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Abstract 

Large language models (LLMs) have made substantial 

strides, but their use in reliably tackling issues within 

specialized domains, particularly in interdisciplinary 

areas like pharmaceutical sciences, is hindered by data 

heterogeneity, knowledge complexity, unique objectives, 

and a spectrum of constraint conditions. In this area, 

diverse modalities such as nucleic acids, proteins, 

molecular structures, and natural language are often 

involved. We designed a specialized token set and 

introduced a new Mixture-of-Experts (MoEs) pre-

training and fine-tuning strategy to unify these 

modalities in one model. With this strategy, we've 

created a multi-modal mixture-of-experts foundational 

model for pharmaceutical sciences, named SciMind. 

This model has undergone extensive pre-training on 

publicly accessible datasets including nucleic acid 

sequences, protein sequences, molecular structure 

strings, and biomedical texts, and delivers good 

performance on biomedical text comprehension, 

promoter prediction, protein function prediction, 

molecular description, and molecular generation.   

1 Introduction 

Large language models (LLMs) have made 

substantial strides, providing a versatile, task-

agnostic base for a variety of applications[1], [2], 

[3]. However, their use in reliably tackling issues 

within specialized domains, particularly in 

interdisciplinary areas like pharmaceutical sciences, 

is hindered by several obstacles. These include data 

heterogeneity, knowledge complexity, unique 

objectives, and a spectrum of constraint conditions, 

which block the creation of groundbreaking 

applications[4], [5], [6]. This research aims to lay 

the groundwork for a large-scale model within the 

pharmaceutical sciences. In this area, four diverse 

modalities including nucleic acids, proteins, 

molecular structures, and natural language are 

involved. Of them, nucleic acids, proteins and 

molecular structures are the common modalities 

modeled by the pharmaceutical science community. 

Predicting the properties of a molecule or a 

protein[7], [8], [9], designing and optimizing for 

new ones[10], [11], [12], and understanding how 
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Figure 1: An overview of the four modalities in 

pharmaceutical sciences. The three traditional 

modalities, including nucleic acids (DNA/RNA), 

proteins, and small molecules, are typically 

modeled independently. Recent advancements 

have been made in the realm of cross-modal 

modeling, as indicated by the solid lines. However, 

there is a gap domain. In recent times, the natural 

language modality has surfaced as a highly 

promising method to describe nucleotide 

sequences, small molecules, and proteins, and it is 

swiftly garnering attention. 
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they interact with each other [13], [14], [15] are 

common tasks and have made great progress. For 

example, AlphaFold3 and RosettaFold All-Atom 

models can even predict all interactions among 

these modalities. 

However, a gap exists between these interactions 

and biological functions. While binding is common 

between proteins and molecules, the effects it may 

cause are rare and often expressed in natural 

language after experimentation, making 

standardization for modeling challenging. The 

effects a molecule can cause by binding to a protein 

are diverse, including competitive inhibition, non-

competitive inhibition, agonizing, antagonizing, 

allosteric regulation, covalent modification, 

transport, and chelation, among others[16]. These 

effects are interconnected yet distinct from one 

another. Modeling each effect separately requires 

standardization and a separate classification or 

regression model, often leading to a loss of 

semantic meaning in the labels. In contrast, natural 

language descriptions provide an abstract and 

meaningful form of labeling for data, capable of 

conveying rich information.  

Recent advancements in LLMs have propelled the 

development of cross-modal models between 

language and other modalities[4], [17], [17], [18], 

[19], [20]. These models, which include language-

molecule, language-protein, and language-nucleic 

acids modalities, extend our capabilities to predict 

molecule functions, generate or optimize 

molecules with flexible constraints, annotate 

protein functions, and create or optimize proteins. 

However, their modality fusion is limited to two 

modalities.  

