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Abstract

Pre-trained LLMs have demonstrated substan-
tial capabilities across a range of conven-
tional natural language processing (NLP) tasks,
such as summarization and entity recognition.
In this paper, we explore the application of
LLMs in the generation of high-quality pro-
tein sequences. Specifically, we adopt a suite
of pre-trained LLMs, including Mistral-7B1,
Llama-2-7B2, Llama-3-8B3, and gemma-7B4,
to produce valid protein sequences. All of these
models are publicly available.5 Unlike previ-
ous work in this field, our approach utilizes
a relatively small dataset comprising 42,000
distinct human protein sequences. We retrain
these models to process protein-related data,
ensuring the generation of biologically feasi-
ble protein structures. Our findings demon-
strate that even with limited data, the adapted
models exhibit efficiency comparable to estab-
lished protein-focused models such as ProGen
varieties, ProtGPT2, and ProLLaMA, which
were trained on millions of protein sequences.
To validate and quantify the performance of
our models, we conduct comparative analyses
employing standard metrics such as pLDDT,
RMSD, TM-score, and REU. Furthermore,
we commit to making the trained versions of
all four models publicly available, fostering
greater transparency and collaboration in the
field of computational biology.

1 Introduction

In recent years, the field of natural language pro-
cessing (NLP) has achieved remarkable progress,
particularly through the development and utiliza-
tion of large pre-trained language models. These
sophisticated models represent a significant leap

1huggingface.co/Kamyar-zeinalipour/P-Mistral-7B
2huggingface.co/Kamyar-zeinalipour/P-Llama2-7B
3https://huggingface.co/Kamyar-zeinalipour/P-Llama3-

8B
4huggingface.co/Kamyar-zeinalipour/P-gemma-7B
5github.com/KamyarZeinalipour/protein-design-LLMs

forward, primarily due to their ability to understand
and generate human-like text based on training
from extensive datasets. Typically, these models
are trained using unsupervised learning techniques,
where they learn to predict the next word or token
in a sequence by examining the tokens that precede
it. This method has propelled them to the forefront
of various NLP applications, including chatbots
(Wei et al., 2024), text summarization (Zhang et al.,
2024; Tang et al., 2023), and advanced information
extraction tasks (Dagdelen et al., 2024). Among
the intriguing avenues explored with these models
is their application in the field of bioinformatics,
specifically in protein generation (Madani et al.,
2020). Indeed, the protein alphabet is composed of
twenty common amino acids, each represented by a
single character. Regarding their primary structure,
proteins, which are vital biological molecules, are
made up of chains of amino acids, thus forming
sequences of letters and drawing a parallel to the
structure of natural languages. As in natural lan-
guages, protein sequences have directionality and
are typically composed of reused modular elements
that exhibit slight variations. Moreover, common
protein motifs and domains, which are the basic
building blocks of proteins, are similar to words,
phrases, and sentences in human language. This
similarity suggests that language models, which
excel in handling sequential data, could effectively
generate amino acid chains, or proteins.
The primary objective of our research lies in
advancing the understanding and application of
medium-sized language models, particularly those
in the 7 billion to 8 billion parameter range, includ-
ing Mistral-7B, Llama-2-7B, Llama-3-8B, and
gemma-7B, for the generation of high-quality pro-
tein sequences. Our hypothesis, backed by pre-
liminary studies, suggests that these models, even
when trained with considerably small datasets, can
produce accurate and viable protein sequences ef-
fectively.
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Furthermore, we extend our investigation to encom-
pass a comparative analysis utilizing established
protein-focused language models such as ProGen
(Nijkamp et al. (2023); Madani et al. (2020)), Prot-
GPT2 (Ferruz et al. (2022)), and ProLLaMA (Lv
et al. (2024)). By applying the same experimen-
tal conditions across different models, we aim to
provide quantitative and qualitative comparisons of
their performance and effectiveness.
Ultimately, this study seeks to validate the capabil-
ity of medium-sized models in protein design, em-
phasizing the potential of employing more compact,
cost-efficient language models as powerful tools in
bioinformatics research. This approach may sig-
nificantly expedite scientific research and practical
applications, spanning from drug design to preci-
sion medicine to other interdisciplinary fields.

This paper makes the following contributions:

• Exploration of Medium-sized LLMs – We
investigate the efficacy of medium-sized lan-
guage models, with 7-8 billion parameters,
in generating functionally viable protein se-
quences;

• Adaptation to Small Data Sets – We show
that these models can achieve high perfor-
mance even when trained with small datasets;

• Comparative Analysis – We provide a thor-
ough comparative analysis of the performance
of our models against established models in
the field under identical experimental condi-
tions;

• Accessibility of Trained Models – We com-
mit to making all four trained language mod-
els developed for this study available to the
scientific community to encourage further re-
search and development.

