
Proceedings of the 1st Workshop on Towards Knowledgeable Language Models (KnowLLM 2024), pages 32–44
August 16, 2024 ©2024 Association for Computational Linguistics

Beyond Text: Unveiling Multimodal Proficiency of Large Language Models
with MultiAPI Benchmark

Xiao Liu Jianfeng Lin Jiawei Zhang
IFM Lab, University of California, Davis

xiao@ifmlab.org, jfglin@ucdavis.edu, jiawei@ifmlab.org

Abstract

The proliferation of Large Language Models
like ChatGPT has significantly advanced lan-
guage understanding and generation, impact-
ing a broad spectrum of applications. However,
these models predominantly excel in text-based
tasks, overlooking the complexity of real-world
multimodal information. This study introduces
MultiAPI, a pioneering comprehensive large-
scale API benchmark dataset aimed at expand-
ing LLMs’ proficiency in multimodal contexts.
Developed collaboratively through ChatGPT,
MultiAPI consists of 187 diverse API calls and
1,799 contextual prompts, offering a unique
platform evaluation of tool-augmented LLMs
handling multimodal tasks. Through compre-
hensive experiments, our findings reveal that
while LLMs demonstrate proficiency in API
call decision-making, they face challenges in
domain identification, function selection, and
argument generation. What’s more, we surpris-
ingly notice that auxiliary context can actually
impair the performance. An in-depth error anal-
ysis paves the way for a new paradigm to ad-
dress these challenges, suggesting a potential
direction for future LLM research.

1 Introduction

Large Language Models (LLMs), such as ChatGPT,
have emerged as powerful tools in understanding
and generating human language (Li et al., 2023c;
Touvron et al., 2023; OpenAI, 2023), playing a piv-
otal role in diverse open-domain tasks and leaving
a significant impact on both industry and academia
(Bubeck et al., 2023; Yao et al., 2023; Touvron
et al., 2023; Laskar et al., 2023). However, their
performance is often confined to the text-based do-
mains and tasks they were trained on, overlooking
the multimodal and dynamic nature of real-world
information. As people increasingly rely on LLMs
to address their daily challenges, the demand for
enhancing the task-handling capabilities of these
models grows ever more pressing. In addition to

addressing many of people’s emerging needs in
the real world, enhancing LLMs with multimodal
problem-solving skills could be a significant step
towards the realization of AGI in an idealized fu-
ture (Bubeck et al., 2023).

Reflecting this demand and vision, recent stud-
ies have embarked on two primary approaches to
integrate multimodal processing capabilities into
existing LLMs (Li et al., 2023a): 1) Joint training or
finetuning LLMs with components for multimodal
encoding and generation (Wu et al., 2023; Maaz
et al., 2023; Zhang et al., 2023a); 2) Introducing
auxiliary API tools via natural language interfaces
(Patil et al., 2023; Shen et al., 2023; Qin et al.,
2023), positioning LLMs as the central decision-
making entity determining the appropriate tools
to employ for the inquiry. Joint training of multi-
modal LLMs, despite creating more unified models,
faces challenges with computational demands and
potential loss of the generalization ability (Bubeck
et al., 2023). On the other hand, evolving API func-
tions, which are modularly designed, allow LLMs
to adapt to new tasks by simply altering the API
configuration.

Despite the significant potential and flexibility
the tool-augmented LLMs express on multimodal
tasks, their quantitative performance of multimodal
tasks when integrated with API tools still remains
insufficiently examined. Recent studies are very in-
adequate and merely focus on and gleaning insights
from open-domain tasks such as mathematical com-
putations, database searches, and graph reasoning
(Li et al., 2023b; Zhuang et al., 2023; Qiu et al.,
2023). This gap in leveraging API tools to achieve
multimodal tasks can be attributed to two primary
obstacles: 1) the unavailability of high-quality API-
prompt datasets, and 2) the absence of established
metrics specifically designed to evaluate the effi-
cacy of LLMs in multimodal tasks.

In this paper, we address the aforementioned
challenges by constructing a large-scale API
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instruction-function dataset and evaluates LLMs’
multimodal performance, called MultiAPI. Based
on the HuggingFace dataset (Patil et al., 2023),
we extracted models with high-quality descrip-
tions across 9 domains along with their instructions.
These models were initially encapsulated as API
functions using ChatGPT prompts, followed by
meticulous human refinements to ensure executabil-
ity and consistent arguments across domains. This
help create the MultiAPI benchmark dataset with
187 functional API calls and 1,799 instructions.