In the field of pharmaceutical sciences, multiple 

modalities can be integrated, as depicted in Figure 

1. If a model capable of managing all these 

modalities exists, then all biomedical text 

knowledge could be stored in a richly informative 

format. To address this, we've developed a 

specialized token set designed to individually 

tokenize different modalities. We also introduce a 

novel pre-training and fine-tuning strategy that 

harnesses the benefits of large-parameter models 

while minimizing their costs. This strategy, based 

on previous work MoEfication[21], involves two 

key components: (1) splitting the parameters of 

Feed-Forward Networks (FFNs) into multiple 

functional partitions called experts, and (2) 

building expert routers to determine which experts 

will be used for each input. By adopting a selective 

unequal number of expert activation strategy on 

different tokens, this approach enables data from 

 

Figure 2: SciMind multi-modal model overview. A, there are four modalities in SciMind, and different modality 

was designated with different tokens to represent their sequences; B, based on llama-2-7B, 16 experts are split 

using restricted K-Means clustering according to the feedforward layer weights. A routing layer is added before 

the feedforward layer of the original model, and domain data is used to pretrain or fine-tune the routing layer to 

achieve the selection of different experts for different tokens. 
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different modalities to choose the most appropriate 

processing path. This approach not only results in a 

sparser model architecture, thereby reducing 

inference costs, but also circumvents modal 

alignment and potential performance decreases due 

to model size reduction. The main contributions of 

our work are as follows: 

1) We've created a multi-modal mixture-of-expert 

foundational large model for pharmaceutical 

sciences, named SciMind. This model has 

undergone extensive pre-training on publicly 

accessible datasets including nucleic acids, 

protein sequences, molecular structures strings, 

and biomedical texts, and could be fine-tuned 

for downstream tasks involving all modalities 

in pharmaceutical sciences.  

2) SciMind achieves state-of-the-art performance 

on benchmarks of molecular captioning and 

molecular generation by description. 

2 Related works 

In this section, we will provide a concise overview 

of the related work on cross-modal models in the 

field of pharmaceutical sciences. 

2.1 Cross Language-Molecule Modalities 

The pioneering work of MolT5 has paved the way 

for research in molecular captioning and generation 

by description, introducing the ChEBI benchmark 

dataset for this purpose[18]. Subsequent models 

such as MoSu[22], MolXPT[23], BioT5[24], and 

Mol-instruction[25] have expanded the scope of 

tasks to include numeric molecular property 

prediction. However, the scarcity of language-

molecule pair datasets remains a challenge. To 

address this, the PubchemSTM[19] and L+M-

24[26] datasets have been introduced, leading to 

improvements in molecular retrieval and editing 

constrained by language. 

2.2 Cross Language-Protein Modalities 

ProteinDT[27] and Mol-Instruction[25] are 

examples of multi-modal frameworks that leverage 

semantically related text for protein annotation and 

design. BioTranslator[28], a cross-modal model, is 

specifically designed for annotating biological 

entities such as gene expression vectors, protein 

networks, and protein sequences based on user-

provided text. Building on the blip2 framework, 

Mistral and ESM2 have been used to create 

FAPM[29], which has achieved state-of-the-art 

results in protein functional Go Terms prediction 

and demonstrates strong generalization to proteins 

with few homologs. 

3 SciMind 

In this section, we will detail the design and 

training of our multi-modal mixture-of-experts 

model, SciMind. The overview of the pre-training 

is illustrated in Figure 2. Unlike existing models, 

our focus is on integrating all modalities into a 

single model. To this end, we have designed 

specialized token sets for each modality. However, 

each modality has a different level of complexity 

and requires a different number of parameters to 

avoid overfitting. To leverage the many open-

source pretrained language models, we have 

chosen to construct a Mixture-of-Experts model by 

splitting the pretrained LLAMA-2-7B model into 

16 experts at each of the feedforward layers. 

3.1 Pre-training Corpus 

The pre-training corpus includes only single 

modality data, which are general text, nucleic acids 

sequences, protein amino acid sequences, and 

molecule SMILES (Simplified Molecular-Input 

Line-Entry System) strings. The details of the 

corpus are provided in Appendix A. 