The layout of this document is as follows: Sec-
tion 2 reviews previous research. Our methods are
detailed in Section 3. Experimental results are dis-
cussed in Section 4, while conclusions and future
perspectives are collected in Section 5.

2 Related Works

The integration of natural language processing
(NLP) techniques, traditionally applied to human
languages, into bioinformatics, has transformative
potential, particularly in the analysis of biological
sequences such as DNA, RNA, and proteins. These

biological data, sharing similarities with linguis-
tic texts in their structured and functional build-
ing blocks, are highly amenable to computational
methodologies. The impactful success seen in NLP
through transformer-based models has led to break-
throughs in specialized models geared toward un-
derstanding the complexities of these biological
sequences. By utilizing extensive databases such
as UniProt (Consortium, 2019), ENSEMBL (Cun-
ningham et al., 2022), and GenBank (Benson et al.,
2012), these models harness rich data to enhance
both predictive and analytical capabilities in bioin-
formatics.
The realm of protein sequences has seen notable
advancements through the adoption of both super-
vised and unsupervised learning models. Language
models have been increasingly leveraged and em-
ployed in the domain of protein design (Ferruz and
Höcker, 2022). Supervised learning approaches
refine models by training them with labeled data,
which is invaluable for accurately predicting pro-
tein stability or identifying structural similarities
among sequences (Bepler and Berger, 2021; Al-
ley et al., 2019). On the other hand, the intro-
duction of transformer technology has been piv-
otal in popularizing unsupervised learning meth-
ods (Vaswani et al., 2017). These methods involve
the strategic corruption of input sequences which
are then used to train models to predict and recon-
struct the NATURAL sequence. Leading models
such as ESM (Rives et al., 2021), ProtTrans (Elnag-
gar et al., 2021), and ProteinBERT (Brandes et al.,
2022) demonstrate this approach, offering power-
ful embeddings that prove critical in supporting a
wide array of downstream biochemical tasks (Yang
et al., 2024; Rao et al., 2019). These tasks include,
but are not limited to, analyzing protein-protein
interactions, predicting molecular functions, and
identifying potential sites for drug binding. In ad-
dition to these developments, the adoption of au-
toregressive models — widely recognized for their
ability to generate coherent, long-form text in clas-
sical NLP settings — has been successfully applied
to the domain of protein sequencing. Prototypes
like ProGen (Nijkamp et al., 2023; Madani et al.,
2020), ProtGPT2 (Ferruz et al., 2022) and ProL-
LaMA (Lv et al., 2024) capitalize on this capability,
employing autoregressive algorithms to effectively
predict the future elements of protein sequences
from given contexts. This predictive ability is crit-
ical for sophisticated applications such as protein
design, where the generation of novel and function-
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ally effective proteins is required.
In this study, we employ some pre-trained language
models, which we further fine-tune for protein gen-
eration tasks, by retraining both the tokenizers and
the entire models. We then compare the results with
those from other large language models (LLMs)
currently available for protein generation tasks.

3 Methodology

In this section, we delineate the methodologies
employed to adapt pre-trained LLMs for the gen-
eration of protein sequences. Our approach in-
volved refining the tokenizer based on the Byte-
Pair Encoding (BPE) methodology, followed by
fine-tuning the entire pre-trained model using a des-
ignated dataset of protein sequences. Subsequently,
this fine-tuned model was utilized to generate new
protein sequences. It’s important to note that base
models such as LLMs, while powerful, are not in-
herently capable of designing novel proteins. Their
success in this domain is achieved through a spe-
cialized fine-tuning process, which involves not
only adapting the model to a specific task using a
smaller, task-specific dataset but also modifying the
tokenizer. This is because the tokens that LLMs
were initially trained on are natural language to-
kens, whereas our domain requires a different set
of tokens. Therefore, we also need to train the
tokenizer to handle this new domain effectively.
Verification of these sequences was carried out by
generating their respective PDB structures using
DeepMind’s AlphaFold (Jumper et al., 2021). We
assessed the quality of these structures using vari-
ous metrics such as pLDDT, RMSD, TM-Score and
REU. The performance of the models — namely
Mistral-7B (Jiang et al., 2023), Llama-2-7B (Tou-
vron et al., 2023), Llama-3-8B , and gemma-7B
(Team et al., 2024) — was then compared with
previous studies that employed language models
for protein sequence generation. We have also
evaluated the potential fitness of our generated se-
quences in comparison to natural and random se-
quences in the context of pLDDT, Rosetta-Relax
scores, RMSD and TM-Scores, thereby providing
a comparative analysis. Figure 1 illustrates this
methodology. Subsequently, we will provide a de-
tailed description of all these steps, focusing on the
training of the LLMs and their validation.

