More speculatively, the reason why
this works for image but not for text descriptors

may be due to the fact that although pre-trained
multimodal representations (e.g., CLIP) map
data from different modalities into the same
space, embeddings from different modalities are
located in separate regions (Liang et al., 2022)
and therefore could be influenced differently by
Contrastive Learning.

Topic Overlap And Visual Features: Table 7
shows the topic’s overlap between ZeroShotTM
and our proposed models.

Models M SD

ZeroShotTM Multimodal-Contrast .22 .16
ZeroShotTM Multimodal-ZeroShotTM .50 .23
Multimodal-Contrast Multimodal-ZeroShotTM .21 .16

Table 7: Topic’s overlap between models across all
datasets and number of topics.

Remarkably, while ZeroShotTM and
Multimodal-ZeroShotTM exhibit similar perfor-
mance (i.e., for coherence and diversity), the
generated topics only partially overlap (M =
.50; SD = .23). In other words, these two
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models generate some topics that are similar
to each other, but also unique ones. Moreover,
Multimodal-Contrast produces topics with sig-
nificantly less keyword overlap when compared
to both ZeroShotTM (M = .22; SD = .16) and
Multimodal-ZeroShotTM (M = .21; SD = .16).

Figure 3 showcases images generated by
the CLIP-Guided diffusion model consider-
ing the topic-image feature matrix γ from
Multimodal-ZeroShotTM, with topics extracted from
VIST. Promisingly, the generated images seem to
align well with the topic’s descriptors, capturing
abstract and complex concepts (like happy family).

User Study: Table 8 displays human ratings for
topics from our models, while Table 9 presents
corresponding automatic scores.

Coherence Diversity

Keywords Images Keywords Images

Ratings scores M SD M SD M SD M SD

Multimodal-ZeroShotTM 3.84 1.05 4.66 0.60 1.28 0.64 1.42 0.95
Multimodal-Contrast 4.05 0.95 4.51 0.79 1.23 0.67 1.43 0.95

Table 8: Mean and standard deviation of rating
scores for evaluating coherence (higher values indi-
cate higher coherence) and diversity (lower values
indicate higher diversity) of sets of keywords and
images generated by our models.

Metrics NPMI Cv WE IEC TD I-RBO IEPS

Multimodal-ZeroShotTM .09 .48 .23 .75 1.00 1.00 0.43
Multimodal-Contrast .06 .44 .25 .70 1.00 1.00 0.44

Table 9: Automatic coherence and diversity scores
from the topics used in our user study.

To validate our metrics, IEC and IEPS, we cal-
culated their Spearman correlation with human
ratings. The results showed robust and statisti-
cally significant positive correlations: IEC (r(27) =
.45, p < .001) and IEPS (r(27) = .44, p < .001),
confirming the reliability of our metrics. Accord-
ing to annotators, the images representing the
topics in Multimodal-ZeroShotTM were more co-
herent and diverse compared to those generated
by Multimodal-Contrast. This observation aligns
with the IEC and IEPS scores for these topics (see
Table 9), where Multimodal-ZeroShotTM emerged
as the superior model. This result reinforces
the credibility of our proposed metrics and under-
scores their potential for evaluating multimodal
topic models. Human evaluators reported that
Multimodal-Contrast generated topics with more
coherent and diverse keywords compared to its
multimodal counterpart, a trend supported by the
WE metric. In contrast, NPMI and Cv metrics, re-
lying on the reference corpus (in this case, MS

COCO), favored Multimodal-ZeroShotTM. Finally,
automatic metrics indicated a tie and perfect score
for topic keyword diversity, possibly due to the lim-
ited topic subsets in the user study’s diversity tasks
and the criteria used by TD and I-RBO, which as-
sess diversity based on exact keyword overlap.

8. Conclusions and Future Work

We present the first systematic evaluation of neu-
ral multimodal topic modeling, considering multiple
non-homogeneous datasets and a comprehensive
set of evaluation metrics. In particular, we con-
tribute a repository of corpora that vary in docu-
ment size, source, and underlying task/domain,
along with two novel metrics to assess topic im-
age descriptors’ coherence and diversity, which we
validated in a preliminary user study. We apply
the resulting evaluation framework to compare two
novel multimodal topic modeling methods that we
developed by adapting current SOTA architectures.
Overall, our results indicate that ensemble and hy-
brid solutions should be explored in the future, for
instance, by either merging the output of different
models or by combining different components in
more complex loss functions. Leveraging GPT-like
systems (Achiam et al., 2023) is also a potential
direction for future work, but first, the formidable
limitation in their input size (Bubeck et al., 2023)
must be addressed. In another short-term direc-
tion we plan to assess whether the topic-image
feature matrix γ (Eq.1) can benefit multimodal text
classification and document similarity.