We subsequently conducted experiments on both
API-based LLMs and open-sourced LLMs, explor-
ing strategies that were previously proven effective
in improving LLM prompting such as in-context
learning (Brown et al., 2020) and chain-of-thought
(Wei et al., 2023). Our investigation spanned single-
step API call (only 1 API is required to resolve
the instruction) and sequential API chain (multi-
ple APIs are required) settings, evaluating 4 intu-
itive aspects: 1) invocation assessment; 2) domain
match; 3) function match; and 4) argument match.
Results revealed that while models accurately make
decisions to invoke API functions, they often suf-
fer from selecting the right function and param-
eters from the correct domain. Furthermore, we
surprisingly noticed that adding auxiliary context
could harm the API call performance. Extensive
error analyses were conducted to understand the
potential cause of such errors, leading us to pro-
pose two simple yet effective solutions to mitigate
these errors. The experimental results validate the
effectiveness of our method.

We summarize the contributions of this paper as
follows:

• We constructed a pioneering large-scale multi-
modal instruction-function benchmark dataset,
MultiAPI, with 187 executable API functions
and 1,799 prompts. This data underwent rigor-
ous human refinement to ensure its robustness
and relevance in the context of LLM evalua-
tions.

• Our experimental framework comprehen-
sively assesses both API-based and open-
sourced LLMs, revealing their strengths in
API call decisions but highlighting challenges
in domain and function selection, as well as
argument generation.

• A thorough error analysis leads us to mitigate
these errors and set a new direction for future

LLM research within the multimodal context.

2 Related Work

2.1 Evaluation of Large Language Models

Performance evaluation of LLMs has become a
particularly prominent field postdate of the intro-
duction of ChatGPT, providing valuable insights
for enhancing future model iterations and assisting
the industry in developing more resilient applica-
tions. Extensive research has been undertaken to
assess the competencies of LLMs (Yin et al., 2023a;
Laskar et al., 2023; Zhang et al., 2023d). These
works demonstrated LLMs expressed near-human
performance on open-domain tasks such as math-
ematics, coding, law, and psychology. However,
their proficiency with tool use has not been thor-
oughly explored.

Li et al. (2023b) introduced a benchmark for as-
sessing LLMs’ tool-use proficiency through a set of
APIs. However, the amount of APIs of this dataset
is constrained by its reliance on human implemen-
tation and primarily evaluates LLMs on general
tasks like setting alarms or scheduling meetings.

In contrast, our study pivots to evaluate LLMs’
ability to handle multimodal tasks via the use of
tool APIs. We have harnessed ChatGPT’s code
generation capabilities based on the provided code
template, followed by meticulous human refine-
ment, to construct MultiAPI, a high-quality and
large-scale multimodal API dataset. This novel
dataset enables us to dive into the multimodal task
performance of LLMs, marking a significant ad-
vancement in the field.

2.2 Large Language Model Augmentation

Although large language models recently demon-
strated superior zero-shot language understanding
(OpenAI, 2023; Touvron et al., 2023; Zhang et al.,
2023b) capability, the task scope they could han-
dle is highly tethered with their pretraining data.
To adapt LLMs to diverse inputs and tasks, recent
studies have primarily followed two avenues. The
first involves joint fine-tuning of LLMs with perti-
nent neural network components. In this approach,
the hidden representations of novel modalities are
aligned with the LLM’s latent space (Awais et al.,
2023; Wu et al., 2023; Patil et al., 2023; Lyu et al.,
2023). The second avenue integrates tools such as
API functions as external modules (Schick et al.,
2023; Zhang, 2023; Song et al., 2023). The strategy
offers enhanced flexibility, allowing API functions
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(a) Description Verification

(b) Model Encapsulation & 
 Argument Standardization(c) Ground Truth Transformation

pipeline = DDPMPipeline.from_pretrained 
(‘google/ddpm-
celebahq-256').to('cuda') 

image = pipeline().images[0] 
image.save('generated_output.png') 

def google_ddpm_celebahq_256(output_path:str): 
    import torch 
    import os 
    from diffusers import DDPMPipeline 

    pipeline = DDPMPipeline.from_pretrained 
(‘google/ddpm-celebahq-256').to('cuda') 

    image = pipeline().images[0] 
    image.save(output_path) 
    return os.path.abspath(output_path) 

Dreamlike Photoreal 2.0 
can be used to generate 
photorealistic images from 
text prompts.


Description: 

This model is a fine-tuned 
VAE decoder for the Stable 
Diffusion Pipeline.


Description: 

Instruction: Generate an image of a 
church to serve as the foundation for 
our design.

GT Code: 

model_id = 'google/ncsnpp-
church-256' 
sde_ve =DiffusionPipeline. 
        from_pretrained(model_id) 
image = sde_ve()[0] 
image.save(‘output.png')

GT Function Call: 

google_ncsnpp_church_256(output_path
=‘./output.png') 

Figure 1: Workflow for adapting the HuggingFace dataset for MultiAPI collaboration with GPT model: (a) the
Description Verification process where model descriptions are assessed for precision and detail. (b) the Model
Encapsulation and Argument Standardization procedure, transitioning from an ’example code’ format to an argument-
standardized Python function and ensuring the function is executable. (c) the Ground Truth Transformation, showing
the conversion of instruction-code pairs into instruction-function pairs.

to be seamlessly incorporated into textual contexts,
irrespective of whether the LLM is API-based or
open-sourced.

