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Abstract
Monitoring the threat landscape to be aware of actual or potential attacks is of utmost importance to cybersecurity
professionals. Information about cyber threats is typically distributed using natural language reports. Natural
language processing can help with managing this large amount of unstructured information, yet to date, the
topic has received little attention. With this paper, we present AnnoCTR, a new CC-BY-SA-licensed dataset
of cyber threat reports. The reports have been annotated by a domain expert with named entities, temporal
expressions, and cybersecurity-specific concepts including implicitly mentioned techniques and tactics. Entities and
concepts are linked to Wikipedia and the MITRE ATT&CK knowledge base, the most widely-used taxonomy for
classifying types of attacks. Prior datasets linking to MITRE ATT&CK either provide a single label per document
or annotate sentences out-of-context; our dataset annotates entire documents in a much finer-grained way.
In an experimental study, we model the annotations of our dataset using state-of-the-art neural models. In
our few-shot scenario, we find that for identifying the MITRE ATT&CK concepts that are mentioned explicitly
or implicitly in a text, concept descriptions from MITRE ATT&CK are an effective source for training data augmentation.

Keywords: Cybersecurity, Concept Detection, Named Entity Recognition, Entity Linking

1. Introduction

Cyber Threat Intelligence (CTI) necessitates col-
lecting evidence-based knowledge about cyber
threats to proactively defend against cyber attacks.
Cyber Threat Reports (CTRs), which are usually
provided by professional CTI vendors, are unstruc-
tured text documents that describe threat-related
information such as tactics, techniques, actors,
tools, types of systems as well as geographic re-
gions, political entities, or targeted industries. Re-
trieving and analysing information from CTRs is
a tedious and time-consuming yet usually time-
critical task (Sarhan and Spruit, 2021; Rahman
et al., 2021). Obtaining clean labeled data that
ensures replication, validation and extensions of
CTI studies constitutes a major technical challenge
(Rahman et al., 2021).

Applying information extraction techniques from
natural language processing (NLP) to the domain
of CTI is promising, yet understudied. Malware-
TextDB (Lim et al., 2017; Phandi et al., 2018) fo-
cuses on extracting attributes of malware. Other
datasets (e.g., Satyapanich et al., 2020; Kim et al.,
2020) use custom annotation schemas. In our full-
text annotation scenario, we focus on classifying
mentions of attack tactics and techniques accord-
ing to the MITRE ATT&CK taxonomy, a globally ac-
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Figure 1: AnnoCTR is a CC-BY-SA-licensed
dataset of 120 cyber threat reports annotated with
MITRE ATT&CK concepts and WikiData entities.

cessible database maintained and used by cyber-
security professionals. We choose this taxonomy
rather than a custom schema as it fits directly with
the daily work of cybersecurity professionals. Prior
work using MITRE ATT&CK either only annotated
entire documents (Legoy et al., 2020) or individual
sentences. Almost all prior datasets are not clearly
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licensed and hence difficult or even impossible to
use without violating copyright. This aspect has
particular relevance in application-driven research.

In this paper, we present AnnoCTR1, a new pub-
licly available dataset consisting of 400 CTRs do-
nated by their copyright holders. We add annota-
tions targeting information extraction and search
tasks, including mentions of locations and organi-
zations linked to Wikipedia, and normalized tem-
poral expressions. 120 of the CTRs have been
annotated by a domain expert with cybersecurity-
specific concepts, explicitly or implicitly mentioned
tactics or techniques from MITRE ATT&CK.

We propose a set of NLP tasks based on An-
noCTR. Transformer-based named entity recogni-
tion (NER) models for the general-purpose entities
achieve macro-average F1 scores of up to 70%.
We find entity disambiguation models (Wu et al.,
2020; Cao et al., 2021) fine-tuned on our domain
to work well for identifying techniques that occur in
a document (micro-F1 of around 65%).

Our new dataset will enable researchers in NLP
and CTI to research, develop, and apply cutting-
edge text understanding, search and analysis tech-
nology that will provide a very necessary compet-
itive advantage over threat actors. From an NLP
perspective, our contributions are as follows.

• We provide AnnoCTR, a new openly-licensed
dataset carefully annotated with named enti-
ties (NEs) and cybersecurity concepts, and
perform a detailed corpus study (Section 3).

• We propose to model the data from a variety of
perspectives using neural sequence tagging,
text classification and entity linking models
(Section 4), and provide experimental results
for state-of-the-art baselines (Section 5).

2. Related Work

In this section, we give a brief overview of NLP
work and datasets in the cybersecurity domain.

MITRE ATT&CK2 is a hierarchical knowledge
base (KB) of cyber adversary tactics and tech-
niques compiled based on real-world observations.
It is designed to help with managing cyber threat
risks. The KB is regularly updated and released
under a license permitting research, development,
and commercial use. At the time of writing, the
Enterprise part of the taxonomony, which we are
using in this work, consists of 14 tactics and 193
techniques at the top level and 401 subtechniques.
Each technique or tactic comes with a textual de-
scription as illustrated in Figure 2, as well as sev-
eral references to CTRs or technical descriptions.
Legoy et al. (2020) crawl the latter to create a

1https://github.com/boschresearch/anno-ctr-lrec-
coling-2024

2https://attack.mitre.org, https://github.com/mitre/cti

T1606: Forge Web Credentials Adversaries may
forge credential materials that can be used to gain
access to web applications or Internet services. [...]

T1606.001 Web Cookies Adversaries may forge
web cookies that can be used to gain access to
web applications or Internet services. [...]