3.1 From LLMs to Proteins

Large language models, such as transformers, are
sophisticated algorithms trained on extensive tex-
tual datasets. These models utilize their predictive
capability primarily to determine the subsequent to-
ken based on the preceding ones. Given their train-
ing on a vast amount of text data, LLMs are highly
adaptable and can be finely tuned for specialized
tasks, including summarizing specific document
types like legal texts. An interesting application of
these models is in the domain of protein generation.
Proteins, being amino acid sequences, differ sig-
nificantly from standard text data. This difference
necessitates the retraining of tokenizers to achieve
more accurate tokenization for proteins, enhancing
the model ability to recognize and predict relevant
patterns in amino acid sequences. Following the re-
training, these adapted tokenizers are used to refine
the parameters of pre-trained LLMs. This fine-
tuning process tailors the LLMs to predict protein
sequences effectively by generating valid protein
structures. In subsequent sections, we will elab-
orate on the methodologies applied for tokenizer
retraining, describe the various LLMs utilized, and
discuss their specific fine-tuning.

Tokenizer retraining In situations where the cor-
pus significantly diverges from that utilized during
the initial training of a language model, it becomes
imperative to retrain the model from scratch. This
process necessitates adjusting the tokenizer to ac-
commodate the nuances of the new dataset. A
tokenizer serves the critical function of converting
textual data into numerical representations suitable
for computational processing by language models.
For the retraining of our tokenizer, we employed
the Byte-Pair Encoding (BPE) method. BPE is a
hybrid between a character-level and word-level
tokenizer. It starts with a base vocabulary of indi-
vidual characters and iteratively merges the most
frequently adjacent pairs of characters or character
sequences. Through this methodology, BPE effec-
tively manages the vocabulary size, allowing for
efficient handling of unknown words by breaking
them down into recognizable subwords. This is par-
ticularly beneficial in managing morphologically
rich languages or corpora with specialized jargon.
In our adaptation process, we retained the origi-
nal vocabulary size of the tokenizer used in prior
models to maintain consistency and optimize inte-
gration with the pre-trained configurations. This
approach ensures that the retrained models sustain
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Figure 1: A comprehensive overview of our methodology employed for training, evaluating, and validating the
protein sequence generation model. We initially retrained tokenizers for four distinct large language models —
Mistral-7B, Llama-2-7B, Llama-3-8B, and gemma-7B — using the UniRef50-Homo sapiens dataset employing
the Byte-Pair Encoding (BPE) technique. Subsequently, we fine-tuned these models on a filtered subset of the
UniRef50-Homo sapiens dataset, aiming to minimize the loss associated with predicting subsequent protein
sequences. For evaluation, model output was validated using AlphaFold 2 to construct 3D protein structures,
followed by assessments of the generated protein structural accuracy using metrics such as per-residue confidence
score (pLDDT) from AlphaFold 2, RMSD (Root Mean Square Deviation), and TM-Score to compare topological
similarities with known protein structures applied using FoldSeek. Additional evaluation included the use of Rosetta-
Relax for analyzing the energetic profiles of the generated proteins. Finally, protein structural comparisons within
each dataset were conducted using PyMOL to calculate the intra-dataset RMSD.

compatibility with existing frameworks while ben-
efiting from a tokenizer that is fine-tuned to the
specific features of the new dataset.

Fine-Tune Pre-trained LLMs In this research,
our objective was to assess the capabilities of
various pre-trained language models in the spe-
cialized task of protein generation. To this end,
we fine-tuned four distinct models: Mistral-7B,
Llama-2-7B, Llama-3-8B, and gemma-7B. Each
model is based on the transformer architecture,
which is renowned for its effectiveness in handling
sequence-to-sequence tasks and operates under a
causal framework conducive to generative tasks.
The four models were specifically chosen to repre-
sent a bandwidth of computational capacities pre-
dominantly ranging between 7 billion and 8 billion
parameters, enabling a focused analysis on how
parameter scale influences model performance in
biological sequence generation. Mistral-7B, de-
veloped by MistralAI, contains precisely 7 billion
parameters. In contrast, both Llama-2-7B and the
newer Llama-3-8B are products from Meta, fea-
turing 7 billion and 8 billion parameters, respec-
tively. The latter represents an advanced iteration
within the LLama series, potentially offering en-
hancements in learning efficiency and output refine-
ment. Finally, gemma-7B from Google, also with

