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Abstract
Pretrained language models (LMs) showcase
significant capabilities in processing molecular
text, while concurrently, message passing neu-
ral networks (MPNNs) demonstrate resilience
and versatility in the domain of molecular sci-
ence. Despite these advancements, we find
there are limited studies investigating the rela-
tionship between molecular structures and their
corresponding textual representations. There-
fore, in this paper, we propose two strategies
to evaluate whether an information integration
can enhance the performance: contrast learn-
ing, which involves utilizing an MPNN to su-
pervise the training of the LM, and fusion,
which exploits information from both models.
Our empirical analysis reveals that the integra-
tion approaches exhibit superior performance
compared to baselines when applied to smaller
molecular graphs, while these integration ap-
proaches do not yield performance enhance-
ments on large scale graphs. Furthermore, we
conduct experiments to assess the impact of
dataset splitting strategies and random seeds on
the overall performance.

1 Introduction

The success of attention mechanisms on sequential
data has introduced a massive family of large lan-
guage models based on Transformer architecture
(Vaswani et al., 2017). It is evident that these large
language models are useful for encoding sequential
objects such as text (Liu et al., 2019), molecules
(Honda et al., 2019), speech (Huang et al., 2021),
and forecasting data (Giuliari et al., 2021). It has
been demonstrated that pretrained molecule lan-
guage models are capable of encoding chemical
elements semantically without learning structures
(Honda et al., 2019; Xia et al., 2022; Chithrananda
et al., 2020; Wang et al., 2019a). Especially for
proteins which function as natural components of
the human body and a representative of molecule
family, they could be efficiently encoded by trans-
former (Rao et al., 2019; Elnaggar et al., 2021;

Rives et al., 2021; He et al., 2021) which acts as
masked language modelers.

In contrast to text, molecules contain inherent
relationships between their elements, indicating
that structural encoding is necessary in addition to
word embeddings. Message passing neural network
(MPNN), emerging as a prominent method for en-
coding structural information in recent years, has
demonstrated its robustness and versatility within
the field of molecular sciences. By leveraging the
2-dimensional topological and 3-dimensional ge-
ometrical information as augmented features (Liu
et al., 2021; Stärk et al., 2022), it is possible to
learn molecular embeddings from structures with-
out sequentially encoding traditional SMILES ex-
pressions.

The advent of MPNNs has promoted the explo-
ration of graph-based learning methods for molec-
ular science. Graph contrastive learning captures
potential different structural distributions to fine-
tune self-learned representations, where both local
and global features are enhanced with chemical
domain expertise (Stärk et al., 2022; You et al.,
2021; Wang et al., 2022). Besides, the success
of GPT (Radford et al., 2018) in traditional natu-
ral language processing tasks also motivates the
research on graph transformers and graph GPT tai-
lored for the molecule domain (Hu et al., 2020b;
Bagal et al., 2021; Rong et al., 2020; Ying et al.,
2021; Zhu et al., 2022). Few studies has been in-
vestigated to appropriately merge text embeddings
and graph embeddings for learning molecule repre-
sentation better. There has been one study which
demonstrated such relationship but with additional
prompting with GPT model (Chen et al., 2024),
which is out of our scope. In this paper, we aim
to explore the interplay between molecular graph
embeddings and SMILE token embeddings. We
propose two categories of techniques for integrat-
ing information: contrast learning and fusion. In
contrast learning-based methods, we incorporate
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Figure 1: Baseline model: language model (LM) and
message passing networks (MPNN). An interaction of
LM and MPNN is investigated in this research.

an MPNN as an auxiliary model to supervise the
training of the language model, operating at node
or graph levels, while we only utilize the language
model for downstream tasks. In fusion-based meth-
ods, we exploit information from both models to
generate outputs for downstream tasks. This is
achieved either by merging the output embeddings
from both models or by integrating the output em-
beddings from one model with the input embed-
dings of the other.

Our main contributions are to as follows:

1. Explore various information integration ap-
proaches to assess the necessity of incorpo-
rating supplementary structural features in
molecular LLMs research, instead of pursuing
state-of-the-art performance.

