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Abstract

Johns Hopkins University (JHU) submitted sys-
tems for all eight language pairs in the 2024
Low-Resource Language Track. The main ef-
fort of this work revolves around fine-tuning
large and publicly available models in three pro-
posed systems: i) end-to-end speech translation
(ST) fine-tuning of SEAMLESSMA4T v2;ii) ST
fine-tuning of Whisper; iii) a cascaded system
involving automatic speech recognition with
fine-tuned Whisper and machine translation
with NLLB. On top of systems above, we con-
duct a comparative analysis of different training
paradigms, such as intra-distillation of NLLB,
joint training and curriculum learning of SEAM-
LESSMA4T v2, and multi-task learning and
pseudo-translation with Whisper. Our results
show that the best-performing approach differs
by language pairs, but that i) fine-tuned SEAM-
LESSMA4T v2 tends to perform best for source
languages on which it was pre-trained, ii) multi-
task training helps Whisper fine-tuning, iii) cas-
caded systems with Whisper and NLLB tend
to outperform Whisper alone, and iv) intra-
distillation helps NLLB fine-tuning.

1 Introduction

With recent developments in data-driven machine
learning and Transformer-based models (Vaswani
et al., 2017), speech translation (ST) systems
(which accept spoken input in one language and
automatically output corresponding text in another)
have undergone major strides in performance (Rad-
ford et al., 2023; Barrault et al., 2023; Sperber and
Paulik, 2020). While these works demonstrate the
effectiveness of using large pretrained models for
speech translation between high-resource language
pairs and establish new state-of-the-art (SOTA) per-
formance in these setups, less attention has been
devoted to whether these advances also benefit low-
resource language pairs, and how they compare
with SOTA systems for these languages.
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Figure 1: Proposed frameworks for fine-tuning.

Some of the populations with the greatest need
for ST tools are those speaking low-resource lan-
guages, which typically have less institutional sup-
port and funding for the development for NLP and
speech tools (He et al., 2024; Kesiraju et al., 2023b;
Karakasidis et al., 2023): some speak minority
languages in the areas where they live and need
translation tools to communicate across a language
barrier, or to consume or search for information
more effectively online (Neto et al., 2020). Cer-
tain populations speaking low-resource languages
may also have low literacy rates or limited writing
traditions in their native languages, increasing the
imperative for speech-based, rather than text-based,
translation systems (Besacier et al., 2006).

In this work, we developed ST systems for eight
language pairs, as organized in the IWSLT 2024
Dialectal and Low-resource Speech Translation
Shared Task. We approached this problem by lever-
aging systems pre-trained on a large amount of mul-
tilingual data and subsequently fine-tuning them for
specific tasks: both end-to-end speech ST and cas-
caded ST (i.e. transcription followed by text-based
translation). We compared different approaches
and pre-trained models for each language pair, and
we experimented with combining data from multi-
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ple related languages into the same train set.

Among the systems introduced, the approaches
based on SEAMLESSMA4T v2 (Barrault et al., 2023)
outperform others for language pairs that it has
seen during pretraining and for which supervised
ST data are available (e.g. mar-hin, gle-eng,
bho-hin, and mlt-eng). In other cases, a cas-
caded system is the most successful of the proposed
approaches, namely, for apc-eng, bem-eng,
que-spa, and tmh-fra.

2 Prior Work

A number of prior studies introduce methods aim-
ing to address low-resource ST. In IWSLT’s evalu-
ation for low-resource and dialectal ST 2023, Agar-
wal et al. (2023) note three practices that consis-
tently help performance: (1) use of pre-trained
models, (2) systems combining both end-to-end
and cascaded models, and (3) synthetic data aug-
mentation. These recommendations inform our
decisions to fine-tune pre-trained models and ex-
periment with both cascaded and end-to-end ap-
proaches.