T1606.002 SAML Tokens An adversary may forge
SAML tokens with any permissions claims and life-
times if they possess a valid SAML token-signing
certificate. [...]

Figure 2: MITRE ATT&CK (sub)techniques.

dataset (rcATT) annotated with tactics and tech-
niques at document level. The CTRs come from
many different sources, hence, licensing is unclear.
The Threat Report ATT&CK Mapper (TRAM) is an
open-source platform including a web application
aiming to advance research into automating the
mapping of CTRs to MITRE ATT&CK.3 The TRAM
dataset consists of sentences annotated with multi-
label MITRE ATT&CK techniques. Our new dataset
and models aim, i.a., to improve the functionality
of this open-source endeavor.

Table 1 gives an overview of manually labeled
NLP datasets in the cybersecurity domain. Mal-
wareTextDB (Lim et al., 2017; Phandi et al., 2018)
contains reports on hacker groups annotated with
the 444 attributes of MAEC4 (Malware Attribute
Enumeration and Characterization). The reports
are taken from APTnotes5 which are publicly avail-
able but have unclear licensing. Hanks et al. (2022)
crawl CTI blog posts from the web and conduct a
small annotation study for cybersecurity-specific
NEs and linking them to Wikipedia. CASIE (Satya-
panich et al., 2020) and CySecED (Man Duc Trong
et al., 2020) are annotated with cybersecurity event
types and semantic arguments. Kim et al. (2020)
annotate CTI-Reports with 20 NE types. Bayer
et al. (2022) create a dataset of 3000 tweets anno-
tated for whether they mention a cyber attack.

NER in the cybersecurity domain has been
modeled using maximum entropy models with n-
gram features (Bridges et al., 2013), and using
tf.idf-based features and word2vec (Mikolov et al.,
2013) to train a Linear SVM (Cortes and Vapnik,
1995) along with a manually designed confidence
propagation procedure (Legoy et al., 2020). In
the neural age, recurrent neural networks and
convolutional neural networks with learned bag-
of-characters embeddings and a CRF layer have
been used for the task (Gasmi et al., 2019; Kim
et al., 2020; Simran et al., 2020). Sarhan and

3https://github.com/center-for-threat-informed-
defense/tram

4https://maecproject.github.io/
5https://github.com/aptnotes

https://github.com/boschresearch/anno-ctr-lrec-coling-2024
https://github.com/boschresearch/anno-ctr-lrec-coling-2024
https://attack.mitre.org
https://github.com/mitre/cti
https://github.com/center-for-threat-informed-defense/tram
https://github.com/center-for-threat-informed-defense/tram
https://maecproject.github.io/
https://github.com/aptnotes
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Dataset Name & Reference #Docs. #Sents. #Annots. Labels License

MalwareTextDB-v1 (Lim et al., 2017) 39 2080 7102 MAEC NE mentions no license
MalwareTextDB-v2 (Phandi et al., 2018) 85 12,918 8054 MAEC NE mentions no license
CTI-Reports (Kim et al., 2020) 160 13,750 15,720 custom NE mentions no license
rcATT (Legoy et al., 2020) 1490 185,000 1490 MITRE ATT&CK at doc. level no license
CyEnts (Hanks et al., 2022) 380 1339 781 custom NE mentions no license
CySecED (Man Duc Trong et al., 2020) 292 7̃300 8014 events 30 event types (w/o arguments) not available
CASIE (Satyapanich et al., 2020) 1000 1̃7,000 8470 events 5 event types + arguments no license
TRAM – 2298 3772 MITRE ATT&CK at sent. level Apache 2.0
AnnoCTR (ours) 120 12,179 13,244 NE, MITRE ATT&CK, TIMEX CC-BY-SA 4.0

Table 1: Overview of manually labeled cybersecurity NLP datasets.

Spruit (2021) use XLM-R (Conneau et al., 2020).
Further related work aims at constructing or en-
hancing cybersecurity KBs from text (Sarhan and
Spruit, 2021; Sanagavarapu et al., 2021).

3. AnnoCTR Dataset

In this section, we describe our AnnoCTR dataset.

3.1. Source of Texts and Preprocessing

AnnoCTR consists of 400 CTRs annotated with
general-world entities. Out of these, 120 reports
are also annotated with cybersecurity categories
(see Table 2). All CTRs have been obtained from
the blogs of commercial CTI vendors,6 who have
agreed to their re-publication under CC-BY-SA 4.0.
The blog entries were published between March
2013 and February 2022. Annotation is performed
using the web-based annotation system INCEp-
TION (Klie et al., 2018).

CTI Vendors. The reports have been kindly do-
nated by Intel4717, Lab528 (the threat intelligence
division of S2 Grupo9), Proofpoint10, QuoIntelli-
gence11, and ZScaler12.

Preprocessing. First, we retrieve the texts.13

Because of the numerous URLs, code and image
references occurring within the texts, we convert
the articles into a format similar to Markdown us-
ing BeautifulSoupand Markdownify.14,15 Off-the-
shelf sentence segmenters do not perform well
on texts that contain many links or code snippets,
hence, we use a custom regular expression tok-
enizer for sentence segmentation and correct sen-
tence boundaries manually.

6Intel471, Lab52 (the threat intelligence division of
S2 Grupo), Proofpoint, QuoIntelligence, and ZScaler.