2. Benchmark a series of combination of
sequential-based methods (LM) and
structural-based methods (MPNN) as
baselines for further research.

2 Related Work

2.1 Molecule Representation Learning

The Simplified Molecular Input Line Entry System
(SMILES) has become a cornerstone in chemin-
formatics, providing a compact and standardized
representation for chemical structures. Conserving
molecular structural information and atom order-
ings, the SMILES descriptor converts a molecule
from its structural representation into a condensed
1-dimensional textual sequence. For example,

a phenol molecule (C6H5OH) is represented as
C1=CC=C(C=C1)O. Similar to the tokenization in
natural language settings, a molecule is expressed
as a sentence and atoms are expressed as words.
This allows efficient utilization of large language
models in chemical research.

2.2 Pretrained Large Language Models
The advent of the transformer architecture
(Vaswani et al., 2023) represents a breakthrough in
the field of natural language processing. Over the
past few years, many excellent pretraining strate-
gies have been proposed, such as BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019), sig-
nificantly improving the capabilities of the large
language models. As SMILES allows converting
molecular structures into textual sentences, it is
possible to apply language models for molecular
machine learning, which facilitates the research on
pretraining molecular language models.

Based on the implementation of RoBERTa,
ChemBERTa (Chithrananda et al., 2020) employs
chemistry oriented masked-language modelling as
its pretraining strategy, while the improved ver-
sion ChemBERTa-2 (Ahmad et al., 2022) adopts
multi-task regression as another pretraining task
and uses larger training datasets. There are also
other BERT-like transformer models, such as Mol-
BERT (Fabian et al., 2020) and SMILES-BERT
(Wang et al., 2019b), which are pretrained with
different objectives on different molecule datasets.

2.3 Contrastive Learning
Contrastive learning has emerged as a powerful
paradigm in self-supervised learning. Unlike tradi-
tional methods that rely solely on labeled data, this
approach leverages the differences between data to
learn representations. Based on the assumption that
similar instances should be closer in the embedding
space, the objective is to maximize the similarity
between positive data pairs while minimizing the
similarity between negative data pairs. So far, con-
trastive learning has demonstrated efficacy across
diverse domains. A common practice of this ap-
proach is based on data augmentation (You et al.,
2021), where the utilization of unlabeled data en-
hances model generalizability and robustness. Fur-
thermore, this approach is also widely adopted in
the field of multimodality (Radford et al., 2021),
where the availability of different data forms al-
lows leveraging one representation to supervise the
other.
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Figure 2: Contrastive Learning. Above: Node level contrastive learning. Below: Graph level contrastive learning.

3 Methods

We investigate two kinds of information merg-
ing methods: contrast learning-based methods and
fusion-based methods. In contrast learning-based
methods, we use GNN as an auxiliary model to
supervise the training of the language model, while
we only use the language model for downstream
tasks. In fusion-based methods, we make use of in-
formation from both models to generate the output
for downstream tasks. For each kind of method,
we consider different model architectures. In this
section, we will first briefly review the two baseline
models ChemBERTa (Chithrananda et al., 2020)
and NNConv (Gilmer et al., 2017), and then de-
scribe the contrast learning-based methods and the
fusion-based methods.

3.1 Baseline (Fig. 1)

Language Models. We choose ChemBERTa
(Chithrananda et al., 2020) as our baseline model.
The architecture of ChemBERTa is similar to BERT
(Devlin et al., 2019), consisting of an embedding
layer and several encoder layers. A molecule is first
converted into the textual format through SMILES,
and then a SMILES tokenizer is applied to con-
vert the words into input tokens. After embedding
lookup, each token is assigned with an embedding.
Then the encoder layers which consist of a multi-
head self-attention layer and a feed-forward layer
transform the input token embeddings to hidden
state representations. Finally, the task-specific out-
put layer (classifier or regressor) predicts the result.