Williams et al. (2023) used cascaded ST systems
for Quechua-to-Spanish ST in IWSLT challenge
2023. Shanbhogue et al. (2023) fine-tuned pre-
trained speech models, and E. Ortega et al. (2023);
Laurent et al. (2023) leveraged both pre-trained
speech and text models in cascaded systems. Deng
et al. (2023); Hussein et al. (2023) explored both
end-to-end and cascaded ST. The most comparable
submission to ours from the 2023 challenge was
that of Mbuya and Anastasopoulos (2023), who
used pre-trained models and applied them to sev-
eral language pairs. With the findings and recom-
mendations from prior work, we adapt a similar
approach, but fine-tuning SEAMLESSMA4T v2 (Bar-
rault et al., 2023), Whisper (Radford et al., 2023),
and NLLB (NLLB Team et al., 2022) instead of
self-supervised learning representations (SSLR).
Our approach differs from works described above,
primarily in that we fine-tune models trained for au-
tomatic speech recognition (ASR), machine trans-
lation (MT), and ST, rather than fine-tuning rep-
resentations obtained from language modeling ob-
jectives, such as wav2vec2 (Baevski et al., 2020),
HuBERT (Hsu et al., 2021), XLS-R (Babu et al.,
2022), or mBART (Liu et al., 2020a), for the tasks
of ASR, MT, and ST. The findings from our sys-
tems shed light on the potential benefits provided
by the pretrained multilingual models.

3 Task Description

On the challenge website this year,! the organizers
stated, "The goal of this shared task is to bench-
mark and promote speech translation technology
for a diverse range of dialects and low-resource
languages." To forward this aim, this year’s task
focuses on ST for eight language pairs: Levantine
Arabic to English (apc-eng), Bemba to English
(bem-eng), Bhojpuri to Hindi (bho-hin), Irish to
English (gle-eng), Maltese to English (m1t-eng),
Marathi to Hindi (mar-eng), Quechua to Spanish
(que-spa), and Tamasheq to French (tmh-fra).
Levantine is one of the most spoken Arabic dialects,
with the majority native-speaking populations in
Syria, Lebanon, Palestine, and Jordan. Both Lev-
antine Arabic and Maltese are Semitic languages
of the Afroasiatic family. Bemba is a Bantu lan-
guage of the Niger-Congo family, spoken by over
30% of Zambia’s population (Sikasote and Anas-
tasopoulos, 2022). Bhojpuri, Hindi, and Marathi
are Indo-Aryan languages; Hindi and Marathi are
Scheduled languages in India and have government
backing for their support, whereas Bhojpuri, like
many other languages on the so-called Hindi Belt,
lacks official status, has a much smaller writing
tradition, and is only recently gaining attention in
NLP (Kumar et al., 2022; Mundotiya et al., 2021;
Bafna et al., 2023). Each of the source languages
is low-resource, with Tamasheq, Bemba, and Lev-
antine Arabic having the fewest Wikipedia articles
overall (Robinson et al., 2023). Despite their low
digital support, these languages have a large na-
tive speaker base, including Marathi’s 83 million,
according to Ethnologue.?

The organizers provide different varieties of data
for each of these language pairs. We used predomi-
nantly provided datasets, along with some external
data, all of which are outlined in Table 1. We
differentiate datasets of four types: ASR, indicat-
ing source language speech with corresponding
transcriptions; E2E, indicating source language
speech with corresponding target language trans-
lations that could supervise end-to-end ST; MT,
indicating source language text with correspond-
ing target language translations; and ST, indicating
source language speech with both corresponding
transcriptions and target language translations.

Though this year’s task accepts both uncon-
strained submissions, allowing the use of external

1ht’cps: //iwslt.org/2024/low-resource
2https://www.ethnologue.com/
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datasets and pre-trained models, and constrained
submissions, our submission is limited to the un-
constrained track, since all of our methods involved
fine-tuning pre-trained models.

4 Proposed Methods

We introduce three primary frameworks, which are
applied to different language pairs according to
the availability of the data: (1) we fine-tune SEAM-
LESSMA4T v2 for end-to-end ST using E2E data; (2)
we fine-tune Whisper (Radford et al., 2023) for end-
to-end ST using E2E (and optionally ASR) data;
(3) to form a cascaded ST system, we fine-tune
Whisper for ASR using ASR data, then fine-tune
NLLB for machine translation (MT) using MT
data. The fine-tuning approaches are illustrated
in Figure 1. Note that each ST dataset contains
exactly one E2E, ASR, and MT dataset implicitly.