7https://intel471.com/blog
8https://lab52.io/blog/
9https://s2grupo.es/

10https://www.proofpoint.com/us/blog
11https://quointelligence.eu/blog
12https://www.zscaler.com/blogs/security-research
13https://github.com/psf/requests
14https://www.crummy.com/software/BeautifulSoup/
15github.com/matthewwithanm/python-markdownify

3.2. Annotation Scheme

We annotate the reports in our dataset with the
following General Named Entity (GNE) types.
ORG: Organisations including companies.
LOC: Locations, e.g., California, China.
SECTOR: Industry sectors, e.g., finance, defense.
TIMEX: Time expressions for dates normalized

following TimeML (Saurı et al., 2006), e.g., July
this year → 2022-07.

CodeSnippet: Code snippets and command line
interface commands.

We annotate mentions of cybersecurity-specific
NEs (CyNE) as follows. The term software refers
to custom or commercial code, operating system
utilities, open-source software, or other tools.
GROUP: Mentions of Advanced Persistant

Threats, i.e., hacker groups, e.g., Fancy Bear,
Leviathan, or APT 40.

MALWARE: Software that has been written specif-
ically for malicious purposes, e.g., Terdot.

TOOL: Software not written for a malicious pur-
pose but used with a malicious intent in a given
context, e.g., “a malicious Microsoft Excel docu-
ment builder.”

CONCEPT (CON): More general concepts rele-
vant to the cybersecurity that can be linked to
Wikipedia (e.g., malware, threat actors), and
non-malicious software that is not used mali-
ciously in a context, e.g., Kaseya VSA.

TACTIC: We annotate mentions of tactics as de-
fined by MITRE ATT&CK they capture the ad-
versary’s tactical goal (e.g., obtaining credential
access), their reason for performing an action.

TECHNIQUE: We mark spans that refer to tech-
niques. MITRE ATT&CK defines them as fol-
lows: Techniques represent how an adversary
achieves a tactical goal by performing an action.

For TACTIC and TECHNIQUE mentions, we indi-
cate whether the concept is explicitly or implicitly
mentioned. An explicit mention of a TECHNIQUE
means that the descriptive name of the technique is
mentioned more or less literally or with a synonym,
e.g., as in send phishing e-mails with malicious at-
tachments → T0865 (Spearphishing Attachment).

https://github.com/statnlp-research/statnlp-datasets
https://github.com/nlpai-lab/CTI-reports-dataset
https://github.com/vlegoy/rcatt
https://github.com/UMBC-Onramp/CyEnts-Cyber-Blog-Dataset
https://github.com/Ebiquity/CASIE
https://github.com/center-for-threat-informed-defense/tram
https://intel471.com/blog
https://lab52.io/blog/
https://s2grupo.es/
https://www.proofpoint.com/us/blog
https://quointelligence.eu/blog
https://www.zscaler.com/blogs/security-research
https://github.com/psf/requests
https://www.crummy.com/software/BeautifulSoup/
https://github.com/matthewwithanm/python-markdownify
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docs. sent. sent/doc tok./sent

Intel471 30 1907 63.6±55.3 22.3
Lab52 23 1665 72.4±55.3 14.1
ProofPoint 28 2305 82.3±43.4 21.1
QuoIntelligence 12 1541 128.4±60.2 22.4
ZScaler 27 4761 176.3±107.0 21.6

total 120 12,179 101.5±79.1 22.0

Table 2: Corpus statistics for AnnoCTR: sentence
and token counts (for cyber-security-specific part).

Implicit mentions require more inference on the
reader’s part, as in Emotet bots reach out to their
controllers and received commands to download
and execute Trickbot on victim machines. → T1105
(Ingress Tool Transfer). Explicit mentions are usu-
ally short phrases, while implicit phrases may be
any part of the text up to a sentence (as also illus-
trated by Figure 1).

Entity Disambiguation. ORG, LOC and CON
mentions are linked to Wikipedia pages16, GROUP,
TACTIC, and TECHNIQUE to MITRE ATT&CK.

3.3. Corpus Statistics

Table 2 shows that the CTRs from the various ven-
dors differ in their average number of sentences,
but that sentence lengths are roughly comparable.
Table 3 lists the number of NE mention annotations.
Most of them have been annotated with valid links
to Wikipedia or MITRE ATT&CK (exact counts are
given in Table 4). The distribution of techniques
and tactics both have a long tail (details in Ap-
pendix B). In total, the 120 documents annotated
with both layers contain 13,244 annotations, the
full dataset contains 20,855 annotated mentions.
Hence, as can be seen in Table 1, AnnoCTR is
at least comparable in size to the frequently used
MalwareTextDB v2 (Phandi et al., 2018).

3.4. Annotation Process and Agreement

Annotation of the general layer (TIMEX, ORG, LOC,
SECTOR, and CodeSnippet) was performed by a
team of two annotators with an engineering back-
ground who participated in an extensive training
phase. The cybersecurity-specific annotations (all
others) were created by a graduate student of me-
dia informatics who had previously interned at a
cybersecurity group and who hence possesses
special domain knowledge. The annotator was in-
volved in the design of the annotation scheme. For
the agreement analysis, we select 9 documents
with a total of 416 sentences: one by QuoIntelli-
gence and two of each other vendor.