We ask the ChemBERTa model to produce three-
level information for a molecule. First, node em-

beddings are extracted from the final hidden state
representations. Since the SMILES transformation
preserves atom orderings, each atom in the original
molecule corresponds to a specific output token
embedding. Second, the graph embedding is ex-
tracted from the special token at the beginning of
the sequence. Third, the property prediction result
is the final output.

The entire process can be depicted as follows:

Tokens = Tokenizer(Sequence)

Ein = Embedding(Tokens)

Eout = Encoder(Ein)

N = Eout[Node_Indices]

G = Eout[0]

P = Predictor(G)

(1)

where Ein and Eout represent the input token em-
beddings and final hidden state representations; N ,
G, and P represent the node embeddings, graph
embedding, and property prediction result.

Message Passing Neural Networks. There are
different types of graph neural networks, which
include graph convolution, graph attention and neu-
ral message passing networks (MPNN). Edge at-
tributes or edge features are important in message
passing mechanisms (Johannes et al., 2020; Gilmer
et al., 2017). For the baseline model, we follow
the model setting in the first paper of MPNN for
Quantum Chemistry dataset QM9 (Gilmer et al.,
2017), which iteratively updates the message mt

v
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and the hidden state htv for each node v:

m(t+1)
v =

∑

u∈N (v)

Aggr[h(t)v , h(t)u , euv] (2)

h(t+1)
v = U(h(t)v ,m(t+1)

v ) (3)

Aggr[·] is the function that aggregates neighbor
node u’s information as well as the attributes euv
of the shared edge with u. U(·, ·) updates hidden
states for v.

3.2 Integration 1: Contrastive Learning (Fig.
2)

Node Level Contrastive Learning In order to
compute the constrastive loss, we need a triple
⟨anchor, positive, negative⟩. Anchor and positive
node embeddings are sampled from language mod-
els and message passing networks respectively.
Negative samples are randomly generated from
graphs with a different permutation. For an ex-
ample node triple t = ⟨a, p, n⟩, its corresponding
contrastive learning loss triplet loss is given by:

(4)L(t) = max{d(a, p)− d(a, n) + margin, 0}
where margin is 1.0 and distance measurement
d(i, j) is defined as Lp-norm : d(i, j) = ∥i− j∥p.
p is often set to 2 as an Euclidean distance metric.
In a M mini-batch of training graphs (number of
N nodes) with K triples, the triplet loss is given
by:

(5)L =

M∑

m=1

⌈N
K ⌉−1∑

i=0

K∑

j=1

max{d(amk , pmk )

− d(amk , nm
k ) + margin, 0}

where k = |K|i + j. Consider a binary classifi-
cation problem, as mentioned we need to perform
Readout function to obtain the global information
of a graph. If it is an average function, the total
loss is given by a prediction loss such as negative
log likelihood (NLL) loss, and a regularized triplet
contrastive loss which has been defined above:

L =

M∑

m=1

NLL


MLP


 1

N

⌈N
K ⌉−1∑

i=0

K∑

j=1

amk


 , ym




+ α ·
M∑

m=1

⌈N
K ⌉−1∑

i=0

K∑

j=1

max{d(amk , pmk )

− d(amk , nm
k ) + margin, 0}

(6)

where k = |K|i+ j likewise and α is a regulariza-
tion term.

Graph Level Contrastive Learning. Apart from
establishing negative samples between each pair
of nodes at a fine grained level, we estimate con-
trastive learning at a coarse grained level which
aims at computing the difference between language
model graph embeddings and MPNN graph embed-
dings. This could potentially avoid the situation
that individual nodes with large difference con-
tribute more to the difference of the molecule prop-
erty. Moreover, the complexity is pretty lower than
the complexity of node level comparison, which
will be discussed in part 3.4. Similar to the node
level training loss in (6), the graph level training
loss is defined as:

(7)

L =

M∑

m=1

NLL (MLP (am) , ym) + α′

·
M∑

m=1

max{d(am, pm)− d(am, nm)

+ margin, 0}
where α′ is a regularization term. Note that dif-
ferent molecules could have a similar graph em-
bedding which could lead to a similar quantum
property, for example isomers. And also note that
we use message passing network outputs to self-
supervise (or fine-tune) language model outputs
either in node level and graph level settings. It
means that we do not directly use MPNN outputs
to perform predictions. This is because we want to
see if injecting geometry information of molecules
is beneficial to the end-to-end training of language
models. It is different from the collaborative train-
ing (fusion) which would be introduced in the fol-
lowing parts.