We explore various methodological additions
to these methods. We look at joint fine-tuning
and curriculum learning with the SEAMLESSMA4T
v2-based approaches. We investigate several fine-
tuning setups for the Whisper-based systems, in-
cluding pseudo-translation fine-tuning, multitask
training with ASR and MT as well as ASR-only
and ST-only fine-tuning. We also looked at intra-
distillation as a method of enhancing NLLB in MT.
These ideas are further detailed below.

4.1 SEAMLESSMAT v2-based systems

Barrault et al. (2023) introduce SEAMLESSM4T
v2, a model capable of end-to-end expressive and
multilingual translations in a streaming fashion.
SEAMLESSMA4T v2 supports multilingual input and
output in both speech and text modalities, with a
dedicated sub-model handling each modality com-
bination. It has 2.3B parameters and is pretrained
on 1M hours of unlabeled audio in 143 languages,
using the w2v-BERT XL architecture (Chung et al.,
2021). It is then fine-tuned on text MT into English
(x-eng) for 95 languages, ASR for 96 languages,
ST into English for 89 languages, and speech-to-
speech translation into English for 95 languages,
and out of English eng-x for 35 languages. The
pretraining languages of SEAMLESSMA4T v2 in-
clude English, Irish, Maltese, Hindi, Marathi, and
Arabic,? but not Quechua, Tamasheq, or Bemba.

3We assume that the pretraining corpus also contains some
Levantine and Tunisian Arabic, but these languages are not
labeled distinctly from each other.

Our Systems We fine-tune SEAMLESSM4T v2
on E2E ST data, aiming to leverage the vast pre-
training and ASR and ST capabilities of SEAM-
LESSMA4T v2, which we expect to be beneficial
in data-scarce scenarios. Although the SEAM-
LESSMA4T v2 models are evaluated mostly on
X-Eng/Eng-X directions in Barrault et al., 2023,
we hypothesize that they will succeed in X-X
directions post-finetuning, due to ASR pretrain-
ing in source and target languages. Note that
this approach is only applicable to language pairs
where E2E data are available (gle-eng, mlt-eng,
aeb-eng, bem-eng, que-spa, tmh-fre,
mar-hin, bho-hin). We also evaluate the zero-
shot performance of SEAMLESSMA4T v2 on these
language pairs.

Experimental Setup For each language pair,
we fine-tune SEAMLESSM4T v2-large for four
epochs, with a learning rate of 1 x 10~% and batch
size of 32. For que-spa translation, we use learn-
ing rate 1 x 1078 for 15 epochs due to its small
dataset size. For bem-eng and tmh-fra, a learning
rate of 1 x 107 is used for training. The full hyper-
parameter list and details of hyperparameter tuning
are included in Appendix A.1.

4.1.1 Multilingual training

Mixed Data Training For pairs with the
same target language (gle-eng+mlt-eng,
bho-hin+mar-hin), we fine-tune SEAMLESSM4T
v2 on the combined dataset created by concate-
nating and shuffling the data, using the same
hyperparameter settings as in Section A.1.

Curriculum Training Tunisian Arabic (aeb)
and Maltese are both Semitic languages and share
close linguistic relationships. We use a 12.6-hour
subset of the Tunisian Arabic-to-English (aeb-eng)
ST data used by Hussein et al. (2023) to conduct
a curriculum training attempt using Tunisian as an
augmentation for Maltese. The model undergoes
initial fine-tuning on aeb-eng ST for two epochs
with a learning rate of 1 x 1075, followed by a
5-epoch-fine-tuning on mlt-eng at a learning rate
of 1 x 107"