Several studies have examined combining large
language models with external resources. Shen
et al. (2023) notably linked ChatGPT with Hug-
gingFace, enhancing its decision-making range.
However, this integration struggled with producing
precise code due to inconsistencies in the ground
truth code and insufficient documentation. In our
study, we mitigated these limitations by utilizing
human annotators to integrate each HuggingFace
model as a function call. We further unified func-
tion arguments within the same domain, simplify-
ing the evaluation process and reducing the com-
plexity of model interactions during assessments.

3 MultiAPI Benchmark Dataset

3.1 Data Collection

In this section, we detail the process of constructing
MultiAPI leveraging the HuggingFace instruction-
code dataset introduced by Patil et al. (2023).
The original dataset consists of a model defini-
tion file including model descriptions along with
its corresponding example code template; and an

instruction-code pair file linking models to self-
generated instructions(Wang et al., 2023).

We first filtered out all the models that could
potentially assist multimodal tasks from 9 unique
domains, as shown in Table 5, and their correspond-
ing instruction-code pairs. The subsequent data
processing comprises four steps: 1) Description
Verification, 2) Model Encapsulation, 3) Argument
Standardization, and 4) Ground Truth Transforma-
tion. The primary procedures are illustrated in
Figure 1. It’s noteworthy that the first three steps
are applied to the model definition and the last is
applied to the instruction-code pair.

Description Verification: While most models
come equipped with a description field that pro-
vides the basic information, the quality of these
descriptions varies widely, largely depending on
community contributors. Previous studies verified
that a precise and detailed model description plays
a critical role in aiding the model to identify the ap-
propriate tool (Hsieh et al., 2023). Such specificity
could also enhance the accuracy and reliability of
evaluation outcomes. To this end, we engaged two
human annotators with expertise in NLP to manu-
ally review all descriptions. They were tasked with
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removing the model whose descriptions only offer
a general overview, lacking a delineated use case,
as depicted in lower Figure 1 (a).

Model Encapsulation: The primary utility of
the original dataset was to facilitate the training
or finetuning of LLMs to autonomously generate
the API call code. Consequently, models were in-
voked using the example_code field present in the
dataset, as illustrated in the upper section of Figure
1(b). To adapt the existing example codes to the
API function-calling framework, we prompt gpt-
3.5-turbo to transform the example code template
into an API function and subsequently extract the
potential arguments. In addition, we identify and
include the import statements inside the function
to ensure the function is independently executable.

Argument Standardization: Upon encapsulat-
ing the functions, we observe that while gpt-3.5-
turbo transformed essential codes into function
form, it exhibited challenges in accurately extract-
ing function arguments. Further analysis suggests
that the variation in argument names and the num-
ber of arguments pose a significant challenge (Yin
et al., 2023b), potentially introducing the risk of
hallucination, ambiguity and complicating the pars-
ing process during argument evaluations. To ad-
dress the aforementioned discrepancies, we intro-
duce an argument standardization process. Con-
sider a function set Fd within a given domain d.
We define a standardized argument set Ad by man-
ually reviewing all functions within d to determine
the commonly recurring arguments intrinsic to the
domain’s functionality. As a result, for any func-
tions within d, we require:

∀f1, f2 ∈ Fd, args(f1) = args(f2) = Ad (1)

For instance, within the Text to Image domain, func-
tions generate images in response to user prompts.
Consequently, the indispensable arguments for this
domain are prompt and output_path. The de-
tailed mappings between domains and required ar-
guments are listed in Table 5 in Appendix A.

Using this collated reference table, human ex-
perts are introduced to refine the generated func-
tions ensuring: 1) Each function includes the mini-
mum required arguments, named in line with the
reference table. 2) Other arguments are listed as
default arguments with default values. 3) Each
function is executable within Python environments.

Ground Truth Transformation: As shown in
the upper segment of Figure 1(c), instruction-code
pairs represent specific instructions with their cor-
responding code blocks. To maintain consistency
with our previous steps, we use a similar human-
supervised approach to transform these pairs into
instruction-function pairs. The results are depicted
in the bottom code block of Figure 1(c). This en-
sures a consistent framework for both model defi-
nitions and their corresponding instructions.

3.2 Evaluation Metrics

The outputs of multimodal tasks are dependent on
varying input modalities, leading to unpredictable
results even with identical inputs (Rombach et al.,
2022; Saharia et al., 2022). This variability makes
direct evaluation of the output unreliable. More-
over, crafting robust evaluation metrics for each
individual domain poses significant challenges for
future versatility.

However, benefiting from diligent data collec-
tion steps, we bypass these issues by assessing the
LLM’s tool usage ability based on the function
calls selected. In function-calling context, user’s re-
quirement would be fulfilled if the model correctly
selects the appropriate function and fills in the ac-
curate arguments. This approach streamlines the
evaluation into a universal domain-agnostic text-
matching task with some necessary adaptions.