16hhttps://en.wikipedia.org//
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Cyber-security specific + general layer (120 docs.)
# docs. 30 23 28 12 27 120

TIMEX 294 155 358 164 155 1126
CodeSnippet 18 10 32 0 255 315
LOC 220 503 172 174 86 1155
ORG 306 377 508 124 263 1578
SECTOR 132 89 137 131 63 552
CON 236 66 261 185 820 1568
TOOL 24 25 34 61 76 220
MALWARE 345 100 474 93 657 1669
GROUP 93 102 230 222 66 713
TECHN. (expl.) 260 176 229 121 312 1098
TECHN. (impl.) 301 229 321 198 1243 2292
TACTIC (expl.) 60 55 219 91 271 696
TACTIC (impl.) 65 22 19 14 142 262

General layer (280 additional docs.)
# docs. 4 5 73 2 196 280

TIMEX 61 62 848 88 731 1790
CodeSnippet 32 5 141 0 1324 1502
LOC 52 196 732 4 271 1255
ORG 41 134 1281 27 1075 2558
SECTOR 13 36 230 8 219 506

Table 3: Named entity annotations in AnnoCTR.
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Cyber-security specific + general layer (120 docs.)
LOC 220 508 172 174 86 1160
ORG 200 363 486 124 263 1436
CON 220 66 261 178 814 1539
TOOL 24 25 34 61 75 219
MALWARE 345 100 474 93 657 1669
GROUP 93 103 230 224 66 716
TECHNIQUE 560 404 550 319 1542 3375
TACTIC 125 77 238 105 413 958

General layer (280 additional docs.)
LOC 52 201 732 4 271 1260
ORG 22 133 1261 27 1075 2518

Table 4: Disambiguated entity mentions in An-
noCTR with links to MITRE ATT&CK or WikiData.

General annotations. The nine documents of
the agreement study were marked by an additional
annotator, who had not been involved in the first
phase, but had already received extensive training
on the almost same annotation task in a different
domain. When comparing TIMEX annotations, we
find 41 exact matches. Six additional cases are
annotator lapses, i.e., trivial mistakes. In one other
case, one annotator did not include the late into
the span of late October. There are 18 LOC anno-
tations with an observed agreement of 100% on

https://en.wikipedia.org/
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spans. For 17 of these, the annotators agree on
the Wikipedia link. For ORG, 73 and 81 instances
are marked by the two annotators, respectively,
amounting to precision and recall scores of 78.1
and 70.4% for exact matches. When applying re-
laxed matching (containment), the scores go up to
89.0 and 80.2%. Out of 57 exact matches and 8
relaxed matches, we found only 3 Wikipedia links
to differ. The two annotators mark only 10 and
20 SECTOR mentions, respectively, with a relaxed
agreement of 70.0 and 35.0%.

Cybersecurity-specific annotations. This type
of annotation requires specialized cybersecurity
knowledge and a high familiarity with the MITRE
ATT&CK taxonomy. The entire dataset has been
marked by single domain expert annotator. In order
to provide a rough estimate for the difficulty of the
annotation task, we ask another cybersecurity pro-
fessional with a degree in media informatics and 5
years of professional experience to label our data.
As their time constraints did not allow an extended
training phase, the agreement presented here in all
likelihood underestimates the degree of agreement
that is achievable with more training. Precision and
recall for identifying entity mentions amount to F1-
scores of 31% for CON, 52% for GROUP, and 67%
for MALWARE. The second annotator did not mark
any TOOL annotations. When comparing the sets
of techniques found in a document, average F1
amounts to 54%. While this study does not consti-
tute a proper agreement study (as we acknowledge
would be desirable), it still demonstrates that anno-
tations are systematic. An exception may be CON,
where the main annotator considered a different
set of concepts as relevant. Yet, this set seems to
be consistent as in our experiments, the tag can
be learned well (F1 68%).

4. Task Definitions and Modeling

In this section, we define several NLP tasks based
on AnnoCTR and describe neural models that we
propose as strong baselines for solving them.

4.1. Named Entity Recognition

The first processing step consists of detecting
entity mentions and tagging them with the NE
types listed in Section 3.2. We represent label
sequences using the BIO scheme. First, the model
processes the input sequence with a pre-trained
transformer model, applies a linear classification
layer to the transformer output to compute the log-
its for each potential NE label, and predicts the
label corresponding to the maximum logit for each
first wordpiece token of each “real” token.

We compare the following pre-trained trans-
former models: BERT (Devlin et al., 2019), which

has been trained on Google Books (Zhu et al.,
2015) and the English Wikipedia, SciBERT (Belt-
agy et al., 2019), a BERT-style model trained on
scientific text, and CodeBERT (Feng et al., 2020),
which has been trained on programming code. We
also use RoBERTA (Liu et al., 2019), which is
trained on Google Books, Wikipedia, and news
articles, and which uses an optimized training pro-
cedure compared to BERT.

As a recent baseline for NER in the cyberse-
curity domain, Gasmi et al. (2019) and Kim et al.
(2020) use a BiLSTM-CRF (Lample et al., 2016)
with GloVe (Pennington et al., 2014) embeddings,
essentially following the architecture of Huang et al.
(2015). We compare to a reimplementation of the
model by Kim et al. (2020) in our experiments.

4.2. Temporal Tagging

We compare two methods for temporal expression
extraction and normalization. First, we use the
rule-based system Heideltime (Strötgen and Gertz,
2010) limited to DATE rules. We experiment with
adapting HeidelTime to the cybersecurity domain
by automatically selecting a subset of rules. We
sequentially remove randomly selected rules and
keep only rules that influence the performance pos-
itively. We start this procedure with 5 different ran-
dom seeds and keep the best-performing subset
of rules based on the dev set score.

Second, we use a multilingual neural temporal
tagging model (Lange et al., 2022). This model
first detects TIMEXes using a neural sequence
tagger trained on gold standard corpora of news
and Wikipedia, and then, for temporal expression
normalization, uses a masked language modeling
approach to fill slots in XML-like templates:
The attack happened <TIMEX type="DATE"

value="YEAR-MONTH-DAY">yesterday</TIMEX>.
YEAR, MONTH, and DAY are masks, whose val-

ues are predicted by the language model. The
normalization model has been trained on a multi-
lingual weakly-supervised dataset created using
HeidelTime. In our experiments, we substitute
the sequence tagger for TIMEX detection with our
cybersecurity-specific NER model (Section 4.1).