7 billion parameters, extends our model diversity,
providing an additional perspective from another
leading tech giant’s approach to language model
development.
By employing these models, we aim to conduct
a thorough comparative analysis, examining not
just the quantitative outcomes in terms of accuracy
and efficiency in protein generation, but also quali-
tative aspects such as the fidelity and usability of
generated sequences. Given the similar parameter
size, any observed differences in performance can
be more directly attributed to architectural nuances
and training methodologies between the models.
This study not only advances our understanding of
the capabilities of high-capacity language models
in biosciences but also guides future developments
in computational biology and the deployment of
AI-driven tools for scientific discovery.
Firstly, we observe that each of these language
models employs variants of the cross-entropy loss
function. Throughout the fine-tuning process, the
objective is to minimize this loss, which effectively
maximizes the probability of predicting subsequent
tokens accurately, based on the context provided
by previous tokens. This optimization directly en-
hances the model ability to generate coherent and
contextually appropriate text.
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Given a sequence of tokens, the cross-entropy
loss predicts the probability of each subsequent
token based on the previous context, i.e., given
x1, x2, ..., xn in training data, the model is able to
predict each subsequent token xt+1 based on pre-
vious tokens x1, ..., xt. The formula for the loss
across an entire sequence of length N is:

L = −
N∑

t=1

log(pmodel(xt+1 | x1, x2, ..., xt))

where pmodel(xt+1 | x1, ..., xt) is the probability
assigned by the model to the correct next token
xt+1, conditioned on the sequence x1, ..., xt.
This loss not only encourages the correct predic-
tion of the next token but also indirectly learns the
contextual dependencies among the tokens in the
sequence, which is crucial for the generation of
coherent and contextually appropriate outputs in
language models.

3.2 Evaluation
In this section, we describe each evaluation method
implemented in our study following the generation
of proteins. Initially, protein sequences generated
using tuned LLMs were structurally modeled using
AlphaFold26, which provided three-dimensional
structures along with per-residue confidence scores
(pLDDT). Subsequently, the topological similarity
of these structures to known protein configurations
was assessed using the TM-Score computed by
FoldSeek 7Additionally, Rosetta -Relax 8was em-
ployed to analyze the energetic profiles of the mod-
eled proteins, enhancing our understanding of their
stability and viability. For intra-dataset structural
comparisons, RMSD calculations were conducted
using PyMOL9 . Detailed descriptions and analy-
ses of these metrics are provided in the following
sections.

Alphafold2 (pLDDT) In the initial phase of the
evaluation, we utilized AlphaFold2 to predict the
structures of the generated proteins and compute
their predicted Local Distance Difference Test
(pLDDT) scores. AlphaFold2, developed by
DeepMind, represents a significant advancement
in protein structure prediction by leveraging
sophisticated deep learning methodologies. It
predicts protein structures from amino acid

6deepmind.google/technologies/alphafold/
7search.foldseek.com/
8www.rosettacommons.org/software
9pymol.org/

sequences, using extensive training datasets of
known protein structures and incorporating a
self-attention mechanism. Moreover, pLDDT
scores can be obtained, which provide valuable
insight into structural accuracy, with values below
50 indicative of disordered regions, scores between
50 and 90 suggesting regions with some order,
and scores above 90 denoting well-ordered regions.

Foldseek (TM-Score, Intra RMSD) To evalu-
ate the accuracy of predicted protein structures, we
utilized Foldseek, a robust tool designed for the
comparison and analysis of three-dimensional pro-
tein structures. Foldseek is a tool for searching
a set of query protein structures through a set of
target protein structures. It uses a fast and sensi-
tive k-mer and ungapped alignment prefilter from
MMseqs2 on the 3Di sequences of the query and
target structures to quickly identify candidate struc-
tures that are similar to the query. By submitting
our predicted protein models to Foldseek, we com-
puted two critical metrics: the TM-score and Root
Mean Square Deviation (RMSD). The TM-score,
ranging from 0 to 1, quantifies the global topologi-
cal similarity between two protein structures, with
higher scores indicating greater structural resem-
blance. Specifically, a TM-score above 0.5 gener-
ally indicates that the structures share the same fold,
while a score below 0.3 suggests random struc-
tural similarity. Conversely, RMSD is a widely
used metric in structural biology that assesses the
similarity between two protein structures by com-
paring the positional differences of corresponding
atoms, typically those in the backbone, after opti-
mal superimposition. This metric provides insight
into structural similarity from the perspective of
atomic distances. In this study, we refer to this mea-
sure as ’Intra RMSD,’ emphasizing the comparison
between each predicted model and its respective
known structure.A lower score is generally more
desirable
Figure 2 (a) illustrates an instance where the gen-
erated protein structure has limited similarity to
the protein structure matched by Foldseek, as indi-
cated by the green line in the figure. The protein
structure in Figure 2 (a) achieves a relatively low
TM-Score of 0.28, indicating a weak resemblance
to the matched protein structure. Furthermore, the
substantial RMSD of 26.2 Å highlights a significant
deviation and misalignment between the generated
and matched structures. In contrast, Figure 2 (b)
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showcases a successful example of protein struc-
ture generation, where the generated structure has
a high degree of similarity to the matched protein
structure. The generated protein structure attains a
high TM-Score of 0.90, signifying a strong struc-
tural similarity to the matched protein. Addition-
ally, the low RMSD of 1.55 Å suggests that the
generated structure has a high degree of precision
and alignment with the matched structure.