3.2 Tokenization 

In previous work on cross-language modalities 

with nucleic acids, molecules, and proteins, the 

token set was often inherited from NLP methods 

such as SentencePiece[30]. However, given the 

different modalities and their unique next-token 

distributions, we have chosen to tokenize the 

sequences from nucleic acids, molecules, and 

proteins by characters, with different brackets used 

to distinguish characters in different modalities 

(Figure 2a). 

3.3 Mixture-of-Experts 

Based on the LLAMA-2-7B model, we have split 

16 experts using restricted K-Means clustering 

according to the feedforward layer weights (Figure 

2b). A routing layer has been added before the 

feedforward layer of the original model, and 

different modality data are fed to pretrain or fine-

tune the routing layer to achieve the selection of 

different experts for different tokens. Considering 

the propensity to overfit on nucleic acids, protein 

sequences, and molecule SMILES strings, and our 

desire to preserve the original language capabilities, 
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we adopted a selective expert activation strategy. 

For text tokens, we engaged 8 out of the 16 experts. 

Conversely, for tokens corresponding to other 

modalities, we restricted the activation to merely 2 

out of the 16 experts. 

3.4 Pretraining 

We employed the Huawei MindSpore training 

framework for pre-training purposes on Huawei 

Ascend 910 AI chips. Prior to inputting the 

processed data into the model, an extra step was 

taken to expedite the training process. This 

involved converting the data format into the 

MindRecord format. The Ascend AI framework 

offers a variety of parallel training modes, efficient 

memory reuse, and features like automatic mixed 

precision. These capabilities significantly enhance 

the training of large-scale models. For further 

acceleration, we utilized the MindFormer operator 

during the training process. 

4 Experiments and Results 

4.1 Domain Knowledge comprehension 

GPT3.5, when utilizing few-shot prompts, tends to 

struggle with understanding pharmaceutical 

domain knowledge, particularly in tasks such as 

name entity recognition and relation extraction. In 

light of previous research, we evaluated SciMind's 

performance on domain knowledge 

comprehension benchmarks. As illustrated in Table 

1, across ten tasks encompassing name entity 

recognition, relation extraction, and question 

answering, SciMind surpassed the previous state-

of-the-art model, BioLinkBert-Large, in eight tasks.  

4.2 DNA promoter prediction 

Predicting gene function is vital for comprehending 

intricate biological processes. This involves 

forecasting functional elements and interaction 

modalities in both coding regions and non-coding 

sequences that govern gene transcription. 

Promoters, integral elements in the non-coding 

regions of genes, regulate gene transcription by 

managing RNA polymerase binding and initiation. 

Therefore, the precise prediction of promoter sites 

is essential for understanding gene expression and 

genetic regulatory networks. 

We evaluated the performance of SciMind using 

the benchmark data set by DeePromoter. The 

results presented in Table 2 indicate that SciMind's 

Organism 
Method Precision Recall MCC 

Human TATA 
DeePromoter 0.93 0.95 0.88 

 
SciMind 0.92 0.91 0.84 

Human non-TATA 
DeePromoter 0.97 0.95 0.92 

 
SciMind 0.96 0.97 0.94 

Mouse TATA 
DeePromoter 0.92 0.95 0.87 

 
SciMind 0.90 0.96 0.83 

Mouse non-TATA 
DeePromoter 0.91 0.90 0.82 

 
SciMind 0.92 0.96 0.87 

Table 2: Performances on prompt DNA promoter 

prediction.  

 

Tasks Entitytype No.entities EvaluationMetrics 
BioLinkBERT 

-Large 

GPT3.5 

(few-shots) 
SciMind 

Name Entity Recognition      

BC5CDR Disease Disease 19,665 F1entity-level 0.940 0.603 0.957 

BC5CDR Chem Chemical 12,694 F1entity-level 0.864 0.518 0.881 

NCBI Disease Disease 6881 F1entity-level 0.888 0.505 0.855 

BC2GM Chemical 79,842 F1entity-level 0.852 0.375 0.898 

JNLPBA Gene 20,703 MicroF1 0.801 0.413 0.842 

Relation Extraction       

Chemprot Protein-chemical 10,031 MicroF1 0.800 0.342 0.861 

DDI Chemical-chemical 4,920 MicroF1 0.834 0.516 0.844 

GAD Gene-disease 5330 MicroF1 0.849 0.524 0.805 

Question Answering      

PubMedQA Yes/No/Maybe 1000 Accuracy 0.722 0.765 0.796 

BioASQ Summary 885 Accuracy 0.948 0.886 0.950 

Table 1: Performances on pharmaceutical sciences domain knowledge comprehension and extraction. The 