Limitations

As in any study, ours has limitations that need to
be considered. First, we used datasets that are
only available in English, which might restrict the
generalizability of our findings. Moving forward, we
aim to tackle this limitation by including datasets
in various languages and exploring multilingual
models that handle multiple languages simultane-
ously. Secondly, we focus our topics’ evaluation on
their coherence and diversity. Future work should
identify the quality of the results based on other as-
pects, such as document coverage (i.e., how well
documents match their assigned topics) and topic
model comprehensiveness (i.e., how thoroughly
the model covers the topics appearing in the cor-
pus). These aspects are challenging to assess
when ground truth is unavailable. Finally, future
work should explore how hyperparameters (e.g.,
dropout rate, weight for KL divergence loss) impact
neural multimodal topic models.
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Ethics Statement

Our neural multimodal topic models are intended
solely for research purposes. Any use of these
models or their derived artifacts outside research
contexts should be authorized accordingly. We use
datasets that are publicly available. Users must be
aware of the potential risks associated with using
topic modeling algorithms. Topic models may am-
plify biases present in the data (e.g., if the dataset
contains hateful content, the generated topics can
perpetuate those discriminatory practices). Users
also need to consider the biases and limitations
of text and image encoders (e.g., CLIP). More-
over, neural topic models lack transparency and
interpretability, meaning it becomes challenging
to understand how the model arrives at particular
topics.
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A. Performance of
Multimodal-ZeroShotTM across

different λ values

Table 10 presents the performance of
Multimodal-ZeroShotTM for varying values of
λ. This parameter adjusts the balance between
the textual and image feature reconstruction
losses, as defined in Equation 1. For our main
experiments, λ was set to 1.

Our results indicate that higher λ values improve
the coherence and diversity of the images repre-
senting a topic. However, this improvement is ac-
companied by a slight decrease in the coherence
and diversity of the topics’ most relevant keywords.

Coherence Diversity

NPMI Cv WE IEC TD I-RBO IEPS

λ = 1 .03 .51 .22 .56 .60 .98 .44
λ = 60 .03 .50 .22 .66 .57 .96 .41
λ = 120 .02 .49 .21 .69 .54 .95 .40
λ = 240 .02 .49 .21 .70 .52 .95 .40

Table 10: Quality of topics for different λ values in
Multimodal-ZeroShotTM. Averages are calculated
across multiple datasets for 4 number of topics
(K = 25, 50, 75, 100), where the results for each K
are averaged over 5 random seeds. Top scores
are bold.

B. Using a Different Contextualized
Representation

We also compare the performance of neural
topic models using a different text encoder.
We employ the sentence-transformer model
all-mpnet-base-v2, available in the SBERT library.
Table 11 displays the resulting performance of the
neural topic models.

Coherence Diversity

NPMI Cv WE IEC TD I-RBO IEPS

CombinedTM .03 .51 .21 .56 .96
ZeroShotTM .04 .52 .23 .58 .98
Multimodal-Contrast .04 .51 .22 .66 .48 .94 .41
Multimodal-ZeroShotTM 03 .51 .22 .56 .58 .98 .44

Table 11: Performance of neural topic models us-
ing a different contextualized text encoder (i.e.,
all-mpnet-base-v2). Averages are calculated
across datasets for 4 number of topics (K =
25, 50, 75, 100), with each K averaged over 5 ran-
dom seeds. Best scores are highlighted in bold.

C. Computing Infrastructure

Our experiments were conducted on an NVIDIA
A100 GPU, with 20 GB of memory and 12 cores of
an AMD Milan 7413 processor. Although previous
studies have shown that neural topic models can
be run on less performant hardware, we chose
this high-performance computing infrastructure to
ensure efficient data processing.

D. Runtime

Previous research has demonstrated that vocab-
ulary size significantly impacts the computational
time of VAE-based neural topic models (Bianchi
et al., 2021a). Consequently, in line with prior stud-
ies, we restrict the maximum number of terms in
the Bag-Of-Word reconstructions to 2,000. We se-
lect the 2,000 most frequent words in the corpus
for this purpose.

To compare the computational efficiency of dif-
ferent models, we report the time taken in seconds
to complete one epoch during training. Table 12
presents the required time for each neural topic
model to complete one epoch. For LDA, however,
we report the average training time. Our findings
indicate that multimodal neural topic models re-
quire approximately 1.5 seconds more per epoch to
complete compared to the unimodal ZeroShotTM
model. This additional time can be attributed to the
larger input sizes and the simultaneous analysis
of two modalities in multimodal models. Such a
difference in training time is anticipated and jus-
tifiable, considering the increased complexity of
these models.

Training time per epoch

LDA 12.49
CombinedTM 7.38
ZeroShotTM 7.27

Multimodal-Contrast 8.70
Multimodal-ZeroShotTM 8.33

Table 12: Time in seconds required to complete
one epoch. Averages are calculated across all
datasets for 4 sets of topics (K = 25, 50, 75, 100),
with results for each K averaged over 5 random
seeds. The lowest training time is bold.
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