(a) (b)

Figure 2: Illustration of High TM-Score and low Intra
RMSD Compared to Low TM-Score and high Intra
RMSD

Rosetta-Relax (REU) To comprehensively as-
sess the quality of our predicted protein structures,
we initiated the process by relaxing the native tem-
plate. This initial relaxation ensures that the struc-
ture is energetically optimized from the outset, fa-
cilitating more accurate subsequent evaluations.
Following the relaxation of the native template,
we applied Rosetta-RelaxBB across all datasets.
Rosetta-RelaxBB employs a Monte Carlo optimiza-
tion approach that explores a range of backbone
and rotamer conformations to minimize the Rosetta
Energy function, which is based on biophysical
principles and constraints. During each design iter-
ation, amino acid side chains are substituted while
maintaining fixed carbon backbone torsions. En-
ergy minimization and relaxation are performed
after threading the amino acid sequence through
the known structure, allowing the backbone to tran-
sition into a potentially more stable energy state.
Conformers with lower Rosetta Energy values in-
dicate more relaxed and stable structures. The lat-
est Rosetta Energy Forcefield (REF2015) shows
a strong correlation with experimental parameters
such as heat capacity, density, and enthalpy, provid-
ing a robust scoring function indicative of the ther-
modynamic stability of protein conformations.For
a refined structure of this size, a score of -100 REU

to -300 REU is typical. The lower the score, the
more stable the structure is likely to be for a given
protein.

PyMOL (Inter RMSD) For the fourth phase of
our evaluation, we utilized PyMOL, a sophisti-
cated molecular visualization software equipped
with extensive tools for protein structure analysis
and comparison. PyMOL’s features facilitate de-
tailed examination of molecular structures and en-
able various quantitative assessments, such as cal-
culating the Root Mean Square Deviation (RMSD).
Specifically, we determined the Inter RMSD, which
quantifies the RMSD for each trajectory within our
datasets.As previously mentioned a lower score is
generally more desirable.

4 Experimental results

In this section, we delineate the experiments con-
ducted in this study, presenting an evaluation of
the results garnered from the protein sequences we
generated. Additionally, we discuss the regenera-
tion of proteins utilizing language-based models
specifically designed for protein generation tasks,
including ProGen in four distinct sizes, ProtGPT2,
and ProLLaMA.
Initially, we explore the dataset utilized in our ex-
periments, which is notably smaller than those used
in other models, followed by a detailed exposition
of our training setup. Finally, we present a com-
prehensive analysis of the evaluation results em-
ploying various metrics such as pLDDT, RMSD,
TM-Score and REU.

4.1 Dataset

In this study, the UniRef50 dataset, originating
from the UniProt databases, has been utilized. The
UniProt Reference Cluster (UniRef) databases sys-
tematically organize clustered sets of protein se-
quences from UniProtKB 10 and selected UniParc
records, aiming to reduce redundancy and provide
comprehensive coverage of sequence space. This is
achieved through varying levels of sequence iden-
tity across three datasets, facilitating faster similar-
ity searches among proteins.
Specific attention was given to the Homo sapiens
subset within UniRef50, which initially comprised
over 60,000 protein sequences. Given the con-
straints of computational resources and the criteria
of our intended language models, a sequence length

10https://www.uniprot.org
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filter was applied. Only sequences below 512 to-
kens, as determined by our pre-trained tokenizer,
were retained, narrowing the pool to 60,000 se-
quences.
For training and evaluation purposes, 42,000 se-
quences were allocated to the training set while the
remaining 1,480 were designated for testing.11

This careful selection and allocation of sequences
effectively optimized our computational resources
and facilitated robust training and validation of our
predictive models on protein sequences.