metrics of BioLinkBERT-Large and ChatGPT(few-shots) are taken from the original papers. 
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predictive performance is on par with DeePromoter 

in this task. Moreover, SciMind exhibits a slight 

edge in predicting data with non-TATA promoters. 

These promoters are more prevalent in certain 

organisms and types of genes, and they can be 

involved in more complex regulatory processes. 

4.3 Molecular captioning 

The objective of the molecule captioning task is to 

provide a structural or biological functional 

description for a given molecule. In our approach, 

we represent molecules using SMILES strings, 

thereby transforming the task into a seq2seq 

translation problem. This problem is well-suited for 

processing by large language models. We have two 

benchmark datasets with varying sizes. The ChEBI 

dataset is annotated by humans, while the L+M-24 

dataset is summarized by ChatGPT. A notable 

difference is that some ChEBI data includes 

descriptions identifying the core structures of 

molecules. 

As shown in Table 3, our Mixture-of-Experts-based 

SciMind model achieves state-of-the-art (SOTA) 

performance on most of the metrics in both 

benchmark datasets. 

4.4 Molecular generation 

Molecular generation is the reverse task of 

molecule captioning. Given a natural language 

description of the desired molecule, the goal is to 

generate a molecule that matches the description. 

The results in Table 4 demonstrate that our 

Mixture-of-Experts-based SciMind achieves state- 

SOTA performance on most metrics across both 

benchmarks. 

4.5 Protein-oriented prediction 

We leverage the protein-oriented instruction 

dataset from Mol-Instruction to fine-tune SciMind. 

Figure 3 shows the Rouge-L metrics of five 

methods across four tasks: protein function, general 

description, catalytic activity, and domain/motif 

Benchmark Model BLEU-2 ↑ BLEU-4 ↑ ROUGE-1 ↑  ROUGE-2 ↑ ROUGE-L ↑ METEOR ↑ 

ChEBI 

MolT5-Large* 0.594 0.508 0.654 0.510 0.594 0.614 

Mistral-7B 0.604 0.521 0.658 0.522 0.597 0.634 

SciMind 0.626 0.560 0.679 0.532 0.629 0.657 

L+M-24 

MolT5-Large# 0.736 0.532 0.758 0.564 0.544 0.722 

Mistral-7B# 0.749 0.543 0.771 0.574 0.555 0.729 

Meditron-7B# 0.752 0.547 0.780 0.588 0.563 0.737 

SciMind# 0.757 0.550 0.782 0.584 0.563 0.748 

Table 3: Performances on molecular captioning. The metrics value of methods annotated with * are taken from 

the original paper. And the metrics value of methods annotated with # are taken from the contest leaderboard 

(https://www.codabench.org/competitions/2914), where SciMind ranked No.1. Other metrics values are evaluated 

following the process of previous work. 

 

Benchmark Model BLEU ↑ Exact ↑ Levenshtein ↓ 
MACCS 

FTS ↑ 

RDK 

FTS ↑ 

Morgan 

FTS ↑ 
Validity ↑ 

ChEBI 

MolT5-large* 0.854 0.311 16.07 0.834 0.746 0.684 0.905 

Mistral-7B 0.850 0.380 18.00 0.896 0.818 0.757 0.935 

SciMind 0.863 0.383 15.99 0.885 0.813 0.762 0.992 

L+M-24 

MolT5-base# 0.664 0 46.51 0.746 0.637 0.463 0.999 

MolT5-large# 0.549 0 57.34 0.741 0.634 0.385 0.991 

Mistral-7B# 0.699 0 44.44 0.756 0.676 0.486 0.994 

Meditron-7B# 0.676 0.0001 48.03 0.756 0.677 0.487 0.995 

SciMind# 0.707 0.0001 43.48 0.756 0.677 0.488 0.997 

Table 4: Molecular generation based on description. The metrics value of methods annotated with * are taken from 

the original paper. And the metrics value of methods annotated with # are taken from the contest leaderboard 

(https://www.codabench.org/competitions/3014), where SciMind ranked No.1. Other metrics values are 

evaluated following the process of previous work. 
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prediction. Compared to other single-modal 

language models, SciMind achieves the best 

performance on Rouge-L metrics across all four 

tasks. 