4.2 Whisper-based systems

Whisper (Radford et al., 2023) is an end-to-end
multi-task speech model based on a transformer-
like encoder-decoder architecture. For this study,
we focus primarily on its LARGE-V2 variant, which
is pre-trained on 680k hours of multilingual ASR
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Lang. Type Amount Size Genre(s) Sources
abc-en ASR  28h 3.2GB Spontaneous speech ~ Makhoul et al. (2005)
PCENE  MT 120k lines 84MB  Subtitles Sellat et al. (2023)
bem-en ST 180h 21GB Dialogue description ~ Sikasote et al. (2023)
€ ASR 24h 3.0GB Read speech Sikasote and Anastasopoulos (2022)
bho-hin E2E  25h 2.6GB News audio Agarwal et al. (2023)
gle-eng E2E 11h 2.2GB Read speech Agarwal et al. (2023)
mlt-en ST 14h 1.6GB Telephone speech CV; Hernandez Mena et al. (2020)
€ MT 2.1Mlines 710MB Web-crawled Baiion et al. (2023, 2020)
mar—hin E2E  30h 3.5GB News audio Agarwal et al. (2023)
ASR  1100h 150GB  Read speech; News CV; He et al. (2020); Bhogale et al. (2022)
ST 1.7h 300MB Radio Ortega et al. (2020)
que-spa ASR 48h 5.2GB Radio Cardenas et al. (2018)
MT 26k lines 3.7MB Mixed; Magazine Tiedemann (2012); Ortega et al. (2020)
tmh-fra E2E  1%h 2.2GB Radio Zanon Boito et al. (2022)

Table 1: Data information. "CV" refers to Common Voice (https://commonvoice.mozilla.org/).

and X-to-Eng speech translation data. During pre-
training, the model is exposed to over 90 languages,
including English, Marathi, Hindi, Maltese, and
modern standard Arabic. However, Bemba, Bho-
jpuri, Quechua, Levantine Arabic, and Tamasheq,
are absent from the pre-training data.

To address the gaps in language coverage and en-
hance model performance across diverse linguistic
settings, we fine-tune the model in various ways tai-
lored to specific scenarios. As the original model’s
pre-training setup, we manipulate the prompt and
supervision of the utterances at fine-tuning time
to guide the model to perform different tasks, as
detailed in the subsequent sections. In addition, for
languages previously unseen by the model, we ex-
pand its vocabulary and embedding layer to create
new language tags for the model to take condition
on.

4.2.1 Fine-tuning paradigms

ASR-only Fine-tuning For language pairs with
only ASR data or a limited amount of E2E or
ST data, such as apc-eng and que-spa, Whisper
is trained with only the ASR objective to serve
as an ASR module in a cascaded system. The
training and decoding prompt used is the con-
ventional <|src-lang|><|transcribe|>. The re-
sulting cascaded system’s MT module is an NLLB
model described in § 4.3.

E2E-only Fine-tuning We train with Whisper’s
ST-only objective for the tmh-fra pair. However,
because Whisper is pre-trained for X-Eng ST only,
instead of directly translating into French, we fine-
tune the system to translate Tamasheq speech into

English text. Specifically, we translate the French
labels of the E2E data into English using NLLB
out of the box to formulate a tmh-eng E2E dataset.
We then fine-tune Whisper with this dataset and
utilize the trained model as the ASR module for
a cascaded system, whose MT module is also
NLLB. Similarly, English-to-French translation is
conducted out-of-the-box.

Pseudo-translation For bho-hin and mar-hin
language pairs, due to the absence of 3-way paral-
lel ST data, the phylogenetic proximity between
the languages, and the non-English-centric trans-
lation directions, we explore a novel adaptation
of the model which we call pseudo-translation.
Specifically, to enable Whisper to translate into
non-English languages, we prompt the model
to "transcribe" the source language speech sig-
nals with the target language transcription prompt,
i.e. <|tgt-lang|><|transcribe|>. Conceptu-
ally, this is equivalent to treating Bhojpuri and
Marathi as pseudo-Hindi speech and conducting
ASR (an approach that is especially linguistically
motivated in the case of Bhojpuri, as it is closely
related to Hindi). Such design is motivated by
the fact that Whisper is pre-trained with weakly
supervised data, which implicitly empowers the
model’s audio-conditioned language model to per-
form some extent of de-noising. Consequently, we
may model the non-English translation process as a
noisy transcription task with the proposed prompts.

