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Abstract
In this work, we introduce a lightweight discourse connective detection system. Employing gradient boosting trained
on straightforward, low-complexity features, this proposed approach sidesteps the computational demands of the
current approaches that rely on deep neural networks. Considering its simplicity, our approach achieves competitive
results while offering significant gains in terms of time even on CPU. Furthermore, the stable performance across two
unrelated languages suggests the robustness of our system in the multilingual scenario. The model is designed
to support the annotation of discourse relations, particularly in scenarios with limited resources, while minimizing
performance loss.
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1. Introduction

Recent advancements in deep learning have signif-
icantly improved state-of-the-art performances in
natural language processing (NLP), and discourse
parsing is no exception. Yet, despite these per-
formance gains, these models demand high com-
puting resources, which greatly hinders their us-
ability, as many researchers around the world still
lack access. Moreover, these models often act as
black-box solutions, without providing any linguis-
tic/theoretical insights regarding the task at hand.
In our current submission, we present a lightweight
detection system for connectives, which are consid-
ered as one of the most important building blocks
of discourse structure.

Among various approaches to discourse struc-
ture, such as RST (Mann and Thompson, 1987)
and SDRT (Lascarides and Asher, 2007), PDTB
(Prasad et al., 2014) remains the largest annotated
dataset (Prasad et al., 2014) involving discourse-
level annotations. PDTB adopts a connective-
based approach, where connectives are the an-
chors of discourse relations that hold between two
text spans that have an abstract object interpreta-
tion, such as propositions or eventualities (Prasad
et al., 2014). The challenge lies in distinguishing
between connectives that function as discourse
connectives (DC) and those that do not, known as
non-discourse connective (NDC) usage. Consider
examples (1) and (2):

1. He went to Paris for a vacation and visited the
famous Eiffel Tower.

2. He speaks English and French.
(from (Başıbüyük and Zeyrek, 2023))

PDTB recognizes the and in the first example
as a discourse connective whereas, in the second

example, it does not, as it simply links two noun
phrases. Thus, the first step in the PDTB annota-
tion process is the detection of the connectives with
discourse usage in a given text piece. In the cur-
rent work, we address this issue using a lightweight
model that utilizes linguistic features to efficiently
identify discourse connectives without the need for
specialized hardware, such as GPUs, which are
still not available to most researchers worldwide.
We train and evaluate our model in two languages,
English (PDTB 2.0) and Turkish (Turkish Discourse
Bank (TDB) 1.0 (Zeyrek et al., 2013)). The contri-
butions of our work are:

1. We introduce a fast machine-learning model
that detects connectives.

2. We show that this model achieves results close
to state-of-the-art models.

3. We argue that verb-based features are the
most important aspects of our lightweight con-
nective detection model.

The paper is structured as follows. In Section
2, we introduce two lines of research that deal
with connective detection and briefly summarize re-
cently developed discourse parsers that are shown
to work in Turkish as well as English. Section 3
introduces our method, and Section 4 the experi-
mental setting as well as the data and baselines.
In Section 5 we evaluate our model, and finally, in
Section 6 we draw some conclusions.

2. Related Work

Reflecting the overall trend in the field, the litera-
ture on discourse parsing can be roughly divided
into two parts: the body of works before, and after
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the emergence of neural networks (NNs). Before
the solutions based on neural networks became
the default approach, the methods relied more on
traditional approaches such as feature engineering
or annotation projection (Wellner and Pustejovsky,
2007; Pitler and Nenkova, 2009; Versley, 2010).

Following the deep learning revolution, led by
the increase in the available computing power and
the amount of data, NN-based solutions slowly re-
placed linguistic features, and more black-box ap-
proaches have become popular (Hooda and Kos-
seim, 2017; Kurfalı, 2020; Kutlu et al., 2023). Most
prominently, the recent DISRPT 2021 (Zeldes et al.,
2021) and 2023 (Braud et al., 2023) shared tasks
have received only transformer (Vaswani et al.,
2017)-based solutions to a range of languages in-
cluding English and Turkish (e.g., Gessler et al.,
2021; Metheniti et al., 2023; Anuranjana, 2023),
with the exception of the TMVM model by Dönicke
(2021), which utilized linguistic features derived
from syntactic trees. Gessler et al. (2021) also
stands out by integrating linguistics features into
transformers.