5 Conclusions and discussion 

In this paper, we introduced SciMind, a unified pre-

training framework designed to include all the 

modalities in pharmaceutical sciences. we've 

designed a specialized token set and introduce a 

new pre-training and fine-tuning strategy that 

leverages the advantages of large-parameter 

models while minimizing their expenses. This 

strategy, supported by a prior expert allocation and 

selection mechanism, allows data of different 

modalities to choose the most suitable processing 

path. This method not only leads to a sparser model 

architecture, thus cutting down on inference costs, 

but also avoids modal alignment and the potential 

performance decrease due to model size reduction. 

We've created a multi-modal mixture-of-expert 

foundational large model for pharmaceutical 

sciences, named SciMind. This model has 

undergone extensive pre-training on publicly 

accessible datasets including nucleic acids, protein 

sequences, molecular structures strings, and 

biomedical texts, and could be fine-tuned for 

downstream tasks involving all modalities in 

pharmaceutical sciences. The experimental 

outcomes suggest that the SciMind model not only 

delivers outstanding performance but also shows 

high flexibility and interpretability in response to 

prompt words, offering a sturdy base for its use in 

pharmaceutical sciences. 

Due to the lack of well-aligned multimodal data, 

our model has not fully demonstrated its 

advantages. In addition to molecular captioning 

and generation by description, the inclusion of the 

protein modality will make the interaction between 

the language and small molecule modalities more 

explainable and useful. This approach helps 

accumulate more information and is a promising 

direction to explore.  
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A Pre-training Corpus 

DNA data 

Our pretraining data for nucleic acid sequences is 

derived from DNABERT_S, which includes a 

human genome dataset containing 2.75 billion 

nucleotide bases. The multi-species genome 

dataset includes genomes from 135 different 

species, distributed across 6 categories and 

containing a total of 32.49 billion nucleotide bases, 

which is 12 times the size of the human genome 

dataset. We use *| |* to separate the characters in 

the nucleic acids, as shown in Figure 2a. 

RNA data 

This dataset is a subset of the RNAcentral active 

fasta file, available at 

https://ftp.ebi.ac.uk/pub/databases/RNAcentral/rel

eases/24.0/sequences/rnacentral_active.fasta.gz, 

that has been converted to the parquet format. It 

represents approximately 10% of the overall 

dataset and contains 3,252,483 (3.2 million) 

sequences, comprising a total of 2,642,703,990 

(2.6 billion) bases. We use *| |* to separate the 

characters in the nucleic acids, as shown in Figure 

2a. 

Protein data 

Protein sequence databases, such as UniParc, 

contain a wide variety of sequences from different 

organisms. In our experiments, we follow the esm 

work and used the 250 million sequences from the 

UniParc database, which contains a total of 86 

billion amino acids. These datasets are similar in 

size to large text corpora that are commonly used 

to train high-capacity neural network models for 

natural language processing tasks. We use <| |> to 

separate the characters in the protein sequences, as 

shown in Figure 2a. 

Molecule data 

The molecular data is taken from 

https://huggingface.co/datasets/kjappelbaum/chem

nlp_iupac_smiles, which contains 30 million 

molecules' SMILES and their IUPAC names. We 

use {| |} to separate the characters in the molecule 

SMILES, as shown in Figure 2a. 

 

B Finetuning corpus 

All downstream tasks in this paper have been 

benchmarked against previous studies. 

Accordingly, we fine-tune and test our models 

using either the pre-split datasets or by splitting the 

data in the same manner as the original studies. 
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