3.3 Integration 2: Fusion (Fig. 3)
Late Fusion Different from self-supervised
learning settings in part 3.2, we introduce another
important interaction between LM embeddings and
MPNN embeddings: late fusion (Sachan et al.,
2021). It is called late fusion since the interac-
tion happens after their corresponding embeddings
hLM and hMPNN are extracted. The interaction is
given by the notation

⊕
, and the prediction is then

given as:

ypred = MLP
(
hLM

⊕
hMPNN

)
(8)

⊕
= {+,max, ∥,⊙} (9)

L =

M∑

i=1

NLL(yipred, y
i) (10)
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Figure 3: Fusion. Top: Late Fusion. Middle: MPNN2LM Joint Fusion. Bottom: LM2MPNN Joint Fusion.

where the interaction contains element-wise addi-
tion, maximization, concatenation and gate func-
tion which is used for building highway layers.

Joint Fusion. Based on the late fusion, we con-
sider two situations: 1) MPNN2LM: fuse initial graph
embeddings and LM outputs ⇒ perform MPNN
downstream tasks, and 2) LM2MPNN: fuse initial to-
ken embeddings and MPNN outputs ⇒ finetune
LM downsteam tasks.

MPNN2LM We initialized the word embedding
for language model: h

(0)
LM. MPNN embedding is

given by hMPNN. Then the fused embedding is
h
(0)
LM

⊕
hMPNN, which would be the input embed-

ding for the pretrained language model. The node
mask is also considered since in part 3.1 we men-
tioned that paddings are added to ensure the same
length of input. After fine-tuning pretrained LM,
we readout the global information h′ to perform
downstream tasks. Overall, the graph embedding
prepared for MLP is:

h′ = Readout
(

LM
(
h
(0)
LM

⊕
hMPNN,mask

))

(11)

LM2MPNN Revisiting how MPNN works by (1)
and (2), the node embedding for v are fused with
the LM output for mask index v: h(t)v

⊕
hLMM(v).

Similar to the neighbor node u, they are fused with
the LM output for mask index u: h(t)u

⊕
hLMM(u).

Then the message is aggregated by:

(12)

m(t+1)
v =

∑

u∈N (v)

Aggr
(
h(t)v

⊕
hLMM(v),

h(t)u

⊕
hLMM(u), euv

)

For the update function U(·, ·), the new update rule:

(13)h(t+1)
v = U

(
h(t)v

⊕
hLMM(v),m

(t+1)
v

)

3.4 Complexity Analysis
Baseline Models. The time complexity for base-
line models are mainly dominated by their cor-
responding model architecture. Assume the in-
put size ∈ RN×d For the pretrained transformer
model, the self-attention module is the bottleneck,
which is bounded by O(N2 · d). Assume that there
are L self-attention layers, then it will increase to
O(N2 · d · L). The complexity for feed forward
layers is O(N · d2 · L). The overall complexity for
baseline LM is then O(N2 · d ·L+N · d2 ·L). For
MPNN, computing each message has a complex-
ity of O(d). The total complexity for the message
passing step is then O(E · d). Updating nodes will
be O(N ·d2). L layers lead to O(L·E ·d+L·N ·d2).
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So it depends on whether the graph is sparse or not.
If graph is sparse, N2 ≫ E, then the complexity of
LM is greater than the complexity of MPNN. This
situation often occurs in real world applications.

Contrastive Learning. For contrastive learning,
apart from the basic complexity for LM and MPNN,
it also includes the complexity for computing con-
trastive loss. Take triplet loss as an example, in
equation (5), the complexity is dominated by the
last term. Assume that computing max only re-
quires O(1). Computing d(·, ·) requires O(d) if the
dimension of inputs is d. Then the overall complex-
ity is O(d ·N) where N is the number of nodes in
the graph. A node level contrastive learning then
requires O(N2 ·d·L+2·N ·d2 ·L+d·N+L·d·E).
For graph level contrastive learning we find that
only complexity of model terms dominates, which
leads to O(N2 ·d ·L+2 ·N ·d2 ·L+L ·d ·E+d),
which is faster than that of node level.