Multi-task Learning Previous yet unpublished
experiments suggest that multi-task learning (MTL)
tends to improve the model’s performance across
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downstream metrics. Hence, for bem-eng and
mlt-eng, as the 3-way parallel ST data is sufficient,
we fine-tune Whisper on both the ASR and E2E ST
tasks with E2E X-Eng ST being the end goal. In
particular, we create the ASR and E2E ST dataset
objectives respectively with their corresponding
prompts, i.e. <|src-lang|><|transcribe|> and
<|src-lang|><|translate|>, and concatenate
them to form a multi-task dataset for fine-tuning,
allowing the sampler to draw samples with differ-
ent supervisions stochastically. Kesiraju et al.’s
(2023a) use a large amount of Marathi ASR data
(He et al., 2020; Bhogale et al., 2022) for Marathi-
to-Hindi ST. Therefore, we further extend the idea
of constructing data to mar-hin, which has abun-
dant non-parallel ASR and E2E ST data yet no
3-way parallel data. We combine the pseudo-
translation technique to perform non-parallel ASR
and E2E pseudo-ST multi-task training.*

4.2.2 Whisper training details

We employ a range of techniques to expedite the
training of Whisper and optimize the utilization
of our hardware resources. Specifically, we adopt
Low-Rank Adapters (LoRA) (Hu et al., 2021), gra-
dient checkpointing (Chen et al., 2016), and Zero
Redundancy Optimizer (ZeRO) (Rajbhandari et al.,
2020) to fine-tune all Whisper models. We allow
trainable decomposed weight matrices with a rank
of 200 for the embedding layer, all the attention
layers, and the first feed-forward layer in the trans-
former blocks, resulting in a total of 289,157,200
trainable parameters, approximately 16% of the
original model’s parameter count.

We apply conventional speech data augmenta-
tion in the fine-tuning process, including SpecAug
(Park et al., 2019) and speed perturbation (Ko et al.,
2015) with parameters 0.9, 1.0, 1.1.

4.3 NLLB fine-tuning

NLLB Team et al.’s (2022) NLLB is an encoder-
decoder framework designed for extensive multilin-
gual translation across more than 200 languages. It
incorporates the sparsely gated mixture of experts
(Du et al., 2022) to balance enhanced modeling ca-
pacity with efficient training and inference. Train-
ing of the NLLB model involves three objectives—
translation loss, denoising loss, and language mod-
eling loss—all calculated using the negative log-
likelihood (NLL) loss function but with distinct

“Note that in this case, since the ST data is used for pseudo-
translation, only <| translate|> tags are used.

datasets. Translation loss utilizes clean parallel
texts, while denoising loss employs techniques
from denoising auto-encoders (Liu et al., 2020b)
that introduce noise into the source text. The lan-
guage modeling objective of NLLB uses monolin-
gual data to train the decoder.

Vanilla Fine-tuning We fine-tune the open-
source NLLB model® with the released MT corpora
for apc-eng, bem-eng, and que-spa. Specifically,
we use the distilled 600M-parameter NLLB model
as the base model and fine-tune the model with
NLL loss. Following NLLB Team et al. (2022),
we append language tokens on both source and
target sequences during training and force decode
the target language token during inference. We use
a learning rate of 1 x 10~* and set the maximum
number of target tokens per batch to 1600. We train
all translation models on a single V100 machine
and accumulate gradient updates every 4 steps.

Fine-tuning with Intra-distillation We also fine-
tune with intra-distillation (ID), which is an effec-
tive task-agnostic training method, aiming to en-
courage all parameters to contribute equally (Xu
et al., 2022, 2023). Given an input batch, ID needs
to forward pass the model K times to obtain K out-
puts and each time a random subset of parameters
is zeroed out. The core idea of ID is to minimize
the difference of these K outputs to approximately
minimizing the contribution gap of the parame-
ters that are zeroed-out, because the K outputs
are forced to be the same with different zeroed
parameters. Let {p1,--- ,p;, - ,pK } denote the
K outputs. The ID loss is then formulated by the
X-divergence (Xu et al., 2022) to minimize the
difference of K outputs as

K
1
Lig = [7d E KL(p; || p) + KL(p || pi)
i1

1 XK
where p = e Zpi
i=1

Let the original task loss be £; for the ith pass.
Then, the total loss is a combination of the original
task loss and ID loss, given as

1 K
min I Z; L+ aliy
K3

SAvailable  at: https://huggingface.co/docs/
transformers/en/model_doc/nllb
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where « is a hyper-parameter to control the strength
of ID.