4.3. Entity Disambiguation

NE mentions in AnnoCTR are, depending on their
type, linked to Wikipedia or MITRE ATT&CK. We
restrict the search space for the linking models de-
pending on the extracted NE type. LOC/ORG/CON
are linked against Wikipedia. MALWARE and
TOOL are linked to the /software/ subtree of
MITRE ATT&CK. Accordingly, we map GROUPS
to /groups/, TACTIC to /tactics/ and TECH-
NIQUES to /techniques/ only. In this section,
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we describe several models that we use to identify
the KB entry disambiguating the mention.

BLINK (Wu et al., 2020) uses a bi-encoder
model to compute embeddings for all entries of the
KB and for the input sentence with the mention to
be disambiguated. A set of candidates is selected
based on the similarity of the target sentence en-
coding to the KB encodings. In a second step, a
cross-encoder computes a final ranking score for
the concatenation of the text strings representing
the entity in the KB and the input sentence. In our
experiments, we found that in our setting, the cross-
encoder does not provide any benefit and hence
only use the bi-encoder part of the model. BLINK
has been trained on 9M examples of document-
mention-entity triples from Wikipedia.

GENRE (Cao et al., 2021) is a constrained lan-
guage model based on BART (Lewis et al., 2020).
Given an input sentence with an entity to be linked
(marked using special tags), the model is asked
to generate the most likely KB entry. The search
space is constrained by the entries of the target KB,
e.g., all titles of Wikipedia pages for the general-
domain linking, or the titles or MITRE ATT&CK en-
tries for mentions of cybersecurity entities. GENRE
has first been trained on the same Wikipedia data
as BLINK and then further fine-tuned on AIDA-
CoNLL (Hoffart et al., 2011).

BLINK works out of the box for linking to MITRE
ATT&CK as the pre-trained bi-encoder can be ap-
plied to any KG. We use the ATT&CK descriptions
(as in Figure 2) to generate entity representations.
GENRE can also be applied in a zero-shot setting
on MITRE ATT&CK as the set of KG entities that
constrains decoding is part of the model configu-
ration, which are the ATT&CK titles in our setting.
In order to compare general-purpose entity disam-
biguation models and cybersecurity-specific mod-
els, we fine-tune the models on AnnoCTR. In cases
where BLINK or GENRE predict a subtechnique,
we change the prediction to the parent technique.

4.4. Sentence-based Tactic and
Technique Classification

From a practical point, it matters to correctly de-
tect the set of tactics and techniques that occur
in a document. In particular, implicitly mentioned
techniques are often marked as long phrases and
hence NER models are not well-suited. We here
address the problem using few-shot text classifica-
tion methods. In order to comprehensively detect
and link explicit and implicit cyber attack tactics
and techniques to MITRE ATT&CK, we first detect
sentences mentioning a TACTIC or TECHNIQUE,
and then classify these sentences into the set of
concepts as defined by ATT&CK.

Detection. First, we train two four-way sentence

classifiers using RoBERTA for detecting TACTICs
and TECHNIQUEs, respectively. The classifiers
predict whether an input sentence contains an ex-
plicit, and implicit, both an explicit and an implicit,
or no mention of TECHNIQUE/TACTIC. This setup
performed better or on par with a binary classi-
fier. The second step takes as an input sentences
that are predicted to contain TECHNIQUE/TACTIC
mentions and the linking model links the sentence
to a node in ATT&CK.

Classification/Disambiguation. For classifying
a sentence into a set of tactics or techniques, we
compare the following models.
GENRE: We use the entity linking model de-

scribed in Section 4.3, but do not mark entity
mentions in the input sentence.

TMM: The Transformer-based Multi Task Model
(Pujari et al., 2021) encodes the input sentence
using SciBERT, and feeds the CLS embedding
into a set of binary classification heads which
each predict whether a particular technique oc-
curs in the sentence or not.

TRAM: For comparison, we run the model pro-
vided by the TRAM project on our data. The
model consists of an ensemble of a logistic re-
gression and a Naive Bayes model using n-gram
features and has been trained on the TRAM
dataset for technique detection and linking.

5. Experiments

This section describes our experimental results on
our AnnoCTR corpus for the NLP tasks and models
introduced in the previous sections.

5.1. Settings

For our experiments, we split the AnnoCTR corpus
into three parts (train/dev/test) with 60/15/25% of
the documents, respectively. We perform a tempo-
ral split ensuring that documents from each vendor
end up in each split. The temporal split simulates a
real-world scenario as older documents are used
for training and more recent documents are pro-
cessed during inference. The dev set is used for
model picking. Results are reported on the test
set. For the NER experiments, we train 5 models
with different random seeds and report the average
scores and standard deviation of all runs.

Hyperparameters. We did not perform a hy-
perparameter search, as we used the suggested
default values, i.e., the Huggingface training script
for NER,17 and the model-specific scripts for BLINK
and GENRE from the respective repositories. For
GENRE, we set the number of beams and output

17https://github.com/huggingface/.../run_ner.py

https://github.com/huggingface/transformers/blob/main/examples/pytorch/token-classification/run_ner.py
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Model GNE GNE+X CyNE

BiLSTM-CRF (Kim et al.) 62.2±0.6 65.2±1.1 43.7±1.6

BERT 77.2±1.7 80.4±1.3 51.0±2.3

SciBERT 76.3±1.8 80.4±1.4 53.0±2.3

CodeBERT 75.7±2.0 80.3±1.9 53.7±3.5

RoBERTa 80.2±1.6 82.3±1.2 57.8±1.9

Table 5: NER results. Metric: average Micro F1
of 5 runs for general-world named entities (GNE)
and explicit cybersecurity entities (CyNE) trained
on 120 documents. GNE+X : training includes data
from 280 additional documents.

sequences to 10 during decoding to match the
number of candidates of BLINK.