Inspired by Li et al. (2023b), we design a step-
wise, four-level evaluation framework for a com-
prehensive assessment of LLMs’ tool usage in mul-
timodal tasks. This framework includes:

1. Invocation Assessment: Tests if LLMs can
discern when a user instruction necessitates
an auxiliary function.

2. Domain Match: Evaluates the LLMs’ ability
to match the function’s domain to the ground
truth by leveraging domain annotations in our
dataset.

3. Function Match: Conducts a detailed assess-
ment to confirm whether the LLM correctly
identifies the specific tool within the matched
domain via their descriptions.

4. Argument Match: Verifies the LLM’s profi-
ciency in translating user instructions into pre-
cise arguments for successful function invoca-
tion. The distinction in evaluating multimodal
task functions lies in the API arguments. We
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classify arguments defined in Table 5 into two
distinct categories: exact-match arguments
and concept-match arguments. Exact-match
arguments, such as file paths, demand pre-
cise, verbatim replication. Any deviation
in these arguments can impede the success-
ful invocation of the function. On the other
hand, concept-match arguments, like genera-
tive prompts, offer more flexibility in wording,
though they must maintain fidelity in convey-
ing the intended meaning. Inaccuracies in gen-
erating concept-match arguments, while not
hindering the function invocation, can lead to
outputs that diverge from the expected results.

In our experiments, exact-match arguments
undergo text matching for exact path align-
ment, while concept-match prompts are se-
mantically evaluated using ROUGE F-scores
(Lin, 2004) and cosine similarity (Lahitani
et al., 2016) for both statistical and vectorized
analysis.

4 Experiments

In this section, we extensively test our MutilAPI
benchmark to evaluate LLMs’ multimodal task han-
dling via tool integration, covering API-based and
open-source models. We explore various prompt
configurations to find the most effective settings
for multimodal tasks.

4.1 Task Formulation

Given a multimodal task instruction i, the model’s
objective is to generate an API function f from a
set of available functions F and its corresponding
set of arguments Af . Formally, for f ∈ F the
generation process can be represented as:

p(f,A|i, F ) = p(f |i, F )× p(A|f, i) (2)

4.2 Models and Prompt Configurations

Current LLMs can be categorized into API-based
models and open-sourced models. Our evaluation
performs on both categories. For API-based mod-
els, we use gpt-3.5-turbo-0613 as the candidate.
For open-sourced models, we leverage Llama2-
13B (Touvron et al., 2023) provided by Hugging-
Face1. Furthermore, previous research proved
prompt configurations can significantly affect the
performance of LLMs (Zhang et al., 2023c; Wei

1https://huggingface.co/docs/transformers/main/
model_doc/llama2

et al., 2022). To investigate whether these config-
urations remain effective on our task. We imple-
mented the following prompt configurations in our
experiments:

In-context Learning: Previous research demon-
strated the few-shot performance of language mod-
els can be significantly boosted by providing exem-
plar input-ground truth pairs (Brown et al., 2020).
In our in-context setting, we provide 2 instruction-
function call pairs to assist the model in reasoning
the predictions.

Chain-of-Thought: Chain-of-Thought (Wei
et al., 2023) adapts the concept of divide-and-
conquer. It allows LLMs to address problems in
a step-by-step paradigm, by deconstructing the
primary task into smaller, manageable queries.
This approach not only simplifies the task but also
enhances the reasoning capabilities of the models.
We apply this framework by breaking down the
task into 4 questions aligned with our evaluation
metrics introduced in 3.2. Those questions are
listed in Appendix C.

Function Calling: Recently introduced by Ope-
nAI2, Function Calling is a feature tailored for GPT
models. The models are finetuned on a specialized
function-call dataset. The intent is to enable the
models to better recognize scenarios necessitating
function calls, thereby facilitating the generation
of more structured outputs.

4.3 Context Token Limitation

Given the constraint of a maximum context win-
dow of 4,096 tokens for those LLMs used in our
experiments, we face a limitation in the number of
functions that can be included within this token bud-
get. Our calculations suggest that approximately
25 functions can be accommodated. To effectively
manage this constraint, we initially shuffle the en-
tire dataset. Subsequently, we divide it into 10
segments, each containing 25 functions, except for
the final segment. For each experiment configura-
tion, we conduct separate trials on each of these
10 splits. The overall results are then derived by
calculating the average across these 10 segments.

