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Abstract
Chain-of-thought Distillation (CoTD) aims at distilling Chain-of-thought (CoT) reasoning ability of large language
models (LLMs) to much smaller student models. The core of CoTD is using a large teacher model to generate
rationales and fine-tune smaller student models. However, current Chain-of-thought Distillation works have the
following limitations: 1) Student models are separately distilled from specific reasoning tasks and lack a collaboration
mechanism, hindering the enhancement of reasoning performance through collaboration among various reasoning
tasks. 2) The parameter update of student models severely harms the CoT reasoning ability on other unseen
reasoning tasks not included in the distillation process. In this work, we introduce a novel CoT Distillation method,
MoDE-CoTD, which decouples the CoT reasoning abilities out of the student model by distilling multiple LoRA-Experts
and freezing the parameters of the student model. Sequentially, LoRA-Experts are combined and adapted to handle
both seen and unseen reasoning tasks, enabling collaboration among diverse reasoning tasks to further enhance
CoT reasoning performance. Experimental results on 14 datasets (including 4 unseen datasets) demonstrate the
strength of MoDE-CoTD, with an average accuracy gain of 6.3% on seen datasets and 7.8% on unseen datasets.
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1. Introduction

Chain-of-thought (CoT) prompting successfully im-
proves the reasoning capabilities of large language
models (LLMs) (Wei et al., 2022). By eliciting lan-
guage models to break down a reasoning task into
a series of intermediate steps described by natural
language, CoT achieves remarkable performances
on various complex tasks such as arithmetic rea-
soning and commonsense reasoning, even for un-
seen tasks. However, the ability to solve complex
reasoning tasks through CoT Prompting is consid-
ered an emergence that appears in very large mod-
els with at least tens of billions of parameters (Wei
et al., 2022), such as PaLM of 540B (Chowdhery
et al., 2022), GPT-3 of 175B (Brown et al., 2020),
and LLaMA-2 of 70B (Touvron et al., 2023).

Due to the enormous computational resources or
expensive API calls required to utilize CoT-capable
LLMs (e.g., LLaMA-2-70B), it is significant to en-
able complex reasoning in small models that are
more feasible for large-scale deployment. There-
fore, Chain-of-thought Distillation (CoTD) has been
proposed to distill such reasoning capabilities to
smaller models (Ho et al., 2023; Magister et al.,
2023; Li et al., 2023; Shridhar et al., 2023). Specifi-

*Corresponding author

Seen task Uneen tasks

Model GSM8K Common- ReclorSenseQA
Random 0.0 20.0 25.0
Flan-t5-large 6.0 82.8 53.4
→ Distillation 7.1 +1.1 39.6 -43.2 25.0 -28.4

Table 1: Student models suffer from Catas-
trophic Degradation on Unseen Tasks. Distilling
student models with an arithmetic dataset (GSM8K)
severely impairs its CoT reasoning ability beyond
arithmetic reasoning, such as commonsense rea-
soning and logical reasoning.

cally, this line of works applies existing zero-shot or
few-shot CoT prompting to generate rationales from
very large language models such as ChatGPT and
then to fine-tune smaller models such as T5 with
those rationales-augmented datasets. Following
this procedure, small student models can learn sim-
ilar reasoning abilities from large teacher models
by knowledge distillation (Hinton et al., 2015).

However, in the existing series of CoT distillation
works, student models suffer from the following
limitations: 1) Lack of Cross-Task Collabora-
tion. Large teacher models contain cross-task
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collaboration capabilities due to universal task-
solving capabilities emerging from their enormous
parameters. While the existing CoT Distillation
works focus on distilling each student model for
different tasks separately, without allowing for
collaboration among the students across different
reasoning tasks. In this paper, we believe that
enabling cross-task collaboration among student
models of diverse reasoning tasks can yield
substantial benefits, because a certain reasoning
task may require the integration of multiple types
of reasoning abilities. For example, answer-
ing the arithmetic reasoning question Claire
makes a 3 egg omelet every morning,
how many dozens of egg will she eat
in 4 weeks?, not only necessitates arithmetic
reasoning but also relies on commonsense
reasoning to recognize that there are 7 days
in a week and 12 eggs in a dozen. 2)
Catastrophic Degradation on Unseen Tasks1.
Due to the update of the overall parameters of
the student model, CoT Distillation enhances the
CoT reasoning performance of the student model
on seen tasks. But this process also changes
its internal parameters and disrupts its original
ability to solve some general tasks. Therefore,
CoTD also severely harms its performance on
unseen tasks that are not included in the distillation
process. For instance, as illustrated in the Table
1, the student model, distilled using the arithmetic
reasoning dataset (GSM8K), loses its original CoT
reasoning ability severely when confronted with
commonsense reasoning and logical reasoning
tasks (CommonSenseQA and Reclor).