5.2. NER Results

Table 5 contains the results for our NER experi-
ments. In this experiment, we only use explicit men-
tions of TECHNIQUE and TACTIC, as we found in
preliminary experiments that the NER models do
not work well for implicit mentions. The BiLSTM-
CRF baseline (Kim et al., 2020) performs between
12 and 15 F1 points worse than the transformers.
Differences between the transformer models are
smaller. The RoBERTa models perform best for
general and cybersecurity entities with 2-3 points
improvements compared to the other BERT mod-
els. A possible explanation is that the pretraining
data of RoBERTa is closer to AnnoCTR. For exam-
ple, in contrast to the pretraining data of the other
models, it includes news articles, which are com-
parable in structure to CTRs. Moreover, training all
models on the extended corpus with general en-
tities (+X ) consistently improves the performance
by 2 points.

5.3. Temporal Tagging Results

The results for temporal tagging are given in Ta-
ble 6. We use the TempEval3 evaluation script
(UzZaman et al., 2013) and report relaxed/strict F1
and value F1 for the extraction and normalization
of temporal expressions, respectively.

Both out-of-the-box models, HeidelTime and the
neural model of Lange et al. (2022), have rather
low scores for the extraction step. Thus, we ex-
perimented with domain adaptation methods and
find that both can be greatly improved. First, the
HeidelTime model benefits from the reduced set of
rules for the cybersecurity domain (+12.0/10.5/9.2
pp.), which results in a decrease of false posi-
tive matches. These are often caused by differ-
ences in the annotation schemes, e.g., imprecise
expressions like now or soon are not annotated
in AnnoCTR. Second, the neural model can be
improved by substituting the extraction component

Extraction Norm.
Model Strict Relaxed Value

HeidelTime 57.5 69.3 69.3
+ optimized rules 69.5 79.8 78.5
NER+MLM (Lange et al.) 68.7 83.2 81.6
+ cysec. NER model 84.3±1.7 93.4±0.8 89.2±0.8

+ cysec. NER model+X 87.2±0.7 94.2±0.4 92.2±0.3

Table 6: Temporal tagging results. Metrics: F1
sores for the extraction and normalization.

ORG LOC CON
Model Acc. R@10 Acc. R@10 Acc. R@10

BLINK 50.4 66.4 85.7 97.8 64.5 87.3
GENRE 57.2 60.0 93.7 97.9 64.7 77.9

Table 7: Entity disambiguation results on
gold-standard general entities for linking against
Wikipedia. Metrics: accuracy (R@1) / recall@10.

with our domain-specific cybersecurity NER model
(+18.5/11.0 pp.). As a result, the normalization re-
lying on the extracted expressions performs better
as well (+10.6 pp.).

5.4. Entity and Concept Disambiguation

We report the results for entity disambiguation
when linking against Wikipedia in Table 7. While
precision is higher for the top-1 predictions of
GENRE, it suffers from lower recall compared to
BLINK for ORG and CON entities. This means that
likely, GENRE prunes away good candidates too
early. The scores for ORG are lower compared to
the other two types, indicating that selecting the
correct entity is harder for ORGs, often due to the
presence of several likely candidates.

Results for linking against MITRE ATT&CK are
shown in in Table 8. In our zero-shot experiments,
we use the standard BLINK and GENRE models
trained on Wikipedia (+ AIDA-CoNLL) and evaluate
them for linking to MITRE ATT&CK. We also experi-
ment with fine-tuning the models on our corpus and
we retrain a GENRE model from an initial BART
checkpoint without any previous entity disambigua-
tion training. We find that the zero-shot models
perform already reasonably well on GROUP, MAL-
WARE, and TOOL. Fine-tuning on AnnoCTR for
these entity types mostly reduces the performance,
which may be caused by catastrophic forgetting of
the original training or overfitting.

By contrast, fine-tuning on AnnoCTR is essential
for correctly linking tactics and techniques. In par-
ticular, the retrained GENRE model outperforms
all other models for techniques by a large mar-
gin. This task is quite different from standard entity
disambiguation, as the textual surface form often
notably differs from the KB concept’s title in con-
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GROUP MALWARE TOOL TACTIC TECHNIQUE
Model Acc. R@10 Acc. R@10 Acc. R@10 Acc. R@10 Acc. R@10

BLINK (zero-shot) 82.6 85.5 91.0 96.7 100.0 100.0 57.7 82.0 11.6 29.2
+ finetuned 82.2 87.8 89.1 96.9 98.1 100.0 85.1 95.7 45.1 68.6
GENRE (zero-shot) 86.4 89.2 95.0 97.1 88.5 88.5 66.7 75.7 14.6 19.8
+ finetuned 11.5 28.8 64.8 64.8 9.9 27.3 64.6 80.6 39.7 65.0
retrained 49.8 89.2 64.4 97.0 46.2 100.0 83.5 96.5 66.9 87.8

Table 8: Entity disambiguation results on gold-standard cybersecurity entities for linking against MITRE
ATT&CK. Metrics: accuracy (R@1) / recall@10. Explicit and implicit TACTICs and TECHNIQUEs.

trast to when linking against Wikipedia or to linking
GROUP/MALWARE/TOOL. The experiments in Ta-
ble 8 use gold standard entity spans and types.