4.4 Function Invocation

In this section, we focus on the function invocation
aspect of LLMs to evaluate their ability to under-

2https://platform.openai.com/docs/guides/function-
calling
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Model Invoke
Accuracy

Domain
Accuracy

Function
Accuracy

GPT-3.5 99.82 71.78 52.94
GPT-3.5-cot 99.95 71.43 51.73
GPT-3.5-ict 99.47 68.07 48.35
GPT-3.5-ict-cot 98.77 64.00 48.16

GPT-3.5-fc 99.11 75.52 55.53
GPT-3.5-fc-cot 94.13 70.00 50.12
GPT-3.5-fc-ict 95.02 67.72 49.59
GPT-3.5-fc-ict-cot 98.41 69.91 51.62

Llama 85.87 14.75 9.94
Llama-cot 79.88 12.76 6.37
Llama-ict 83.59 10.70 5.72
Llama-ict-cot 86.30 10.56 5.00

Table 1: Experimental results for function selection
across different LLM configurations, where ’-cot’
denotes the use of Chain-of-Thought prompting, ’-
incontext’ signifies incontext learning, and ’-fc’ indi-
cates that the function calling feature is enabled.

Model Argument
Accuracy R1 R2 RL Sim

GPT-3.5 42.68 25.05 17.94 24.64 46.61
GPT-3.5-ict 36.37 30.37 21.32 29.68 50.82
GPT-3.5-cot 41.12 24.84 17.81 24.31 46.39
GPT-3.5-ict-cot 25.79 32.45 22.78 31.95 53.97

GPT-3.5-fc 43.40 24.17 15.42 23.39 44.64
GPT-3.5-fc-ict 32.26 24.67 16.63 24.10 44.05
GPT-3.5-fc-cot 38.26 24.53 15.45 23.85 45.50
GPT-3.5-fc-ict-cot 18.91 23.65 15.09 22.86 45.14

Table 2: Comparative evaluation of GPT-3.5 model con-
figurations in argument generation. The first section
shows the match accuracy of exact-match arguments
while the second demonstrate the evaluation metrics of
concept-match parameters. R1/2/L represents ROUGE-
1/2/L scores respectively, and Sim represents cosine
similarity.

stand user instructions and locate the proper tool
function. The results are demonstrated in Table 1.

LLMs face challenges in multimodal domain se-
lection: By observing across columns, we could
conclude both GPT-3.5 and Llama models exhibit
commendable accuracy in determining the neces-
sity of function invocation based on user instruc-
tions. However, a significant drop in performance
occurs when it comes to identifying the specific do-
main of multimodal tasks and selecting the precise
function to effectively address these tasks. This
finding implies that, while LLMs possess robust
common-sense knowledge, they still struggle with
accurately comprehending the nuances and defini-
tions unique to each domain of multimodal tasks.

Function Calling enhancement performance
varied by prompt configuration: Upon com-
paring the results in the first and second blocks

of Table 1, it is evident that enabling Function
Calling significantly enhances performance in the
GPT-3.5 and GPT-3.5-ict-cot configurations, while
it appears to slightly impede performance in set-
tings where only a single prompt configuration is
employed. This observation could potentially be
attributed to the complex interplay between the
Function Calling mechanism and the prompt con-
figurations. Such findings underscore the impor-
tance of carefully considering the compatibility of
various features and configurations when augment-
ing LLMs for specific tasks.

In-context learning impairs multimodal func-
tion invocation: Our analysis of the effective-
ness of prompt configurations, conducted through a
cross-row examination within each block, revealed
consistent patterns across both GPT-3.5 and Llama
models. A prominent observation is that the incor-
poration of contextual elements tends to negatively
impact performance, a trend that is especially pro-
nounced with the introduction of in-context learn-
ing. This significant impairment in performance
is contrary to the widespread belief that providing
reference context generally improves model perfor-
mance across a variety of tasks. Such a result sug-
gests that in multimodal function invocation scenar-
ios, the addition of contextual information might
inadvertently introduce complexity or irrelevant
data, thus impairing the model’s efficiency. This
counterintuitive result suggests a need for more
research into how context affects LLMs’ function
invocation, challenging current assumptions and
opening new research avenues.

4.5 Argument Generation

The capabilities of LLMs in generating arguments
for multimodal tasks are detailed in Table 2. It’s
noteworthy that Llama was excluded from this anal-
ysis due to its inferior performance in function
locating. The results indicate a significant chal-
lenge for GPT models in accurately generating both
exact-match and concept-match arguments based
on user instructions. The success rate for match-
ing exact-match arguments falls below 50%, and
the semantic similarity of the generated concept-
match arguments is similarly subpar. This suggests
that argument generation set a more critical bottle-
neck hindering LLMs’ ability to effectively invoke
multimodal functions, compared to the function
invocation ability in the previous sections.

Additionally, the data shows that while exact-
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GPT-3.5 GPT-3.5-fc

Metric Func 1 Func 2 Func 1 Func 2

Inv Acc 99.76 99.94 99.83 60.00
Dm Acc 76.67 36.67 66.67 40.00
Func Acc 53.33 30.00 46.67 40.00

Arg Acc 86.36 31.25 89.47 61.54
R1 63.17 67.25 69.68 68.57
R2 45.58 64.30 54.60 54.00
RL 61.15 67.25 69.67 67.69
Sim 83.28 75.69 86.68 70.45

Table 3: Sequential API invocation result on MultiAPI-
SEQ. The metrics evaluated include Invocation Accu-
racy (Inv Acc), Domain Accuracy (Dm Acc), Function
Accuracy (Func Acc), Argument Accuracy (Arg Acc),
ROUGE-1/2/L (R1/2/L), Similarity (Sim).

match argument accuracy aligns with previous in-
sights, adding context improves concept-match
argument generation. This reveals that context
enhances LLMs’ semantic accuracy, indicating
optimization potential, especially in improving
concept-match handling in multimodal tasks with-
out hindering exact-match performance.