5 Results and Discussion

Table 2 displays the results for all of our MT sys-
tems. We calculate scores using the same BLEU
(Papineni et al., 2002) configuration as the task or-
ganizers.® We include scores from internal Dev
and Test sets when available, as well as the of-
ficial Eval scores. Details of data splitting are
in Appendix A.2. The results show that SEAM-
LESSMA4T v2 systems perform best for half of the
language pairs: bho-hin, gle-eng, mar-hin, and
mlt-eng. Cascaded systems employing Whisper
and NLLB for MT performed best for the others:
apc-eng, bem-eng, que-spa, and tmh-fra. (Note
these first three language pairs employed Whisper
for ASR and a fine-tuned NLLB model for MT,
while tmh-fra employed Whisper for X-Eng ST
and NLLB out of the box for MT into French.)

5.1 End-to-end ST

The SEAMLESSMA4T v2 models’ poor performance
on bem-eng, que-spa, and tmh-fra is likely due
to the absence of Bemba, Quechua, or Tamasheq
in its pre-training corpus. We include zero-shot
results for SEAMLESSMA4T v2 out of the box in
Table 3, which illustrate that the pre-trained model
already performs well on mlt-eng and gle-eng,’
but poorly on unseen language pairs.

We remark that our fine-tuning process brings
notable improvements for bho-hin, mar-hin, and
mlt-eng. In particular, SEAMLESSMA4T v2 is suc-
cessful for bho-hin despite not being pre-trained
explicitly on Bhojpuri data, possibly because the
Hindi pretraining data contains some Bhojpuri, or
because SEAMLESSMA4T v2 is capable of extrap-
olating fairly well to Bhojpuri given its high lin-
guistic similarity to Hindi. Interestingly, the mixed
data training (comb.) for language pairs sharing
a target language does not significantly improve
performance for either source language, though we
expected it to benefit the lower-resource pair. In the
case of gle,mlt-eng, there are domain differences
(read speech vs. telephonic speech) between the

®With sacrebleu signature nrefs:1 | case:lc |
eff:no | tok:13a | smooth:exp | version:2.0.0.

"There is a considerable discrepancy between the gle-eng
dev and test scores from IWSLT 2023, with the latter being
suspiciously high. Mbuya and Anastasopoulos (2023) suggest
that the inflated test scores may be due to overlap between
train and test sets.

fine-tuning corpora, possibly resulting in unhelp-
ful or negative interference; Irish and Maltese are
also not linguistically related, limiting cross-lingual
transfer. On the other hand, with bho,mar-hin,
Marathi and Bhojpuri both belong to the Indic sub-
family of languages, and the speech translation data
for both respective language pairs is from the news
domain, averaging about 7 seconds each. The lack
of success of joint fine-tuning for both these setups
resonates with the findings of Sun et al. (2023),
which presents several experiments showing that
multilingual training for speech translation may
not always benefit low-resource languages. We
also note that curriculum training likewise did not
improve performance for mlt-eng.

In our evaluation of Whisper systems, we em-
phasize two significant observations. Firstly, as
anticipated, the BLEU scores for the mar-hin and
bho-hin language pairs validate the efficacy of the
proposed pseudo-translation method. This find-
ing not only demonstrates that the model is ca-
pable of handling non-English translations with
minimal fine-tuning, but also underscores its adapt-
ability to linguistically similar language pairs. Sec-
ondly, the consistent performance gain observed
with Whisper MTL over Whisper E2E as illustrated
by the mar-hin results underscores the advantages
of multi-task learning. This method treats fine-
tuning on multiple tasks as involving one primary
task and several auxiliary tasks, which collectively
contribute to enhanced outcomes on all tasks in-
volved.

5.2 Cascaded ST

Cascaded ST via fine-tuned Whisper for ASR and
fine-tuned NLLB for MT is our best-performing
approach for apc-eng, bem-eng, and que-spa,
though it is much better for apc-eng and bem-eng
than for que-spa. The relatively low performance
of que-spa can be possibly attributed to it being a
non-English-centric translation direction.