4.2 Training Setup
The training methodology employed in this study
involved training Language Models (LMs) specifi-
cally tailored for protein generation utilizing four
Nvidia A6000 GPUs. The training configuration
utilized a sequence length of 512, with a maximum
training step limit of 2000 and a batch size of 1,
coupled with a gradient accumulation step size of
16 for enhanced training efficiency. The learning
rate was set at 5e-5, and a cosine learning rate
scheduler was employed to adaptively adjust the
learning rate. Furthermore, a weight decay of 0.01
and a num warm-up step value of 150 were applied
to stabilize the training process. The utilization
of the bfloat16 data format contributed to faster
computation due to reduced precision, enhancing
overall training performance. We employed
DeepSpeed (Rasley et al., 2020), a deep learning
optimization library developed by Microsoft, to
facilitate efficient training and optimization of the
models. and also we applied FlashAttention 2
(Dao, 2023).
Four distinct LLMs models, namely Mistral-7B,
Llama-2-7B, Llama-3-8B, and gemma-7B were
trained using this meticulously tuned training
configuration. The selection of appropriate
hyperparameters and the utilization of multiple
GPUs facilitated efficient and timely training of
these models. The strategic incorporation of the
cosine learning rate scheduler and weight decay
mechanism bolstered the models’ convergence and
performance during training, ultimately leading to
the successful generation of protein sequences.

4.3 Results Evaluation
In this section, we randomly selected 250 proteins,
each with a length between 70 to 140 amino acids,

11huggingface.co/datasets/Kamyar-zeinalipour/UniRef50-
HumanProteins/settings

from each of the under-investigation models for
structure prediction and subsequent evaluation. In
order to initiate the protein generation process, we
input a special token, known as the beginning-of-
sequence (BOS) token. Once this token is fed
into the model, it begins to generate protein se-
quences, leveraging the patterns and knowledge
it has acquired during its training phase. These
proteins were submitted to AlphaFold2, which gen-
erated 3D structural models with corresponding
pLDDT scores for each protein. Examples of these
3D structures and corresponding pLDDT can be
seen in Figure 3. We proceeded to randomly select
20 3D structural proteins from each of the under-
investigated models for a more in-depth analysis.
The chosen proteins were then subjected to fur-
ther evaluations, including the calculation of Intra
RMSD, Inter RMSD, TM-Score, and REU with
selected proteins. This multi-faceted approach to
evaluation has allowed us to thoroughly assess the
performance of our models and the quality of our
3D protein structure predictions.
To evaluate the pLDDT score for each protein,
AlphaFold2 generates five 3D structural models
with corresponding pLDDT scores. We then cal-
culated the mean of the five pLDDT scores to ob-
tain a representative pLDDT score for each pro-
tein. We present the evaluation results using all
the metrics discussed in Section 4. Table 1 summa-
rizes the mean values of each evaluation metric for
each model. Notably, P-Mistral consistently out-
performs all other models across various metrics.
Detailed information on these metrics, as well as
corresponding plots and tables, are provided in the
Appendix A.
The most significant difference between the trained
models and randomly generated proteins We pro-
cedurally generated a set of proteins in a random
manner, with each of these proteins being com-
posed of a sequence of 20 amino acids, is observed
in the pLDDT metric, as depicted in Figure 4. Our
models,P-Llama2 and P-Llama3, exhibit a distri-
bution similar to the NATURAL data. Additionally,
we observed a significant disparity between ran-
domly generated proteins and other models when
evaluating the TM-score metric, as illustrated in
Figure 5. Other metrics, such as Inter and Intra
RMSD, are shown in Figures 8 and 6.
Furthermore, for the REU metric, we identified an
optimal range between -100 and -300. The ran-
domly generated proteins fall significantly outside
this interval, whereas the models we introduced
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P-Llama3 
pLDDT: 71.56

P-Llama2 
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P-gemma 
pLDDT: 84.34

Figure 3: Examples of the 3D structure of proteins generated by each introduced model

Model #param train pLDDT ↑ Intra↓ REU ↓ TM ↑ Inter ↓
size RMSD -Score RMSD

NATURAL – – 67.77 – -153.06 – 4.40
RANDOM – – 39.71 9.88 -197.22 0.41 6.81
P-Llama2 7B 42K 65.39 7.02 -153.31 0.63 4.76
P-Llama3 8B 42K 62.99 7.38 -132.50 0.65 4.30
P-Mistral 7B 42K 72.03 5.42 -197.40 0.68 4.70
P-gemma 7B 42K 62.24 5.80 -141.60 0.65 5.83
PROLLAMA 7B – 55.80 9.46 -126.65 0.47 5.66
PROTGPT2 774M 49.8M 64.50 6.52 -146.23 0.52 5.52
PROGENSMALL 151M 280M 58.35 11.46 -212.22 0.48 6.76
PROGENMEDIUM 764M 280M 58.98 11.64 -240.89 0.59 11.20
PROGENLARGE 2.7B 280M 61.78 7.65 -158.18 0.58 5.47
PROGENXLARGE 6.4B 280M 68.04 10.37 -251.37 0.54 6.05

Table 1: Mean of the analyzed Metrics for each model.

predominantly fall within the same range as the
NATURAL data, as seen in Figure 8. The most
intriguing finding of our study is that we were able
to achieve and even surpass the performance of
models trained on massive protein datasets, using
a significantly smaller dataset. This was demon-
strated across various evaluation metrics.