Fusion We simply investigate
⊕

by choosing
max which requires O(1). The element wise max-
imization requires O(N · d) since input size is
N × d. Then the time complexity of late fusion
would be the same as the complexity of nodel level
contrastive learning, which is O(N2 ·d ·L+2 ·N ·
d2 · L+ L · d · (N + E)). MPNN2LM has the same
complexity while LM2MPNN is much more complex
since

⊕
directly affects the complexity of message

passing operation. We already know that the com-
plexity of MPNN is O(E · d). We assume that the
average number of nodes is 2E

N . Then the additional
element wise addition contributions additional
O(E · d), which leads to the overall complexity for
LM2MPNN: O(N2·d·L+2·N ·d2·L+L·d·(N+2E)).

4 Experiment settings

4.1 Dataset

We follow the following paradigm (Luo et al., 2022)
for prediction on quantum chemistry based datasets:
first we perform tests on small scale and classifical
benchmark molecule datasets. In our future works,
we want to test its robustness on large scale and re-
cently proposed benchmarks such as PCQM4Mv2
(Hu et al., 2020a). For small datasets we choose
from MoleculeNet dataset (Wu et al., 2018) which
collects data from physical chemistry, biophysics
and physiology field. It has provided plenty of
molecule datasets to play with (Wu et al., 2018).
For large datasets, we choose QM9 (Gilmer et al.,
2017) as tested in MPNN. The task is to predict

property for each molecule using models in part
3. Selected datasets are HIV, BACE, ESOL and
BBBP (Wu et al., 2018). A simple description of
chosen dataset and task type is listed in table 3.
HIV, BBBP, and BACE are used for binary classi-
fication settings, while ESOL and QM9 are used
for regression settings. For simplicity, we only
choose the first target from all 19 classes, which is
the Dipole moment µ. For the regression problem,
the performance is measured by mean absolute er-
ror (mae). As for the classification, it is measured
by the mean accuracy (acc). Specifically, the pre-
trained ChemBERTa is time-consuming on QM9
and HIV dataset.

4.2 Hyper-parameter settings

There are two pretrained model to choose
from: ChemBERTa and its improved version
ChemBERTa-2. We choose Adam optimizer for
optimizing model parameters with default learn-
ing rate 0.001 when running with pretrained
ChemBERTa-2 (<4G). The initial learning rate is
tuned to 0.0002 when running with ChemBERTa
since the model size is large (>16G) which requires
a small learning rate. We follow a 8:1:1 train-valid-
test ratio for MoleculeNet dataset, and follow an
approximate 21:2:2 train-valid-test ratio for QM9
dataset. Hidden dimension is set to 64. The default
choice for

⊕
is sum (addition). Five fixed seeds

are 0, 7, 42, 100, 2024 for result reproduction.

4.3 Scalability

A single NVIDIA A100 GPU could satisfy all our
experiments. In other words, it is scalable for train-
ing all datasets including large scaled ones. The
maximum usage is observed when running pre-
trained ChemBERTa on HIV dataset. For other
datasets it’s also possible to train on a GeForce
RTX 3090 GPU.