To solve the aforementioned limitations, we pro-
pose a novel CoT Distillation method named MoDE-
CoTD inspired by Low Rank Adaptation (LoRA) (Hu
et al., 2021) and Mixture-of-Experts (MoE) (Huang
et al., 2023; Shazeer et al., 2017). MoDE-CoTD
decouples the CoT reasoning ability of diverse rea-
soning tasks from the student model to external
LoRA modules. These decoupled LoRA modules
are then combined and adapted to handle a wide
range of reasoning tasks.

Specifically, we consider LoRA modules as ex-
perts for different reasoning tasks, which we refer
to as LoRA-Experts. Rather than fully fine-tuning
the entire student model, our approach focuses
on LoRA-based fine-tuning those experts and dis-
tilling diverse reasoning capabilities from LLMs to
them. We select a set of representative reasoning
tasks (10 tasks in total) and distill corresponding
LoRA-Experts. Then, the proposed CoTD method
integrates the parameters of each decoupled LoRA-

1The similar phenomenon is also observed by (Fu
et al., 2023), where they find the student model distilled by
arithmetic reasoning datasets loses all the CoT reasoning
ability on BigBench Hard.

(a) Vanilla Chain-of-thought Distillation

(b) MoDE-CoTD

Figure 1: Comparison between previous works
and our proposed method. Different from previ-
ous works, we only finetune a few external LoRA-
Experts for various reasoning tasks. With just a
handful of examples from any task, our approach
can autonomously compose all LoRA-Experts and
adapt to new tasks immediately.

Expert into a newly constructed LoRA module for
any reasoning task, regardless of whether the task
is previously encountered or entirely new. This pa-
rameter integration process only requires the use
of a limited number of examples (e.g., 5 examples)
(Huang et al., 2023). (The process is illustrated in
Figure 1(b).)

By applying a mixture of decoupled LoRA-
Experts for CoT Distillation, our approach offers
two notable advantages : 1) Cross-task Collabo-
ration. For each seen task, our approach allows for
collaboration across different tasks by integrating
parameters from other LoRA-Experts. This col-
laboration enhances the student models’ perfor-
mance on each seen task by leveraging the collec-
tive knowledge acquired from related tasks, alle-
viating Lack of Cross-Task Collaboration problem.
2) Cross-task Generalization. For unseen tasks,
our approach decouples the CoT reasoning abilities
out of the student model. It requires no modifica-
tion on parameters of student models and avoids
the Catastrophic Degradation on Unseen Tasks.
Moreover, through a mixture of LoRA-Experts, our
approach enables the student models seamlessly
applied to unseen tasks.

Overall, the main contributions are summarized
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as follows:

• We propose to decouple the CoT reasoning
abilities from student model to LoRA-Experts
for each complex reasoning tasks. LoRA-
Experts are then combined and adapted to
handle a wide range of reasoning tasks.

• We apply LoRA-Tuning in CoT Distillation and
a Mixture-of-Expert strategy to combine LoRA-
Experts. To our best knowledge, we are the
first to introduce LoRA Tuning and MoE to CoT
Distillation.

• Experimental results on 14 public datasets
demonstrate that MoDE-CoTD significantly en-
hanced the reasoning capabilities of the stu-
dent model, not only on tasks that have been
previously encountered but also on unseen
tasks.