Table 4 presents the ASR performance of the
fine-tuned Whisper models on 5 language pairs
with different objectives. Those trained with the
ASR-only objective are used solely as the ASR
module in cascaded systems, while the systems
trained with the multi-task learning objective are
used for both direct translation and ASR for cas-
caded systems. Interestingly, we observe that for
Bemba, the CERs (25.1 for dev and 17.9 for the
testl set) are significantly lower than the WERs.
We find through manual inspection that the model
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Lang. System Submisson Dev  Test Eval Lang. System Submisson Dev  Test Eval
apc-en Whisper+NLLB+ID  primary - 320 16.0 tmh-fra Whisper+NLLB primary 8.0 7.0 6.1
P J Whisper+NLLB contrastivel - 302 14.7 Seamless contrastivel 0.3 1.3 0.5
Whisper+NLLB+ID  primary 263 304 32.6 Seamless primary 321 409 377
bem-en Whisper+NLLB contrastivel 226 290 27.0 mar-hin Seamless comb. contrastivel 31.0 394 37.3
g ‘Whisper MTL contrastive2 235 27.8 26.7 ‘Whisper MTL contrastive2  26.3 349 28.5
Seamless - 6.6 154 - Whisper E2E - 244 328 -
Seamless primary 349 - 24.4 Whisper+NLLB+ID  primary 157 117 12.5
bho-hin Seamless comb. contrastivel 345 - 239 que-spa Whisper+NLLB contrastivel 6.9 6.1 6.4
‘Whisper E2E contrastive2 28.6 - 12.2 Seamless contrastive2 1.8 0.9 0.9
Seamless primary 529 542 -
mlt-en Seamless curr. contrastivel 473 47.1 - le-en Seamless primary 252 527 15.3
€ Whisper MTL contrastive2  34.5  35.1 . BIETENE qeamless comb. contrastivel ~ 27.6  51.6  16.0
Seamless comb. - 516 531 -

Table 2: BLEU scores for each system. Dev and Test denote our internal tuning and test sets, when available.
Eval denotes the official evaluation. apc-eng Test scores are from text-only MT, since our data had no source
speech-to-translation alignments for ST evaluation. "ID" indicates use of intra-distillation with NLLB fine-tuning.
"Comb." refers to mixed data training, and "curr." refers to curriculum training.

Lang. Dev.cro Devy;
bem-eng 0.9 6.6
gle-eng 27.7 25.2
mar-hin 0.0 321
mlt-eng 47.8 52.9
que-spa 1.9 1.8
tmh-fra 04 8.0

Table 3: Zero-shot and fine-tuned performance of
SEAMLESSMAT v2 on dev set. Model generally
improves after fine-tuning, except for que-spa and
gle-eng.

Lang. Objective Dev  Test
apc-eng ASR-only 11.5 104
que-eng ASR-only 344 345
bem-eng MTL 573 473
mar-hin MTL 372 373
mlt-eng MTL 23.8 -

Table 4: WER of the Whisper model fine-tuned on each
language. ASR-only suggests that the model is trained
to perform ASR-only to serve as an ASR module for a
cascaded system, whereas MTL suggests that the model
is trained to perform E2E ST and ASR.

tends to make minor spelling errors, presumably
due to its unfamiliarity with the language’s writing
system, as suggested by the decent proficiency in
its translation performance. This may cause error
propagation in cascaded ST.

In our MT module, we implemented intra-
distillation to enhance ST results by balancing the
contributions of the model parameters. Consistent
with prior studies Xu et al. (2022, 2023), intra-
distillation consistently improves performance
across all evaluated translation directions, with
the most significant enhancement observed for

que-spa. MT performance was reasonably high
for the three language pairs for which we employed
cascaded ST. The cascaded approach for ml1t-eng
performs poorly, likely because our Maltese bitexts
were noisy. Additionaly, NLLB has already been
pre-trained on Maltese and may not benefit further
from the noisy post-training.