5.5. Text-Classification-based Tactic and
Technique Disambiguation Results

We evaluate the identification of tactics and tech-
niques mentioned in a document in an end-to-end
setting, as proposed in Section 4.4. As a first
step, we train a RoBERTA-based text classification
model to identify sentences containing a TECH-
NIQUE or TACTIC mention. The model achieves
F1 scores of 77.0% and 59.4% for the two labels,
respectively.

The sentences that are predicted to mention a
tactic or technique are then classified with regard
to which MITRE ATT&CK concepts they mention.
We retrain several GENRE models, as this model
has shown the most promising results for these
classes in our previous experiments. Moreover,
we augment the training data with an additional
7972 sentences taken from the technique/tactic
descriptions as found in ATT&CK, labeled with the
corresponding tactic/technique. For techniques,
we also add the TRAM dataset to the training. As
a baseline for comparison, we train the GENRE
model with a negative class for sentences that do
not contain a TACTIC or TECHNIQUE. This model
receives all sentences as input. In order to esti-
mate the impact of the first sentence classification
step, we compare to using the sentences contain-
ing a TECHNIQUE or TACTIC annotation in the
gold standard.

Table 9 shows the results in terms of the av-
erage F1 score of detecting the set of ATT&CK
techniques/tactics mentioned in a document. We
find that our domain-specialized models perform a
lot better than the zero-shot model and the base-
lines. In particular, the models leveraging the extra
training data from TRAM or the MITRE ATT&CK
descriptions work best. For techniques, we find
that the approach utilizing our text classification
model for the sentence filtering performs the best.
In contrast, this method performs worse than the
linking model using a negative class for tactics. As

Model Te
ch

n.

Ta
ct

ic

TRAM baseline 24.8 -
TMM (Pujari et al., 2021) 35.3 36.1

Sentence-level linking models with negative class
GENRE (AnnoCTR) 42.5 45.8
GENRE (AnnoCTR +KG desc.) 45.2 47.7
GENRE (AnnoCTR +TRAM) 47.1 -
GENRE (AnnoCTR +TRAM+KG desc.) 43.7 -
GENRE (TRAM) 25.3 -

Sentence-level linking models + text classification
GENRE (zero-shot) 23.4 21.9
GENRE (AnnoCTR) 52.9 39.2
GENRE (AnnoCTR +KG desc.) 56.6 36.7
GENRE (AnnoCTR +TRAM) 56.0 -
GENRE (AnnoCTR +TRAM + KG desc.) 56.5 -
GENRE (TRAM) 25.9 -

Sentence-level linking models + gold techn. detection
GENRE (zero-shot) 24.8 51.7
GENRE (AnnoCTR) 58.9 84.2
GENRE (AnnoCTR +KG desc.) 65.7 83.3
GENRE (AnnoCTR +TRAM) 65.4 -
GENRE (AnnoCTR +TRAM+KG desc.) 63.7 -
GENRE (TRAM) 27.7 -

Table 9: Document-level technique and tactic
detection results: F1 scores micro-averaged over
documents.

indicated by the high scores when using oracle
sentence selection (lower part of the table), this
is caused by the worse performance of the text
classification model for TACTIC, which has less
than a third training examples compared to TECH-
NIQUE. We assume that a better text classification
model for TACTIC entities will also improve the per-
formance of our GENRE models as suggested by
the gold-standard sentence selection results.

6. Conclusion and Outlook

In this resource paper, we have described a new
large-scale dataset in the cybersecurity domain
annotated with general-world NEs and cybersecu-
rity concepts including tactics and techniques. We
have proposed several NLP tasks and provided an
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extensive set of experimental results using neural
transformer models for NER and linking entities
and concepts to Wikipedia and MITRE ATT&CK,
demonstrating that the corpus is consistently an-
notated. Our work lays the foundation for develop-
ing cybersecurity-specific NLP models using freely
available and permissively licensed data.

Ethical Considerations

The annotators participating in our project were
aware of the goal of the annotations and gave their
explicit consent to the publication of their anno-
tations. The annotators were paid considerably
above the respective country’s minimum wages.

While our work attempts to help fighting cyber-
crime, it is like most NLP work not exempt from the
risk of dual use.

Limitations

Our experiments are focused on the AnnoCTR
dataset that we describe in this paper. We could
not perform larger-scale multi-task or transfer learn-
ing with other datasets due to licensing issues as
mentioned in Section 2. The exception for which
we could try transfer learning was TRAM. While
the experiments in Section 5.5 resemble a real-
world evaluation, the linking models in Section 5.4
take the gold-standard entities as inputs, which
assumes a perfect extraction model. The training
of any of our neural models requires a consider-
able number of computational resources (up to 12
GPU hours), which might not be available for every
person/organization.

As knowledge bases are typically continually up-
dated, the recognition and linking models have to
deal with unseen classes during real-world infer-
ence setups. While the corpus itself cannot cover
these new concepts without constant updates, our
models are adaptable to such changes. For the
entity recognition task, our annotated data guides
the model to identify contexts in which an entity
usually appears, and hence a full enumeration of
possible values is not even the case at present.
For entity linking, we require a snapshot of the
database, from which we extract a list of all con-
cepts, techniques, tactics, etc. with corresponding
textual descriptions. These descriptions are used
in the models as targets for decoding, i.e., the
model has to output valid entries from the given
snapshot. We can exchange or update the knowl-
edge base, such that the model can also output
new entities.
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Appendix

A. Preprocessing

The texts were retrieved using Python Requests18.
Due to the URLs, code and image references
within the texts, we convert the articles to a format
similar to Markdown using BeautifulSoup19 and
Markdownify20. Because off-the-shelf sentence
segmenters do not perform well on texts that con-
tain many links or code snippets, we use a custom
regular expression tokenizer for sentence segmen-
tation and correct sentence boundaries manually
before uploading the texts to the web-based anno-
tation system INCEpTION (Klie et al., 2018).