3. Approach

The proposed connective detection model takes
raw natural language data as input and determines
which tokens are connectives. The task is mod-
eled as a three-way token classification task, where
each token can belong to one of three categories:

• O: The token is not part of a connective span.

• B-Conn: The token marks the beginning of
a connective span. It can represent the en-
tire span of the connective, as in single-word
examples like because, or the first word of a
phrasal connective, such as on in on the other
hand.

• I-Conn: The token is the second or a subse-
quent word in a phrasal connective, e.g., other
in on the other hand.

A computationally cheap and fast explicit con-
nective detection algorithm should use symbolic or
traditional ML-based approaches instead of deep
learning architectures. At the same time, the fea-
tures used by ML-based algorithms should be pro-
duced by algorithms with a time complexity lower
than the inference time complexity of the ML model.
For this purpose, we preferred to use gradient
boosting to train our model. Gradient boosting is
an ensemble method determining the optimal pre-
dictive model to enable us to use the decision trees
more effectively (Friedman, 2001).

This iterative algorithm starts with a naive predic-
tion (mostly an average line) to capture the target

values. In the second iteration, the residual be-
tween this prior prediction and the observed targets
is calculated and a decision branch is adapted to
decrease the sum of residuals. Repeating this pro-
cess until the sum of residuals is minimized gives
us a final decision tree for our classification task.
We use the XGBoost (Chen et al., 2015) library to
implement gradient boosting on our datasets.

We decided to incorporate three groups of fea-
tures to our model. The first group involves verb-
based features. These are the main features for
our model and involve:

• Whether any of the three words before and
three words after a candidate token is verb or
not.

• Whether the current word is verb or not.

• The token-based distance of the current word
to the previous and the following verbs.

The second group of features involves word-
based features consisting of features such as the
capitalization of words, word length, and a unique
ID assigned to each word in the data, all of which
can be produced with O(n) time complexity.

The last group of features includes position-
based features, by which we could produce in O(n)
time complexity, too. These involve the position of
the current word in the sentence, also including the
length of sentences based on words.

We used the XGBoost library to train our model
with gradient boosting. The XGBoost library offers
a wide choice of parameters for gradient boost-
ing. Thus, we performed parameter tuning on
learning_rate (contributions of each tree to the final
model), max_depth (maximum depth of each tree),
n_estimators (number of trees generated by the
model), max_delta_step (a parameter that is useful
for imbalanced datasets by preventing the weights
from updating too much) and min_child_weights (a
parameter to control the overfitting problem) which
we consider to be the most important ones among
these parameters. We used the grid search algo-
rithm (Chicco, 2017) to choose the most effective
tuning among these three parameters. Grid search
systematically runs the different combinations of pa-
rameters and uses cross-validation (Stone, 1974)
to find the best combination based on the perfor-
mance. Recognizing the limited size of our dataset,
we applied 3-fold cross-validation in our experi-
ments to ensure a balance between model training
time and validation robustness.

The dataset suffers from severe imbalance as
discourse connectives do not occur as often. To
deal with this, we also train our models with the
weighted loss. We used inverse frequency weight-
ing to determine the label weights. That is, for each
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Model Learning Rate Max Depth N Estimators Max Delta Step Min Child Weights
PDTB 2.0 0.2 8 500 4 1
PDTB 2.0 (Weighted) 0.30 8 400 4 1
TDB 1.0 0.15 10 500 4 1
TDB 1.0 (Weighted) 0.15 8 400 4 1

Table 1: Best Parameters for PDTB 2.0 and TDB 1.0 Datasets. Weighted refers to the classifiers trained
with the "weighted" loss.