5 Conclusion

In this study, we introduced four novel models de-
signed to generate high-quality protein sequences
by leveraging pre-trained language models. This
research is motivated by the growing demand for
efficient and accurate tools that can assist in under-
standing and engineering protein structures, which
are pivotal in numerous biological and medical ap-
plications. Our approach involved a meticulous
design and training phase, followed by rigorous
testing and validation processes to assess the per-
formance of each model.
To provide a thorough evaluation, we conducted
comprehensive experiments comparing our models

with a range of existing models that also utilize
language models for protein sequence generation.
Comparative analyses were performed, which were
grounded on diverse criteria, including sequence
quality, diversity, and fidelity to biological func-
tions. These analyses also incorporated several
structural assessment metrics such as pLDDT (pre-
dicted Local Distance Difference), TM-Score (to
assess structural similarity), RMSD (Root Mean
Square Deviation), and REU (Rosetta Energy Unit).
Our findings revealed that some of our proposed
models, particularly P-Mistral, exhibited superior
performance compared to existing models, even
surpassing those trained on considerably larger
datasets. This remarkable performance underscores
the potential of our models to offer significant ad-
vancements in the field of protein sequence genera-
tion.
We are committed to the principles of open science
and reproducibility. Consequently, we will make
all four models publicly available to the research
community. This accessibility will empower other
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Figure 4: Violin plot of pLDDT

researchers to utilize and build upon our work, fos-
tering further advancements in the field of protein
sequence generation.
Moreover, We aim to extend the capabilities of
these models by incorporating instruction tuning
to generate proteins with specific constraints. This
will involve refining the models to adhere to cer-
tain criteria, such as ensuring the sequences have
particular structural or functional properties. Such
advancements could be pivotal in various applica-
tions, including drug design, synthetic biology, and
understanding protein interactions at a deeper level.
While our current implementation of LLMs for pro-
tein generation excels in unconditional generation,
there is a need to explore and develop methods for
generating conditional proteins. This would allow
us to guide the generation process toward specific
protein characteristics or functions, thereby enhanc-
ing the practical utility of our model.
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A Appendix

In this appendix, we have included violin plots and
descriptive statistics for all the evaluation metrics
utilized throughout this study. The violin plots offer
a visual representation of the distribution and den-
sity of the data, enabling an in-depth comparison
between different models or methods. Additionally,
the descriptive statistics provide a comprehensive
summary of the central tendency, dispersion, and
shape of the distribution of each metric, including
measures such as mean, median, standard devia-
tion, and interquartile range. These tools together
facilitate a thorough understanding of the perfor-
mance and variability of the metrics used, thereby
supporting a robust assessment of the study results.

pLDDT The violin plot of the mean pLLDDTs
of each model is shown in Figure 4, while its de-
scriptive statistics are collected in Table 2.

TM-Score The violin plot of the TM-Score of
each model is shown in Figure 5, while its descrip-
tive statistics are collected in Table 3.

Intra RMSD The violin plot of the Intra RMSD
of each model is shown in Figure 6, while its de-
scriptive statistics are collected in Table 4.

Inter RMSD The violin plot of the Inter RMSD
of each model is shown in Figure 7, while its de-
scriptive statistics are collected in Table 5.
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Model Q1 Q3 mean median min max
NATURAL 57.85 81.69 67.77 65.93 31.1 96.10
RANDOM 34.62 42.95 39.71 38.12 26.52 80.74
P-Llama2 54.55 78.15 65.39 62.95 33.58 95.26
P-Llama3 54.12 73 62.99 61.71 29.46 94.68
P-Mistral 62.82 80.83 72.03 75.22 35.06 96.98
P-gemma 54.76 72.26 62.24 61.17 29.1 96.00
PROLLAMA 42.3 66.68 55.80 54.7 29.52 93.34
PROTGPT2 52.73 75.45 64.50 63.72 34.02 97.46
PROGENSMALL 43.68 70.09 58.35 55.51 32.46 96.68
PROGENMEDIUM 45.27 71.71 58.98 54.96 32.56 95.20
PROGENLARGE 45.06 78.14 61.78 58.78 31.06 95.84
PROGENXLARGE 53.43 83.45 68.04 68.56 31.56 96.52