2. Related Work

Chain-of-Thought Reasoning This work is
highly relevant to the seminal work of CoT prompt-
ing (Wei et al., 2022). They demonstrate that LLMs
can learn to generate intermediate reasoning steps
that lead to a problem solution with step-by-step
reasoning. This enables state-of-art performance
on complex reasoning datasets such as GSM8K
(Cobbe et al., 2021). Additionally, (Kojima et al.,
2022) find that this can also be done by LLMs in
an unsupervised setting, using Zero-shot-CoT. This
requires no fine-tuning or examples and substan-
tially outperforms standard zero-shot learning even
dew-shot learning on a wide range of tasks.

Chain-of-Thought Distillation Although Chain-
of-thought prompting achieves remarkable success
on a wide range of natural language processing
tasks. However, previous work has shown that CoT
extremely relies on large models with enormous
parameters (e.g., more than tens of billions of pa-
rameters) (Hoffmann et al., 2022; Chowdhery et al.,
2022). This leads to overwhelming computational
requirements and inference costs, hindering the de-
ployment in practice. As a result, Chain-of-thought
distillation (Ho et al., 2023) is proposed to distill CoT
reasoning capabilities of LLMs to much smaller
models by fine-tuning them on rationales gener-
ated by LLMs. Furthermore, (Li et al., 2023; Fu
et al., 2023) extends various distillation paradigms.
(Magister et al., 2023) extensively explores the im-
provement of the reasoning ability of small models
across multiple model architecture and observes
the effects of student model size and data size
on accuracy. Apart from that, (Wang et al., 2023)
focus on generating more faithful and consistent
rationales for CoT Distillation. In contrast to the

previous work, where they focus on distilling spe-
cialized student models for each reasoning task, in
this work, we propose to develop a LoRA-based
distillation method, where our student model can
tackle diverse reasoning tasks with decoupled mod-
ules.

Mixture-of-Experts and LoRA Tuning The
Mixture-of-Experts (MoE) has been investigated
thoroughly in Natural Language Processing
(Shazeer et al., 2017; Komatsuzaki et al., 2022) as
an effective way of increasing the model’s capacity
in parameter size where certain parts of the model
are activated for various tasks. In this work, we uti-
lize the idea of MoE for CoT Distillation and adapt
distilled student models to diverse reasoning tasks.
LoRA (Hu et al., 2021), a parameter-efficient fine-
tuning method, facilitates the adaptation of LLMs
using a small-scale external module, eliminating
the need for fine-tuning the entire model. Recently,
(Huang et al., 2023; Zadouri et al., 2023) propose
different frameworks to compose multiple LoRA
modules. Unlike them, in this work, we utilize LoRA
Tuning to distill LoRA-Experts for different reason-
ing tasks and assemble LoRA-Experts for resolving
seen and unseen complex reasoning tasks.

3. Method

In this section, we provide a detailed description of
our method, as illustrated in Figure 2, MoDE-CoTD
can be divided into three stages:

1. CoT Generation, we prompt a very large
teacher language model to generate reason-
ing steps for a wide array of diverse reasoning
tasks, preparing datasets for training LoRA-
Experts

2. LoRA-Experts Distillation, we distill the rea-
soning capabilities from a large teacher model
to a group of LoRA-Experts. For each reason-
ing task, we distill the corresponding reasoning
ability to a specific LoRA-Expert.

3. LoRA-Experts Composition, when encoun-
tering a specific complex reasoning task, we
integrate parameters of all LoRA-Experts into
a single model. Each LoRA-Expert is allocated
a scalar coefficient, the coefficients are itera-
tively optimized by leveraging a small set of
examples from the target task.

3.1. CoT Generation
For a fair comparison, we adopt the same CoT
prompting process as previous works (Ho et al.,
2023). First, we utilize a large teacher model to
generate CoT reasoning explanations for a given
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Figure 2: Overview of our proposed MoDE-CoTD method. Stage 1: a very large teacher model is
prompted to solve complex questions by generating multi-step reasoning explanations (CoT). The question,
CoT/rationale, and answer are used to compose a CoT Distillation sample. Stage 2: CoTD samples are
used to fine-tune a group of LoRA-Experts for different reasoning tasks, a group of lightweight modules
distilled by diverse reasoning capabilities. Stage 3: to handle any seen and unseen complex reasoning
task, the diverse distilled LoRA-Experts are combined and adapted by utilizing a few examples from the
target task. The combination coefficients {ωi}Ni=1 are optimized using a gradient-free algorithm iteratively.

task. Consider a standard sample Si consisting of
a question qi and its true answer ai. Using Zero-
shot-CoT (Kojima et al., 2022) 2. we prompt the
teacher model to generate a reasoning explanation,
or rationale, r̂i to solve question qi and make a final
answer prediction âi. The resulting text sequence,
including the prompt and generations, takes the
following form: “Q: <qi>. A: Let’s think step by step.
<r̂i> Therefore, the answer is <âi>”.