Dataset B-Conn I-Conn O Connective Proportion(%)
TDB

Training 7,044 1,259 385,256 2.11
Development 773 130 45,939 1.93
Test 849 165 45,944 2.16

PTDB
Training 23,848 4,499 1,032,851 2.67
Development 953 159 38,656 2.80
Test 1,245 238 54164 2.67

Table 2: The distribution of labels in the datasets. Refer to Section 3 for the label definitions. The last
column denotes the proportion of all connectives to the total number of tokens.

i in our dataset, we computed wi as

wi =
N

C · ni

where N is the total number of instances, C is
the number of unique classes and ni is the number
of instances belonging to class i.

Weighted loss is a method used in imbalanced
data to ensure that minority class data points con-
tributes more to the model. The idea behind
weighted loss is to assign a higher weight to the mi-
nority class data points while assign a lower weight
to the majority class data points when computing
the loss. Thanks to this approach, mistakes on
the minority class become more "costly" for the
model, causing it to pay more attention to correctly
classifying instances of the minority class.

The best parameters according to the grid search
are provided in Table 1.

4. Experimental setting

4.1. Data

In our experiments, we followed the training, devel-
opment, and test splits proposed in DISRPT 2021
(Zeldes et al., 2021) to facilitate direct compari-
son of our models with the state-of-the-art systems
evaluated there. The Turkish data in DISRPT is
sourced from TDB 1.0 (Zeyrek et al., 2013), while
the English data is based on PDTB 2.0 (Prasad
et al., 2008). The distribution of the labels in the

respective datasets are provided in Table 2. DIS-
RPT data uses these datasets without any pruning.
Thus, our models are trained to explicit discourse
connectives including discontinuous connectives
such as "if .. then", "either .. or", etc. in addition
to continuous or single word connectives. Alterna-
tive Lexicalizations (AltLex) connectives are also
included in these datasets. AltLexes are not con-
nective on their own but can act as connective when
combined as multi word expressions.

4.2. Baseline Models

To put our results into perspective, we compare our
model’s performance against the best-performing
systems in DISPRT 2021 and 2023 shared tasks.
Additionally, we report the performance of a vanilla
BERT model fine-tuned on the training set1 (De-
vlin et al., 2018), to represent the current go-to
approach for performing this task. We follow the
standard token classification procedure using the
default parameters and report the average perfor-
mance across four different runs. The BERT base-
line also provides insights into the time efficiency
of our model, as that information is not available
for the other baselines. It should be noted that all
baselines, except for TMVM, are based on deep
neural networks.

1We used the bert-base-cased for English and the
BERTurk model (Schweter, 2020) for Turkish.
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Model Precision
(%)

Recall
(%)

f-score
(%)

Inference
Time (sec)

DisCut2023 (Metheniti et al., 2023) 95.49 91.89 93.66 –
DiscoDisco (Gessler et al., 2021) 92.93 91.15 92.02 –
Segformers (Bakshi and Sharma, 2021) 89.73 92.61 91.15 –
DisCut (Ezzabady et al., 2021) 93.32 88.67 90.94 –
TMVM (Dönicke, 2021) 85.98 65.54 74.38 –
BERT Baseline 92.63 91.88 92.25 3.13
Our Model 89.10 78.71 83.58 0.02 (1.33*)
Our Model (Weighted) 70.00 86.02 77.19 0.02 (2.03*)

Table 3: Comparison of the Baseline Models and Our Model over PDTB 2.0 Using DISRPT Data Splits. *
denotes inference time on CPU for our lightweight model.

Model Precision
(%)

Recall
(%)

f-score
(%)

Inference
Time (sec)

DiscoDisco (Gessler et al., 2021) 93.71 94.53 94.11 –
DisCut2023 (Metheniti et al., 2023) 92.34 93.21 92.77 –
Segformers(Bakshi and Sharma, 2021) 90.42 91.17 90.79 –
DisCut (Ezzabady et al., 2021) 90.55 86.93 88.70 –
TMVM (Dönicke, 2021) 80.00 24.14 37.10 –
BERT Baseline 92.36 92.89 92.62 5.09
Our Model 87.41 71.96 78.94 0.01 (1.17*)
Our Model (Weighted) 82.42 82.33 82.38 0.01 (1.55*)

Table 4: Comparison of the Baseline Models and Our Models over TDB 1.0 Using DISRPT Data Splits. *
denotes inference time on CPU for our lightweight model.