Table 2: Summary statistics for pLDDT
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Figure 5: Violin plot of TM-Score

REU The violin plot of the REU of each model
is shown in Figure 8, while its descriptive statistics
are collected in Table 6.
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Model Q1 Q3 mean median min max
RANDOM 0.33 0.44 0.41 0.37 0.27 0.71
P-Llama2 0.41 0.84 0.63 0.55 0.30 0.99
P-Llama3 0.46 0.86 0.65 0.66 0.32 0.94
P-Mistral 0.60 0.78 0.68 0.70 0.38 0.91
P-gemma 0.45 0.79 0.65 0.72 0.28 0.99
PROLLAMA 0.37 0.52 0.47 0.47 0.30 0.90
PROTGPT2 0.39 0.59 0.52 0.49 0.29 0.92
PROGENSMALL 0.37 0.58 0.48 0.44 0.29 0.80
PROGENMEDIUM 0.42 0.79 0.59 0.55 0.26 0.92
PROGENLARGE 0.37 0.75 0.58 0.56 0.30 0.98
PROGENXLARGE 0.32 0.69 0.54 0.50 0.30 0.96

Table 3: Summary statistics for TM-Score
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Figure 6: Violin plot of Intra RMSD

Model Q1 Q3 mean median min max
RANDOM 4.95 12.59 9.88 8.66 1.97 26.71
P-Llama2 2.01 11.43 7.02 4.98 0.39 21.88
P-Llama3 2.2 11.36 7.38 5.87 0.94 23.58
P-Mistral 2.28 6.42 5.42 3.79 1.55 14.20
P-gemma 1.73 6.74 5.80 3.45 0.11 26.20
PROLLAMA 5.74 12.78 9.46 9.21 1.07 20.59
PROTGPT2 3.35 8.29 6.52 5.31 0.69 15.65
PROGENSMALL 6.06 17.49 11.46 8.16 2.3 39.45
PROGENMEDIUM 2.68 10.62 11.64 5.69 1.42 14.46
PROGENLARGE 2.72 11.67 7.65 5.4 0.63 24.19
PROGENXLARGE 3.79 18.16 10.37 7.53 1.2 21.20

Table 4: Summary statistics for Intra RMSD
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Figure 7: Violin plot of Inter RMSD

Model Q1 Q3 Mean Median Min max
NATURAL 0.87 6.04 4.40 2.24 0.23 22.98
RANDOM 2.41 11.34 6.81 5.15 0.16 21.18
P-Llama2 0.92 6.41 4.76 2.46 0.02 34.70
P-Llama3 0.76 6.94 4.30 2.41 0.11 23.11
P-Mistral 0.55 8.08 4.70 2.61 0.18 27.59
P-gemma 0.63 8.15 5.83 3.09 0.05 32.91
PROLLAMA 0.64 6.45 5.66 1.99 0.08 36.26
PROTGPT2 0.67 6.00 5.52 1.32 0.20 39.84
PROGENSMALL 1.02 11.29 6.76 2.45 0.20 33.43
PROGENMEDIUM 3.85 14.27 11.20 7.49 0.23 58.57
PROGENLARGE 1.10 7.11 5.47 2.66 0.07 39.71
PROGENXLARGE 0.88 7.37 6.05 2.06 0.16 46.93

Table 5: Summary statistics for Inter RMSD
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Figure 8: Violin plot of REU
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Model Q1 Q3 mean median min max
NATURAL -233,48 -115,43 -153,06 -163,30 -310,23 31.00
RANDOM -193,85 -136,43 -197,22 -151,57 -434,25 -123.39
P-Llama2 -196,79 -105,67 -153,31 -156,82 -274,14 -30.49
P-Llama3 -205,03 -65,05 -132,50 -111,15 -331,44 45.39
P-Mistral -269,91 -138,11 -197,40 -209,21 -289,82 -9.69
P-gemma -204,11 -95,08 -141,60 -127,84 -333,33 27.28
PROLLAMA -169,56 -96,10 -126,65 -129,17 -255,91 6.38
PROTGPT2 -215,40 -34,31 -146,23 -173,36 -301,04 -12.90
PROGENSMALL -313,85 -101,59 -212,22 -249,00 -389,56 10.17
PROGENMEDIUM -334,72 -119,91 -240,89 -297,72 -380,75 -70.46
PROGENLARGE -286,13 -63,01 -158,18 -123,29 -391,96 115.96
PROGENXLARGE -318,06 -191,64 -251,37 -263,17 -403,92 10.98

Table 6: Summary statistics for REU
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