5 Results

Observation 0: Protein language models are
more preferred. A fundamental observation
from experimenting on MoleculeNet is that purely
using message passing neural networks are in-
ferior to language models in molecule property
prediction. This phenomenon is also mentioned
in the previous research work (Xu et al., 2022).
This has indicated some works to include the ge-
ometric properties such as 3D information and
rotation invariant parameters in message passing
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Model HIV (acc.) ↑ BACE (acc.) ↑ BBBP (acc.) ↑ ESOL (mae.) ↓
ChemBERTa 0.9776 ± 0.0021 0.8280± 0.0319 0.9105± 0.0153 0.5529± 0.0332
MPNN 0.9774 ± 0.0022 0.8080 ± 0.0256 0.8737 ± 0.0140 0.6252 ± 0.0072
ChemBERTa contra. MPNN (node) 0.9782 ± 0.0035 0.8280± 0.0271 0.9118 ± 0.0245 0.5326± 0.0534
ChemBERTa contra. MPNN (graph) 0.9774 ± 0.0022 0.8300± 0.0352 0.9131± 0.0307 0.5404± 0.0495
ChemBERTa + MPNN (graph) 0.9778 ± 0.0020 0.8320± 0.0331 0.9065 ± 0.0147 0.5002 ± 0.0339
ChemBERTa←MPNN 0.9773 ± 0.0022 0.8060 ± 0.0422 0.9053± 0.0099 0.4819± 0.0325
ChemBERTa→MPNN 0.9773 ± 0.0022 0.8380± 0.0366 0.9184± 0.0189 0.5561 ± 0.0461

Table 1: Performance of pretrained ChemBERTa on MoleculeNet datasets.

Model HIV (acc.) ↑ BACE (acc.) ↑ BBBP (acc.) ↑ ESOL (mae.) ↓
ChemBERTa-2 0.9792± 0.0018 0.8560± 0.0206 0.9171± 0.0136 0.4738 ± 0.0330
MPNN 0.9774 ± 0.0022 0.8010 ± 0.0392 0.8737 ± 0.0140 0.6252 ± 0.0072
ChemBERTa-2 contra. MPNN (node) 0.9791± 0.0011 0.8620 ± 0.0256 0.9290± 0.0128 0.4393 ± 0.0338
ChemBERTa-2 contra. MPNN (graph) 0.9800± 0.0017 0.8540 ± 0.0258 0.9197± 0.0163 0.4643 ± 0.0354
ChemBERTa-2 + MPNN (graph) 0.9791± 0.0012 0.8680± 0.0293 0.9263± 0.0113 0.4493± 0.0328
ChemBERTa-2←MPNN 0.9772± 0.0016 0.8400 ± 0.0374 0.8974± 0.0098 0.5012 ± 0.0335
ChemBERTa-2→MPNN 0.9789± 0.0012 0.8480± 0.0204 0.9224± 0.0141 0.4516± 0.0264

Table 2: Performance of improved pretrained ChemBERTa-2 on MoleculeNet datasets.

Name #graphs #nodes #features #classes
HIV 41,127 ∼25.5 9 1
BBBP 2,050 ∼23.9 9 1
BACE 1,513 ∼34.1 9 1
ESOL 1,128 ∼13.3 9 1
QM9 130,831 ∼18.0 11 19

Table 3: Descriptions of selected datasets from Molecu-
leNet

networks to reinforce its prediction and expres-
sive power. The explanation of this phenomenon
would be that 1) model size of either ChemBERTa-
1 or ChemBERTA-2 model is larger than the
size of message passing networks and 2) either
ChemBERTa-1 or ChemBERTA-2 model has been
pretrained on some more larger datasets for exam-
ple ZINC dataset, while message passing networks
do not follow the pretraining scheme of large lan-
guage models.

Observation 1: Integration on relatively small
graphs are more preferred. Using the pretraind
ChemBERTa-2, we found that both contrastive
learning and fusion methods outperform baseline
models in ESOL, BACE, and BBBP where they
are relatively small compared with QM9 and HIV
datasets. Especially, node level contrastive learning
performs the best and it seems to be robust among
all tasks, followed by late fusion methods and joint
fusion methods when injecting LLM to MPNNs.
In large dataset, the tuning strategy might influ-
ence the potential performance, where it splits the
dataset in a better way therefore we perform one
ablation regarding train test split (in section 6) to
avoid the difference that brought by dataset itself.