Next, we filter the generated samples and refor-
mat them into prompt-completion pairs. Follow-
ing (Ho et al., 2023; Zelikman et al., 2022; Huang
et al., 2022), we filter the samples by comparing
the final prediction of the teacher model âi with the
ground-truth ai. Note that implementing this filter-
ing process will result in the loss of some training
samples. For each instance i where âi = ai, we
repackage (Si, r̂i, âi) into a prompt-completion pair
S′
i = (pi, ci).

3.2. LoRA-Experts Distillation
After building CoT reasoning dataset in 3.1, we
utilize LoRA Tuning (Hu et al., 2021) to train LoRA-
Experts on diverse reasoning tasks. Specifically,

2Note that Zero-shot-CoT is a two-step prompting
method, where the intermediate CoT is generated in the
first step and the final answer is generated in the second
step.

for N distinct reasoning tasks, we separately train
N LoRA-Experts, each represented as mi for task
Ti ∈ T . In this work, we choose ten representative
reasoning tasks from a wide range of reasoning
tasks, including commonsense reasoning, arith-
metic reasoning, and temporal reasoning.

LoRA Tuning decomposes the attention weight
W0 ∈ Rd×k update of the LLM by low-rank matrices,
denoted as W0 + δW = W + AB (A ∈ Rd×r, B ∈
Rr×k), where A and B are low-rank matrics with
rank r, a dimension significantly smaller than those
of d and k. Compared to full-finetune student mod-
els, we distill the reasoning capabilities of LLM to
LoRA-Experts with LoRA Tuning, paving the way
for extending CoT Distillation to diverse reasoning
tasks, regardless of whether the tasks are seen or
unseen.

3.3. LoRA-Experts Composition
This section describes the behavior of MoDE-CoTD
in the inference stage. After the aforementioned
two stages, we obtain a set of LoRA-Experts, de-
noted as {mi}Ni=1. Each LoRA-Expert mi = AiBi

is distilled from a specific reasoning task. Dur-
ing inference stage, we integrate parameters of
all LoRA-Experts into a single module m̂, using
{ω1, ω2, ..., ωN} coefficients, represented as m̂ =∑N

i=1 ωi ×mi, where ωi is a scalar weight that can
be either positive or negative values.
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The coefficients {ω1, ω2, ..., ωN} are calculated
through an iterative algorithm with few-shot exam-
ples Q = {Ei}Ki=1 from any task, including two
phases: 1) EVALUATE phase, 2) UPDATE phase.

3.3.1. EVALUATE Phase

Within the EVALUATE phase, we first compose all
LoRA-Experts with current coefficients:

m̂ =(ω1A1 + ω2A2 + ...+ ωNAN )

× (ω1B1 + ω2B2 + ...+ ωNBN )
(1)

Then, we calculate the cross-entropy loss L on Q,
furthermore, we incorporate L1 regularization to
penalize the sum of the absolute values of all the
ωs, preventing extreme values. Consequently, the
final optimization objective is:

L̂ = L+ α

N∑
i=1

|ωi| (2)

where α serves as a hyperparameter.

3.3.2. UPDATE Phase

Within the UPDATE phase, we optimize the ob-
jective calculated. Our goal is to find the best
weight {ω1, ω2, ..., ωN} and minimize the loss L +

α
∑N

i=1 |ωi|. Following (Huang et al., 2023), we
adopt a gradient-free method for optimization given
that ω consists of a relatively small number of pa-
rameters.

In terms of the gradient-free method, we leverage
Shiwa (Liu et al., 2020), a combinatorial optimiza-
tion approach. Shiwa offers a variety of algorithms
and selects the most appropriate optimization algo-
rithm for different circumstances. In our case, we
employ this algorithm to shape the search space of
parameter ω, aiming to select the optimal weights
based on their performance on the few-shot exam-
ples from any seen or unseen task.