6 Conclusion and Future Work

In this work, we describe our submitted systems for
all eight language pairs in the IWSLT 2024 Low-
Resource Language Track. We explore various
fine-tuning approaches for large publicly available
pre-trained models, compare end-to-end and cas-
caded systems, as well as investigate the benefits
of joint and curriculum training, multitask learn-
ing, as well as intra-distillation. We find that the
best-performing strategy is language-pair depen-
dent, with fine-tuned SEAMLESSMA4T v2 generally
performing best on languages that are included in
its pretraining corpus. Fine-tuned Whisper gener-
ally performed better with multi-task fine-tuning
than standard fine-tuning, and better still when em-
ployed in a cascaded system with fine-tuned NLLB
(with best results employing intra-distillation).
For future improvements, augmenting MT fine-
tuning data with ASR hypotheses, as in Gow-Smith
et al. (2023), could equip NLLB better for cascaded
ST. Future work could also employ data augmenta-
tion of text and speech data, as in Shanbhogue et al.
(2023), via textual back-translation (Sennrich et al.,
2016), speech synthesis for augmentation (Rossen-
bach et al., 2020; Robinson et al., 2022), or other
methods. Lastly, future research could employ the
use of SSLR, or employ the large amounts of raw
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audio available—particularly for Tamasheq—to
train SSLR systems, following Gow-Smith et al.
(2023).
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A Additional Experimental Details

A.1 SEAMLESSMA4T v2 hyperparameters

For SEAMLESSMA4T v2 models, the longest audio
length is truncated at 30 seconds. To ensure full
reproducibility of the result, a random seed of 42 is
deployed. We perform a minimum hyperparameter
search for each language pair between the learning
rate of {1072, 1075, 10~"}. For each language
pair, we fine-tune a SEAMLESSM4T v2-large for

four epochs, with a learning rate of 1 x 1076 and
batch size of 32. For Quecha-to-Spanish (que-spa)
translation, a learning rate of 1 x 1078 is used for
training 15 epochs due to its small dataset size.
For all the training trials, a constant learning rate
scheduler and a warm-up step of 50 is used. Dur-
ing inference, the maximum generation length is
constrained to 256 tokens with greedy decoding.

A.2 Split details

We split data into train, dev, and test when possi-
ble, for tuning and internal evaluation. We split
Makhoul et al.’s (2005) Levantine Arabic ASR
data, Sikasote et al.’s (2023) Bemba ST data,
He et al.’s (2020) Marathi ASR data, Cardenas
et al.’s (2018) Quechua ASR data, and Tiede-
mann’s (2012) que-spa MT bitext ourselves us-
ing a 90-5-5 split. We split Sellat et al.’s (2023)
apc-eng MT bitext ourselves with a 90-5-5 split
but then performed our internal test on a 1000-line
subset of the held out data. For the large m1t-eng
MT bitexts from Bafidn et al. (2023, 2020), we
split the data ourselves with a 99-0.5-0.5 and a
98-1-1 split, respectively. We also split Bhogale
et al.’s (2022) large Marathi ASR dataset ourselves
with a 99-0.5-0.5 split. We used the creator’s own
splits for Sikasote and Anastasopoulos’s (2022) Be-
mba ASR data, Agarwal et al.’s (2023) mar-hin
E2E data, Tiedemann’s (2012) que-spa MT bitext,
Zanon Boito et al.’s (2022) tmh-fra E2E data, and
the Hindi ASR data from Common Voice. We
did the same with Agarwal et al.’s (2023) gle-eng
E2E data, using the test set from the 2023 chal-
lenge as our internal test set. For the mlt-eng ST
data from Common Voice and Hernandez Mena
et al. (2020) and the que-spa ST data from Ortega
et al. (2020), we used their own train and dev splits
and then split the dev set in half to create an inter-
nal test set. We used Agarwal et al.’s (2023) own
train and dev splits without creating an internal test
set.

B Instance Length Distribution

We show the length distribution in Figure 2 and
Figure 3. Overall, most datasets show a normal
distribution with a slightly skewed tail except for
que-spa, the amount of instances for which is the
smallest. However, we identify some extraordinar-
ily long instances in bem-eng training set. These
outlier instances can lead to out-of-memory in-
stances if left untreated. Therefore, we truncate
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the instances that are over 30 seconds when train-
ing SEAMLESSMA4T v2 and limit the generation
length to 256 new tokens.
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Figure 2: Length distribution (seconds) for each language pair.
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Figure 3: Length distribution (seconds) for each language pair (continued).
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