Observation 2: Integration w.r.t both regression
and classification are useful. In terms of train-
ing convergence, we observe that the accuracy or
mean absolute error converges quickly to a high or
low score respectively. For small graph datasets
BACE and BBBP on graph classification prob-
lem, an improvement of ≈1% on average accuracy
is observed with method MPNN2LM for pretrained
ChemBERTa. For version 2, 1.4% improvement is
observed with late fusion on BACE and 1.3% im-
provement is observed with node contrastive learn-
ing on BBBP . For small graph dataset ESOL on
regression problem, a great improvement is ob-
served where 12.8% improvement on mae with
MPNN2LM method with pretrained ChemBERTa,
and 7.3% improvement on mae with MPNN2LM
method with pretrained ChemBERTa-2. For HIV,
we observe a little improvement with node level
contrastive learning. Using a combination of LLM
representation and graph representation during the
training would make the prediction worse. For
QM9, most of the injection / fusion methods would
potentially improve the performance except for
MPNN2LM fusion. Using LM2MPNN would
potentially improve 8.6 %. We found that pure
MPNN’s performance is better than the perfor-
mance of a chemical LLM (table 4).

Observation 3: Pretrained language models are
important for downstream predictions. In com-
parison to ChemBERTa-2, ChemBERTa performs
worse when comparing each entry in table 1 and
table 2. Although we could always try to improve
those two baselines with different injection or fu-
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sion methods, the best of them are not the same.
For example, contrastive learning is much more
preferred to ChemBERTa-2 while fusion methods
are much more preferred to ChemBERTa model.
When it comes with a new pretrained large lan-
guage model, using our proposed method could tell
the similarity between tasks and the model’s pre-
training strategy. As there is no general conclusion
about how a chemical LLM and a MPNN could be
combined to predict the best, it is still a pioneer-
ing area that requires more pretrained models to
test its robustness. To select the most appropriate
pretrained language model for further training, re-
searchers should first integrate a list of pretrained
models, followed by an investigation with different
fusion / injection methods.

Observation 4: Joint Fusion to some extent helps
learn MPNN better but learn original Chemi-
cal LLM worse. We also focus on if such multi-
modal module (Fig. 2, Fig. 3) helps learn individ-
ual module (Fig. 1) better. It improves a lot for
single MPNN baseline if we consider its language
level information as augmented features. For ex-
ample, for BACE dataset, MPNN has an average
accuracy of 0.808 with ChemBERTa. With inject-
ing pretrained language information, an improve-
ment of 3.7% is observed (LM2MPNN). How-
ever, it might not work very well on the opposite
when we inject information from MPNN to LLM.
For simplicity we just examined with pretrained
ChemBERTa-2. For ESOL dataset, it decreased
from 0.4738 to 0.5012 (5.78%). For BBBP dataet,
it decreased from 0.9171 to 0.8974 (2.15%). We
further suggest that the researchers should not di-
rectly use the structural information from graphs
as additional input when they want to modify their
LLM models, but trying to leverage them as auxil-
iary ground-truth to finetune the token embeddings.

Model QM9 (target = 0)
ChemBERTa-2 baseline 0.4825 ± 0.0113
MPNN baseline 0.4669 ± 0.0065
ChemBERTa-2 contra. MPNN (node) 0.4613 ± 0.0065
ChemBERTa-2 contra. MPNN (graph) 0.4662 ± 0.0046
ChemBERTa-2 + MPNN (graph) 0.4596 ± 0.0078
ChemBERTa-2←MPNN 0.5231 ± 0.0083
ChemBERTa-2→MPNN 0.4409 ± 0.0048

Table 4: Performance of improved pretrained
ChemBERTa-2 on QM9 dataset.

6 Ablation Study

Effects of datasets. We choose another dataset
in MoleculeNet to certify that the proposed models
are still robust on this dataset. Take FreeSolv as an
example, we figure out that none of the injection or
contrastive learning methods is still robust on this
regression task. Even if late fusion performs the
best which has an average mae of 0.6568, which is
close to the result of pure chemical LLM training
(0.6420), there’s still a 2.3% decrease in perfor-
mance. Both LM2MPNN and MPNN2LM did not work
well, but it still commits to our fourth main obser-
vation, which is that injecting token embeddings
into message passing layers would still improve
the performance, but injecting structural informa-
tion into word embeddings would be a bad idea. A
potential reason is that FreeSolv is too small. We
suggest that researchers should be careful when
fine-tuning the individual language model with ad-
ditional structural features.