The complete process of the calculation of coef-
ficients is summarized by Algorithm 1

Algorithm 1 Coefficients Calculation Algorithm
1: Initialization:{wi ← 0}Ni=1, MAXSTEP ← T ,

n← 0
2: repeat
3: n← n+ 1
4: Compose m̂ base on Equation (1)
5: Calculate Objective L̂ based on Equation (2)

6: Update {ωi}Ni=1 with Shiwa algorithm
7: until n =MAXSTEP

Output: optimized weights {ωi}Ni=1

4. Experiments

4.1. Tasks and Datasets
We evaluate our method on 14 datasets pertaining
to five categories of complex reasoning, following
(Ho et al., 2023; Kojima et al., 2022). Among them,
10 datasets are used for training LoRA-Experts
These include arithmetic (SingleEq, AddSub, Mul-
tiArith, GSM8K, Aqua, SVAMP), temporal/spatial
reasoning (Date Understanding, Tracking Shuffled
Objects), symbolic (Last Letter Concatenation), and
common sense (CommonSenseQA) reasoning.

Moreover, we choose 4 datasets for cross-task
generalization evaluation. All the 4 datasets are
quite different from 10 seen tasks:

1) Coin Flip (Wei et al., 2022) asks the model to
answer whether a coin still heads up after people
either flip or don’t flip the coin.

2) StrategyQA (Geva et al., 2021) is a common-
sense reasoning task that poses additional chal-
lenges compared to CommonSenseQA due to rea-
soning steps that are implicit in the question.

3) OpenBookQA (Mihaylov et al., 2018) consists
of elementary-level science questions, which re-
quire broad common knowledge to solve.

4) Reclor (Yu et al., 2020) is a challenging logical
reasoning dataset extracted from logical reason-
ing questions of standardized graduate admission
examinations.

4.2. Teacher and Student Models
For teacher models, we use GPT-3 175B (Brown
et al., 2020), provided by the OpenAI API. Unless
otherwise stated, we use text-davinci-002
(Ouyang et al., 2022) as the teacher model. For
student models, we consider the instruction-tuned
version of T5, Flan-T5-{Base, Large, XL} (Chung
et al., 2022). We further train our student model
with LoRA-Tuning (Hu et al., 2021) and merely keep
the parameter weights of LoRA modules for the
subsequent inference stage.

Baseline methods We provide a comparison of
MoDE-CoTD (ours) with three baseline methods:

• Vanilla CoT Distillation (Ho et al., 2023), a
student model is trained for each reasoning
task with full-parameter fine-tuning.

• Zero-shot-CoT (Kojima et al., 2022): We apply
standard Zero-shot-CoT prompt for Flan-t5.

• Multi-task CoT Distillation: We extend the
vanilla CoT Distillation (Ho et al., 2023) to
a multi-task setting by merging all training
datasets and training one single multi-task stu-
dent model for all reasoning tasks.
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Seen tasks Uneen tasks

Method Params Single Add Multi GSM8K Aqua SVAMP Date Und- Shuffled Last Common Coin Strategy Reclor Open
Eq Sub Arith erstanding Objects Letter SenseQA Flip QA BookQA

Random 0.00 0.00 0.00 0.00 20.00 0.00 17.12 33.33 0.00 20.00 50.00 50.00 25.00 25.00
Teacher: InstructGPT (text-davinci-002)

Zero-shot-CoT 175B 82.24 78.99 78.89 40.26 34.25 64.67 73.87 50.22 56.00 61.75 92.67 53.57 53.00 63.40
Student: Flan-T5 (base, large, xl)

Zero-shot-CoT 250M 3.29 2.52 9.44 5.60 25.20 7.33 18.20 33.78 0.00 67.90 50.00 54.29 36.20 44.60
780M 5.26 5.88 10.00 6.06 24.01 6.67 18.02 28.88 0.00 82.80 54.67 54.29 39.21 53.47
3B 9.87 17.64 16.67 6.65 24.80 12.00 30.36 24.44 0.00 84.77 55.33 55.98 50.20 62.38