4.6 Sequential API Invocation

In real-world applications, user instructions often
require multiple API calls for resolution, especially
in multimodal scenarios. This demands that LLMs
understand each modality, its tasks, and their in-
teractions. Analyzing sequential API invocation
in models provides insights more representative
of real-life applications and aids application de-
velopment. To address this need, we introduce
MultiAPI-SEQ, a dataset specifically designed
for assessing sequential function invocation. This
dataset has been carefully curated by human ex-
perts who have manually crafted 30 distinct in-
structions. Each of these instructions necessitates
the sequential invocation of two functions from the
MultiAPI dataset. By limiting each instruction
to require just two functions, we aim to simplify
the analysis process while still effectively evaluat-
ing the models’ ability to handle multi-step task
execution.

As shown in Table 3, both models exhibit high
invocation accuracy initially, yet GPT-3.5-fc’s ac-
curacy notably diminishes during the second task.
This indicates that while fine-tuning may enhance
single-function call performance, it could adversely
affect task planning in sequential API call tasks.
Additionally, both models show a reduction in do-

main and function accuracy. The linguistic similar-
ity metrics across functionalities indicate that GPT-
3.5 demonstrates more consistent performance,
hinting at its robustness in generating contextu-
ally appropriate responses throughout the task se-
quence.

5 Error Analysis

5.1 Domain Mismatch

Section 4.4 suggests LLMs struggle to differentiate
multimodal task domains. We analyze model er-
rors to identify these shortcomings. We summarize
the result as a misclassification network indicating
LLM’s domain confusion in Figure 2.

For visual analysis APIs, the model demon-
strates an inclination to misinterpret classification
and segmentation tasks as object detection. Be-
sides, it also frequently fails the identification be-
tween image classification and image segmentation.
This pattern indicates a fundamental challenge in
the LLM’s ability to identify domains based on
user instruction, particularly in discerning whether
it should encompass the entire image or focus on
the specific content within the image. The asym-
metries in bidirectional error between these nodes
further suggest that LLM bias towards local rather
than global image analysis.

Additionally, image generation APIs often lead
the model to confuse conditional and unconditional
tasks, misidentifying text-to-image and image-to-
image tasks as unconditional. It also struggles to
recognize input modalities, confusing image-to-
image with text-to-image tasks, indicating a possi-
ble lack of modality understanding due to they are
trained on textual data.

5.2 Function Mismatch

To assess the LLMs’ function selection accuracy,
we randomly sampled 10 functions and correspond-
ing instructions from each domain and prompted
the model to choose the most appropriate function
within that domain. As shown in Figure 2, the
histogram reflecting function accuracy across do-
mains, demonstrates the uneven function selection
proficiency of LLMs in handling different multi-
modal tasks. Domains with more straightforward,
visually dense tasks like image-to-image and ob-
ject detection demonstrate relatively high accuracy,
indicating that models perform better with tasks
requiring less complex language-to-function map-
ping.
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Figure 2: Domain misclassification network. Nodes in
this graph represent distinct domains, with directed ar-
rows illustrating instances where the model incorrectly
applies a function from domain b intended for an instruc-
tion in domain a. The thickness of the arrows indicates
the frequency of these errors, with thicker lines showing
more common misclassifications.

Figure 3: Function accuracy distribution for each do-
main.

6 Improvement Framework

Our analysis in Sections 4 and 5 reveals that LLMs
primarily struggle with distinguishing domains and
modalities, with argument generation as a signifi-
cant bottleneck. To mitigate these challenges, we
propose two intuitive yet effective solutions: do-
main description prompting and argument revision.

Domain description prompting involves adding
a sentence to the model’s system prompt to clearly
define each domain. In addition, in visual analysis
tasks, we specify whether the domain conducts
global or local image analysis.

Building on research showing LLMs’ effective-
ness in evaluation and revision tasks (Liu et al.,
2023; Zhang et al., 2023c), we employ a secondary

Metric GPT-3.5 GPT-3.5-dp-ac

Inv Acc 99.82 99.87
Dm Acc 71.78 76.31
Func Acc 51.73 59.47

Arg Acc 42.68 48.82
R1 25.05 27.76
R2 17.94 18.45
RL 24.64 26.33
Sim 46.61 56.82

Table 4: The result of adding detailed domain descrip-
tion prompting (-dp) and argument correction (-ac).

LLM as an argument editor. This LLM checks and
revises argument predictions to ensure they align
with user instructions, reducing task complexity
and the context length for the primary LLM.