B. Corpus Statistics

Figure 3 and Figure 4 show the distributions over
technique and tactic annotations in AnnoCTR, re-
spectively.

Table 10 shows details on the training/dev/test
splits of our corpus grouped by CTI vendor.

C. NER results per class

The detailed NER results per class are shown in
Table 11.

D. Computational experiments

In the following, we report further information on
our computational experiments.

Computing infrastructure. We use V100 gpus
for all experiments with neural models.

Number of parameters. The base-sized trans-
former models (BERT, SciBERT, CodeBERT,
RoBERTa) have 110M parameters and take 20 min-
utes to train for NER. The two BERT-large model
used in BLINK the BLINK encoder have 340M pa-
rameters each and take 10 hours to train. The
GENRE model has 406M parameters and train for
12 hours. The BiLSTM-CRF baseline for NER has
41M parameters and takes 2 hours to train. The
TMM model has 145M parameters and takes 1
hour to train.

18https://github.com/psf/requests
19https://www.crummy.com/software/BeautifulSoup/
20github.com/matthewwithanm/python-markdownify

https://github.com/psf/requests
https://www.crummy.com/software/BeautifulSoup/
https://github.com/matthewwithanm/python-markdownify
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Intel471 Lab52 ProofPoint QuoIntelligence ZScalar total

Train
(GNE+CyNE)

#docs. 18 13 16 7 16 70
Start date 2016-06-17 2019-04-02 2021-04-15 2018-11-29 2020-06-26
End date 2021-04-07 2002-04-14 2021-08-31 2021-01-16 2021-05-11

Train add.X

(GNE)

#docs. 4 5 73 2 196 280
Start date 2020-04-01 2019-04-02 2017-11-29 2020-01-27 2013-03-08
End date 2021-10-20 2021-12-14 2022-02-15 2020-07-20 2021-07-20

Dev
(GNE+CyNE)

#docs. 4 3 4 1 4 16
Start date 2021-04-19 2020-05-14 2021-09-29 2021-01-27 2021-05-21
End date 2021-05-15 2020-06-09 2021-10-27 2021-01-27 2021-07-14

Test
(GNE+CyNE)

#docs. 8 7 8 4 7 34
Start date 2021-07-14 2020-08-26 2021-10-28 2021-02-16 2021-09-09
End date 2021-12-09 2022-01-24 2022-02-03 2021-06-30 2021-11-16

Table 10: Detailed information on datasplits.

Figure 3: Distribution of technique links annotated in AnnoCTR, showing techniques that occur at least 5
times. In addition, there is a long tail of 136 instances annotated with techniques occurring less frequently.
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Figure 4: Distribution of tactic links annotated in AnnoCTR.

BERT +X SciBERT +X CodeBERT +X RoBERTa +X

F1 F1 F1 F1 F1 F1 Pre. Rec. F1 F1

CodeSnippet 37.6±3.9 41.7±5.0 34.5±5.6 42.0±6.3 28.9±6.7 37.1±5.3 30.7±4.2 53.3±5.6 38.9±4.7 37.0±3.6

DATE 86.8±1.1 86.6±1.0 85.9±1.1 86.2±0.9 85.3±0.8 87.2±1.2 81.8±1.7 87.2±1.2 84.4±1.2 86.8±0.7

LOC 82.5±1.0 86.6±1.4 80.4±0.5 84.5±0.6 81.2±1.9 84.2±2.5 83.2±2.4 84.7±0.5 83.9±1.1 86.2±0.9

ORG 80.9±2.0 86.4±0.8 79.1±2.1 85.6±0.8 80.4±1.9 86.4±0.8 81.2±1.5 91.0±1.1 85.8±1.2 88.5±1.1

SECTOR 52.8±2.3 55.1±2.1 56.3±3.2 60.4±3.5 50.7±3.2 55.2±4.5 56.4±3.5 56.1±3.8 60.4±3.4 63.3±2.1

CON 61.8±1.0 - 63.4±2.6 - 64.6±1.3 - 69.5±2.8 66.8±1.4 68.1±1.2 -
GROUP 43.6±3.6 - 45.6±2.6 - 40.5±3.5 - 70.6±5.7 37.3±1.0 48.7±1.6 -
MALWARE 58.9±3.6 - 62.9±2.9 - 65.5±5.0 - 69.1±2.7 69.6±5.1 69.3±3.2 -
TOOL 8.1±2.3 - 16.6±3.3 - 18.0±15.2 - 8.5±4.5 8.1±2.8 8.2±3.5 -
TACTIC 54.1±2.9 - 57.0±2.0 - 54.7±3.4 - 60.0±4.3 57.5±3.8 58.6±3.4 -
TECHNIQUE 37.1±1.3 - 36.0±0.8 - 38.5±2.8 - 39.8±5.0 42.9±1.6 41.2±3.3 -

Table 11: Sequence Labeling results (average Micro F1 and the standard deviation of 5 runs) We report
recall and precision for the best model (RoBERTa). +X marks models trained with extra data.
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