Vanilla CoT 250M 4.61 9.42 12.22 4.40 29.13 6.00 83.78 48.89 50.00 59.05 - - - -
Distillation 780M 11.84 10.92 14.44 7.12 28.35 10.67 84.68 55.11 64.00 66.83 - - - -

3B 20.39 11.76 26.67 7.60 45.67 12.33 88.29 43.11 53.33 74.12 - - - -
Multi-task 250M 5.22 8.40 8.33 6.00 47.24 2.33 80.18 31.55 43.33 73.33 52.67 52.83 42.40 43.80
CoT Distillation 780M 11.89 16.81 8.33 6.36 46.45 9.00 79.23 35.56 44.43 73.21 53.33 50.09 40.46 45.45

3B 22.36 36.9 17.22 7.73 48.07 11.33 81.93 52.46 50.00 75.85 56.00 52.11 39.28 50.00
MoDE-CoTD 250M 5.26 7.56 13.89 6.11 39.76 5.33 85.55 35.55 60.67 73.79 60.00 56.18 38.89 44.60

780M 10.52 10.92 13.89 7.28 43.77 11.33 89.19 62.22 79.33 86.73 61.33 56.47 42.44 61.61
3B 23.68 24.37 23.33 9.78 49.21 17.33 93.69 70.67 86.00 89.56 62.33 60.99 56.83 74.81

Table 2: MoDE-CoTD Performance. Accuracy (%) of MoDE-CoTD and baseline methods on 14 tasks
(10 seen tasks and 4 unseen tasks) under various settings. ‘Random’ refers to random-guess performance
derived based on the number of choices in multi-choice tasks. We highlight the best method for each
setting. For ‘Zero-shot-CoT’, we use the same prompt setting as (Ho et al., 2023)

For text generation, we use greedy decoding
following Wei et al. (2022); Kojima et al. (2022)
throughout our experiments.

4.3. Implementation Details

We implement LoRA tuning with Huggingface PEFT
library3, and keep the LoRA tuning hyperparameter
at r = 16. Regarding the training hyperparameters,
we maintain consistency across all LoRA modules,
setting the learning rate at 5e− 4, and batch size
at 16.

The gradient-free algorithm is implemented by
the open-source Nevergrad optimization library. Ini-
tially, we set all LoRA-Experts to zero weights and
constrain the absolute value of weights under 1.5.
And the hyperparameter α is set as 0.05.

4.4. Results

In this section, we present the CoT reasoning perfor-
mance of our MoDE-CoTD method. We compare
our method with baselines within different model
sizes. Our method’s effectiveness is demonstrated
through experimental results on both seen and un-
seen tasks, showcasing its cross-task collaboration
and cross-task generalization capabilities4.

MoDE-CoTD enables cross-task collaboration
for seen tasks Tabel 2 summarize the accu-
racy of student models using the proposed MoDE-
CoTD method, compared to Zero-shot-CoT, vanilla

3https://github.com/huggingface/peft
4Our code is available at https://github.com/

Xiang-Li-oss/MoDE-CoTD

CoT Distillation, and Multi-task CoT Distillation. Al-
though Zero-shot-CoT exhibits remarkable perfor-
mance on very large language models (Kojima
et al., 2022), the same cannot be said for smaller
models. Notably, the Zero-shot-CoT approach fails
to enable certain complex reasoning tasks, such as
the Last Letter task, in all three smaller models. In
contrast, CoT Distillation elicits notable reasoning
performance, demonstrating significant gains over
Zero-shot-CoT almost across all tasks.

Figure 3: Benefits of cross-task collaboration
Accuracy (%) of MoDE-CoTD and LoRA-CoTD on
three seen tasks. As shown in the results, LoRA-
CoTD, without cross-task collaboration, does not
perform competitively compared to Vanilla-CoTD. In
contrast, MoDE-CoTD, which introduces cross-task
collaboration, achieves a significant improvement
in accuracy.