To avoid the noise arising from complex inter-
actions between function calling feature and input
context, we conducted our experiments using the
GPT-3.5 model. Table 4 illustrates that our ap-
proach enhanced performance across all evaluation
metrics. Notably, there was a significant improve-
ment in domain accuracy, argument exact matching,
and semantic evaluation. This significant improve-
ment not only affirms the effectiveness of our ap-
proach but also strongly validates the accuracy of
our analysis. Furthermore, we observed a notable
enhancement in function accuracy, attributed to the
incorporation of domain descriptions.

7 Conclusion

In this paper, we presented a comprehensive study
on the application of LLMs to multimodal tasks
with external API functions, using the newly in-
troduced MultiAPI dataset. Our findings high-
light the capabilities and limitations of LLMs in
function calling. We revealed a significant discrep-
ancy between the models’ ability to recognize the
need for function calls and their accuracy in select-
ing appropriate domains, functions, and arguments.
This insight led us to propose a novel approach
focusing on domain description prompting and ar-
gument revision, which demonstrated improved
performance in addressing these challenges. Our
work contributes to the field by introducing the first
large-scale multimodal instruction-function bench-
mark dataset and providing a detailed analysis of
LLMs in multimodal task execution. We hope our
dataset and findings could assist the development
of tool-augmented LLMs and more sophisticated
models for complex real-world applications.
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Limitations

Our model selection was confined to gpt-3.5-turbo
and Llama2-13B due to computational and budget
constraints. While our extensive experiments and
improvement framework offer valuable insights,
we acknowledge limitations. We only briefly
touched upon areas like detailed sequential API
invocation analysis and in-depth examination of
the improvement framework’s outcomes. Further
comprehensive research in these areas is necessary
and anticipated for future works.
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Appendix

A Domain and Required Arguments Mapping

Domains Required Arguments # Functions

Text to Image (prompt: str, output_path:str) 11
Depth Estimation (image_path:str, output_path:str) 10
Object Detection (image_path: str) 30
Video Classification (video_path:str) 23
Image Classification (image_path: str) 48
Image to Text (image_path: str) 28
Image Generation (output_path:str) 33
Image Segmentation (image_path: str, prompt:str) 29
Image to Image (control_image_path:str, output_image_path:str) 23

Table 5: The domains of MultiAPI and their required arguments. # Functions represents the number of functions
that each domain contains.

Table 5 displays the quantity of functions per domain, along with a comprehensive mapping between
each domain and its requisite arguments. It’s important to note that these required arguments constitute a
subset of the parameters for each function in the respective domain, owing to the specific functionality.
To maintain argument consistency within the domain, we have designated other arguments as optional
arguments and assigned them default values.

B Dataset Construction Prompts

Role Content
System You are an expert python code rewriter. You are very good at calling the function

with the correct arguments.
User Given the function described as ’{description}’ with the signature def

{function_name({’ ,’.join([{arg} for arg in {function_arguments}.keys()])}):},
the function code is {function_code} and the arguments description is {func-
tion_arguments}. Here’s the task, this code ’{code}’ is doing the same thing
as the function call. Please rewrite the code to the function call, you will need
to find the right arguments for the function and call it. The image_path and
video_path arguments will always be a single image, or video. Please output
the function call with right arguments filled in, please use the format of (argu-
ment_name=argument_value) do not omit the default value even you don’t need
to change it. The parameter related to path can not be ” or empty. If the path is
not mentioned, use ’./input.png’ and ’./output.png’ for images input and output
and ’./input.mp4’ and ’./output.mp4’ for video input and output as default. The
text related parameter should always be a string, if the text is not mentioned,
use ’This is a test text’ as default. Only output the function call.

Table 6: The system and user prompts used in Model Encapsulation and Ground Truth Transformation steps.

In Table 6, we list prompts used in MultiAPI benchmark dataset construction process. Specifically,
we prompt gpt-3.5-turbo to transform the code which calling a specific HuggingFace model to a Python
function. Note that according to OpenAI’s document, the model could receive two categories of prompts:
system prompt and user prompt, where the system prompt functions as the global instruction to initialize
the model and the user prompt as the question proposed by users. In our experiment, we leverage both
prompts to guide the model.
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System Prompt User Prompt

Default: You are an expert multimodal
assistant that solves multimodal tasks with the
provided functions.

Function Call: You are an expert multimodal
assistant that solves multimodal tasks with the
provided functions. For most of the time, you
need to call the functions to solve the task and
only one function is needed.
<BEGIN_FUNCTION_LIST>
{function_definitions}
<END_FUNCTION_LIST>
For most of the time, you need to call the
functions to solve the task and only one
function is needed.

Default: Here is the user’s instruction:
{instruction}, please help solve the task. Please
only use the functions provided.