Model FreeSolv (mae.) ↓
ChemBERTa-2 baseline 0.6420 ± 0.0814
MPNN baseline 0.9904 ± 0.1375
ChemBERTa-2 contra. MPNN (node) 0.6642 ± 0.0600
ChemBERTa-2 contra. MPNN (graph) 0.6745± 0.0995
ChemBERTa-2 + MPNN (graph) 0.6568± 0.0658
ChemBERTa-2←MPNN 0.9188 ± 0.0686
ChemBERTa-2→MPNN 0.7475± 0.0805

Table 5: Performance of improved pretrained
ChemBERTa-2 on FreeSolv dataset

Effects of dataset split. We want to figure out
if different splits of training, validation and test
datasets lead to different performance. We run
on BBBP (classification) and ESOL (regression).
Four ratios are considered: 9:0.5:0.5, 8:1:1, 7:2:1,
and 6:2:2. Model prediction power is highest at a
ratio of 8:1:1 for ESOL while the prediction power
is reducing for BBBP when ratio of training sets is
decreasing.

Train test split BBBP (acc.) ↑ ESOL (mae.) ↓
9: 0.5 : 0.5 0.9500 ± 0.0174 0.4672 ± 0.0338
8 : 1 : 1 0.9290± 0.0128 0.4393 ± 0.0338
7 : 2 : 1 0.9211 ± 0.0110 0.4837 ± 0.0447
6 : 2 : 2 0.9152 ± 0.0032 0.4947 ± 0.0060

Table 6: Model (node level contrast.)

Effects of different fusion operations
⊕

We
first follow the default train valid test split of 8:1:1.
As mentioned, there are four fusion operations

⊕
,
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which are max, sum, concatenation and gate func-
tion. Our default fusion operation is sum function.
Surprisingly we found that concatenation and max
function are better fusion choice for both BBBP
and ESOL. We suggest that researchers could sim-
ply concatenate token embeddings and graph em-
beddings together.

Fusion Operation BBBP (acc.) ↑ ESOL (mae.) ↓
sum 0.9263± 0.0113 0.4493± 0.0328
max 0.9289 ± 0.0146 0.4281 ± 0.0339
concate 0.9289 ± 0.0241 0.4255 ± 0.0335
gate 0.9224 ± 0.0197 0.4363 ± 0.0354

Table 7: Model: Late Fusion

Effects of different graph neural networks As
mentioned in section 3, there are three types of
graph neural networks in mainstream GNN re-
search, which are graph convolution (GraphConv),
message passing neural networks (MPNN), and
graph attention networks. We substitute MPNN
with with a two-layer GraphConv model to see if
MPNN is much better than other types of GNN for
baselines. The results show that MPNN is more
preferred to BBBP but GraphConv is more pre-
ferred to ESOL. Overall the difference would not
be too large for a graph convolution network and
a neural message passing layer therefore we sug-
gest researchers try out both ways to improve the
results.

Fusion Operation BBBP (acc.) ↑ ESOL (mae.) ↓
MPNN 0.9289 ± 0.0146 0.4281 ± 0.0339

GraphConv 0.9237 ± 0.0148 0.4144 ± 0.0252

Table 8: Model: Late Fusion

7 Conclusion

In this paper, we delved into various information
integration approaches to assess whether the col-
laborative utilization of chemical large language
models (chemical LLMs) and message passing neu-
ral networks (MPNNs) surpasses the individual
efficacy of these models. We evaluated the integra-
tion approaches over different graph scales on both
classification and regression tasks. Our empirical
analysis has demonstrated that the integration ap-
proaches outperform the baselines on small-scale
graphs but do not yield improvements on datasets
of larger scales. Furthermore, we have found that
differences in dataset splitting strategies, and ag-
gregation choices in fusion have an impact on the

overall performance. We wish to extend our pro-
posed methods on large scale benchmark datasets
such as PCQM4Mv2 (Hu et al., 2020a).
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