In contrast, MoDE-CoTD significantly improves
CoT reasoning performance by incorporating cross-
task collaboration on seen tasks. MoDE-CoTD
achieves the highest accuracy on more than half of

https://github.com/huggingface/peft
https://github.com/Xiang-Li-oss/MoDE-CoTD
https://github.com/Xiang-Li-oss/MoDE-CoTD
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Figure 4: Effect of amounts of examples. Accu-
racy (%) for Reclor and OpenbookQA with various
amounts of examples. As shown in the results, re-
ducing the amounts does not cause an apparent
decline on accuracy, demonstrating the robustness
of our method.

all the reasoning tasks. For instance, on tasks like
GSM8K and SVAMP, our method surpasses vanilla
CoT Distillation by 3% and 5% in terms of accuracy,
respectively. This demonstrates that MoDE-CoTD
significantly improves CoT reasoning performance
by incorporating cross-task collaboration on seen
tasks. Moreover, to further confirm the benefits
of cross-task collaboration, we compare the per-
formance of MoDE-CoTD with a setting where we
solely employ LoRA-Tuning on a student model for
a specific reasoning task without incorporating a
mixture of LoRA-Experts. This latter approach is
referred to as LoRA-CoTD. Figure 3 demonstrates
that LoRA-CoTD is usually weaker than Vanilla-
CoTD, while MoDE-CoTD significantly outperforms
Vanilla-CoTD. This highlights the effectiveness of
cross-task collaboration in enhancing the perfor-
mance of CoTD.

We also observe that tasks that are not overly
complex, which include other reasoning tasks (Date
Understanding, Shuffled Obejects) and symbolic
reasoning (Last Letter), significantly outperform
other baselines. This suggests that tasks that are
relatively simpler derive greater benefits from tasks
that are more complex and challenging, such as
arithmetic reasoning.

MoDE-CoTD enables cross-task generalization
for unseen reasoning tasks As shown in Table
2, vanilla CoT Distillation has limitations in han-
dling multiple tasks. One approach to address
this is through multi-task learning, which involves
combining training data from all tasks. However,
while Multi-task CoT Distillation shows improve-
ments over vanilla CoT Distillation in certain rea-
soning tasks (such as GSM8K and Aqua), it falls
short in other tasks (such as SVAMP and Last Let-
ter). Apart from this, Multi-task CoT Distillation also
struggles with unseen tasks, resulting in a signifi-

Figure 5: Robustness Evaluation of MoDE-CoTD.
MoDE-CoTD demonstrates robustness, as sam-
pling different examples does not result in signifi-
cant fluctuations in accuracy.

cant decrease in accuracy. For example, it experi-
ences a 22.38% (73.8% - 50%) accuracy drop on
OpenbookQA and an 11% (50.20% - 39.20%) ac-
curacy decrease on Reclor compared to Zero-shot-
CoT. These findings indicate that applying Multi-
task learning to CoT Distillation may cause over-
fitting on training datasets, severely harming its
generalization capability.

In contrast, MoDE-CoTD demonstrates a strong
cross-task generalization capability on unseen
tasks. The integration of parameters from LoRA-
Experts trained on seen tasks provides a founda-
tion for quick adaptation and accurate predictions in
the context of new tasks. For example, our method
outperforms Zero-shot-CoT on Reclor and Open-
BookQA by 6% and 12% respectively. On four un-
seen tasks, our method consistently outperforms
Zero-shot-CoT, and the performance gap widens as
the model size increases. This observation aligns
with our expectations since the introduction of LoRA
modules entails additional parameters. Theoreti-
cally, our method will degrade to Zero-shot-CoT
if all weights are set to zero, which ensures that
our method will be superior to Zero-Shot CoT in
most cases due to the incorporation of valuable
information through the LoRA-Experts.

Furthermore, MoDE-CoTD demonstrates remark-
able performance by outperforming the teacher
model on three out of four unseen tasks, while
requiring approximately 50 times fewer parame-
ters. Specifically, it surpasses the teacher model
by achieving 3% and 11% higher accuracy on Re-
clor and OpenBookQA, respectively. These results
highlight the effectiveness and efficiency of our ap-
proach.
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Figure 6: Visualization of LoRA-Experts.
Weights of 10 LoRA-Experts computed by the
gradient-free algorithm for 4 unseen tasks. As
shown in the result, experts that are distilled from
more complex tasks (for example GSM8K) or more
general tasks (for example, CommonSenseQA)
play the most important role.