CoT: Here is the user’s instruction:
{instruction}, please help solve the task.You
can solve the problem follow these steps but
please DO NOT answer these questions in your
response this is just for your reference:
1. What is the domain of the task? The options
are: {domains}
2. Do you need to call the functions?
3. Which function to call?
4. What are the arguments of the function?

Incontext: Here is the user’s instruction:
{instruction}, please help solve the task. Please
only use the functions provided. Here’s some
examples for your reference:
{Exemplar Instruction-Function Pairs}

Table 7: System and user prompts for each experiment configurations.

C Experiment Prompts

We listed the system and user prompts we used for each configuration in Table 7.

D Case Study

In Table 8, we delineate the correct and incorrect function calls, with the first column illustrating instances
of accurate calls and the second column showcasing erroneous ones. Each row presents a correct and
incorrect function call example for the same function. The example in the top left shows a well-structured
instruction, indicating the recommended instruction involving domain-specific keywords followed by
function identification. This structure is exemplified by the explicit focus on the primary objective, as
illustrated in the instruction: "Generate butterfly images." Conversely, the example presented in the top
right serves as a counterexample, revealing the model’s diminished accuracy in selecting the correct
function when confronted with a vague term like "need" in the instruction, especially in the presence of
numerous diverse domain functions, thus leading to ambiguity. In such cases, the model may misinterpret
the instruction, leading to the erroneous employment of functions from unrelated domains and generating
different function arguments.
The examples in the bottom left and bottom right show that even when the function description is not fully
related to the intention of the instruction, the model demonstrates an understanding of the function’s name,
allowing it to align instructions with functions that share similar keywords. For instance, the association
between "google_ddpm_celebahq_256" and "celebrity faces" illustrates this capability. In summary, to
augment the multitasking proficiency of a Large Language Model (LLM), it is advisable to furnish a
precise instruction followed by domain-specific keywords, the model description, and a recommended
function name that succinctly captures the functionality of the designated task.
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Correct Function Call Incorrect Function Call

Instruction Description: We are running a butterfly-
themed event and need to generate butterfly images for
our marketing campaign.

Expect Model Description: This model is a diffu-
sion model for unconditional image generation of cute
butterflies.

Domain: Computer Vision Unconditional Image
Generation

Expect function: MFawad_sd_class_butterflies_32

Expect Function Argument: output_path=’output.png’

Predict Function: MFawad_sd_class_butterflies_32

Predict Function Argument:
output_path: ’./output.png’

Instruction Description: One of our clients is launching
a new board game with a butterfly theme. They need
images of multiple butterfly illustrations for the game
cards.

Expect Model Description: This model is a diffu-
sion model for unconditional image generation of cute
butterflies.

Domain: Computer Vision Unconditional Image
Generation

Expect function: MFawad_sd_class_butterflies_32

Expect Function Argument: output_path: ’./out-
put.png’

Predict Model Description:
GreeneryScenery/SheepsControlV3 is a model for image-
to-image tasks. It can be used to generate images based
on the input image and optional text guidance. The model
has some limitations, such as the conditioning image not
affecting the output image much. Improvements can be
made by training for more epochs, using better prompts,
and preprocessing the data.

Domain: Computer Vision Image-to-Image

Predict Function: GreeneryScenery_SheepsControlV3

Predict Function Argument:
(image_path:’./input.png’,text_guidance:’Illustration of a
butterfly’)

Instruction Description: A synthetic company wants its
model to automatically create a set of 256x256 images
to be included in their website. They want to resemble
celebrity faces but be out of their provided database.

Expect Model Description: Denoising Diffusion
Probabilistic Models (DDPM) for high quality image
synthesis. Trained on the unconditional CIFAR10 dataset
and 256x256 LSUN, obtaining state-of-the-art FID score
of 3.17 and Inception score of 9.46.

Domain: Computer Vision Unconditional Image
Generation

Expect Function: google_ddpm_celebahq_256

Expect Function Argument:
output_path=’./generated_celebrity_face.png’

Predict Function: google_ddpm_celebahq_256

Predict Function Argument:
output_path: ’./output.png’

Instruction Description: Develop a movie poster genera-
tor using the computer vision API mentioned above. Hint:
generate a human-like face as the main poster background
and save it as a file named "movie_poster.png".

Expect Model Description: Denoising Diffusion
Probabilistic Models (DDPM) for high quality image
synthesis. Trained on the unconditional CIFAR10 dataset
and 256x256 LSUN, obtaining state-of-the-art FID score
of 3.17 and Inception score of 9.46.

Domain: Computer Vision Unconditional Image
Generation

Expect Function: google_ddpm_celebahq_256

Expect Function Argument:
output_path=’movie_poster.png’

Predict Model Description: Dream Shaper is a
text-to-image model that generates artistic images based
on the given input text. Read more about this model here:
https://civitai.com/models/4384/dreamshaper

Domain: Multimodal Text-to-Image

Predict Function: Lykon_DreamShaper

Predict Function Argument:
prompt=": "humanlike face"

Table 8: Case Study
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