4.5. Analysis
In this section, we further analyze the reliability and
interpretability of our method by four aspects:

Can MoDE-CoTD still works with fewer exam-
ples from new tasks ? The answer is Yes. Fig-
ure 4 shows the reasoning accuracy on two un-
seen tasks: Reclor and OpenbookQA. It is clear
that reducing the number of examples from N=5
to N=1 results in a negligible decline in accuracy,
with a difference of less than 2%. This highlights
the robustness of our method, MoDE-CoTD, as it
remains effective even in a one-shot setting. Ad-
ditionally, in the case of Reclor, we have noticed
that N=1 outperforms N=3 and N=5 to a slight ex-
tent. This disparity could potentially be attributed to
the presence of noise in the rationales generated
by the teacher model. Reclor is a complex and
challenging logical reasoning dataset constructed
from standardized graduate admission examina-
tions. To arrive at the correct answer, the teacher
model must generate rationales that are more in-
tricate and lengthier, thereby increasing the risk of
introducing additional noise.

We have also observed that increasing the num-
ber of examples has minimal impact on reasoning
performance. This could be attributed to the fact
that the coefficients of LoRA-Experts are already
finely optimized with just a few examples (e.g. 5).

Robustness Evaluation of MoDE-CoTD towards
example selection. We randomly select 5 ex-
amples from the training dataset and repeat this
process ten times. We measure the reasoning ac-
curacy of each sample and create box plots that dis-

Figure 7: Ablation study on LoRA-Experts. As
shown in the results, as the amount of experts re-
duces (from right to left), reasoning accuracy (%)
on four unseen tasks noticeably becomes unstable.

play the distribution of reasoning accuracy. Figure
5 clearly demonstrates that sampling different ex-
amples during the inference stage does not cause
significant fluctuations in accuracy, proving the ro-
bustness of MoDE-CoTD when sampling different
examples.

How are LoRA-Experts composed by new
tasks? Figure 6 visualizes the corresponding
weights of LoRA-Experts calculated by the gradient-
free algorithm in our method. By intuition, experts
with larger weights play a more important role when
generalizing to new tasks. The results displayed in
the heatmap confirm our hypothesis. For instance,
CommonsenseQA appears to provide the greatest
assistance to OpenBookQA, which is reasonable
as both tasks involve commonsense reasoning.
StrategyQA and Reclor rely heavily on experts like
GSM8K and CommonsenseQA, as these tasks re-
quire the combination of commonsense knowledge
from CommonsenseQA and the ability to solve com-
plex tasks provided by GSM8K and other arithmetic
reasoning experts.

How does the amount of LoRA-Experts affect
generalization on new tasks? Figure 7 illus-
trates the results of our ablation study on LoRA-
Experts. We investigate the effect of LoRA-Experts
by randomly sampling 3, 5, or 7 LoRA-Experts out
of 10 Experts in the inference stage. This experi-
ment was repeated 10 times, and the reasoning ac-
curacy was measured for each sampling scenario.
To analyze and visualize the results, we created box
plots that display the distribution of reasoning accu-
racy for the different sampling scenarios. As shown
in the results, after reducing the number of experts,
the accuracy noticeably becomes unstable. While
sampling fewer experts may occasionally result in
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higher maximum accuracy, this trade-off comes at
the cost of decreased stability and average perfor-
mance. The observed pattern is reasonable and
logical. When fewer experts are sampled, there is
a higher likelihood of including both important and
unimportant experts in the selection. This mixture
of experts can introduce variability and inconsis-
tency in the model’s reasoning process, leading to
decreased stability in performance.

5. Conclusion

In this work, we identify two limitations of current
Chain-of-thought Distillation works, namely Lack of
Cross-Task Collaboration and Catastrophic Degra-
dation on Unseen Tasks. To solve these limitations,
we propose a novel method named MoDE-CoTD.
MoDE-CoTD decouples the CoT reasoning capa-
bilities out of the student model by distilling LoRA-
Experts instead of fine-tuning the entire student
model, avoiding the problem of Catastrophic Degra-
dation on Unseen Tasks. Also, by distilling multi-
ple LoRA-Experts from diverse reasoning tasks,
MoDE-CoTD alleviates the problem of Restriction
to Specific Tasks, enhancing the CoT reasoning
ability of the student model on a wide range of rea-
soning tasks.
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