5. Results and Discussion

5.1. Results
We evaluated the performance of our model us-
ing the official evaluation script of DISRPT 2021.2
The evaluation criteria are based on exact span
matching, meaning that partial detection of phrasal
connectives, such as identifying "because" within
"That’s because", does not contribute to the over-
all accuracy. For each language, micro-averaged
precision, recall, and F-scores are reported.

The results of our system for English and Turkish
are provided in Table 3 and Table 4, respectively.
Despite our model’s simplicity and reduced com-
plexity, it demonstrates competitive performance
when compared against the strong baselines. The
best performances achieved in English and Turk-
ish are very close to each other, suggesting that
the model is robust across languages with differ-
ent linguistic characteristics. Moreover, it must be
highlighted that our submission outperforms the
feature-based baseline, TMVM, in both languages,
with the difference in Turkish being almost three-
fold. We believe that this finding demonstrates the
effectiveness of our set of features and further jus-
tifies their applicability to different languages.

2https://github.com/disrpt/sharedtask2021

Switching to weighted loss led to mixed results.
In Turkish, the weighted loss increased the overall
performance by 3 points; however, in English, it
had a negative effect. Yet, in both cases, weighted
loss significantly increased the recall of our models
as expected. These findings indicate that while the
approach increases the model’s ability to identify
true positive cases, its impact on precision, hence
the overall performance, is language-dependent
and requires further investigation.

On the other hand, our models achieved infer-
ence speeds at least three times faster than the
BERT Baseline, despite being run on a CPU, unlike
the BERT model which was trained and evaluated
on a GPU. When both models are run on a GPU,
the difference becomes nearly 250 times. This con-
firms that our model is indeed computationally less
demanding, making it suitable for scenarios with
limited computational resources.

5.2. Feature Importance

After training our model, we performed a feature
importance test to determine which features made
the highest contribution to the detection of DCs in
TDB 1.0 and PDTB 2.0. The most important fea-
tures detected by our best models in two languages
are listed in Figure 1, Figure 2.
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Connective Number of Correct Predictions Number of Incorrect Predictions Accuracy (%)

True Positive (TP) True Negative (TN) False Positive (FP) False Negative (FN)

and 204 619 21 40 93.10
for 11 403 1 10 97.41
then 11 2 2 3 72.22
Once 0 0 3 1 0

ve (and) 181 477 33 25 91.90
için (for) 90 88 20 2 89.00
Sonra (After) 15 2 4 2 73.92
aksine (contrary to) 0 1 0 2 33.33

Table 5: Error Statistics for Selected Connectives in English (above) and Turkish (below). The top two
connectives are the most frequent ones; the bottom two are the most mispredicted that occur at least
three times.

Figure 1: Feature importance in PDTB 2.0 for our
best model

Figure 2: Feature importance in TDB 1.0 for our
best model

As seen in the figures, word-based features such
as Word ID and Capitalization check are promi-
nent for PDTB. For TDB, the most critical feature
is the information on whether the previous word
is a verb (Previous_Word_Status). Additionally,
while the status of the current word as a verb (Cur-
rent_Word_Status) significantly contributes to the
model for both languages, verb information of the
next word for English and the previous word for Turk-
ish stand out. We believe this may be attributed to
the differences in word order between Turkish and
English.

As shown in (Pitler and Nenkova, 2009), con-
stituent tree-based features such as self category,
parent category, sibling category provide very suc-
cessful results in detecting explicit connectives.
However, since annotated trees aligned with raw
data are needed to derive these features, deriving

these features also has an additional annotation
cost. In fact, since the annotation process of a
dataset with the PDTB formalism is easier than the
constituent tree annotation process, deriving the
features to be used for automatic annotation may
even cause higher costs than handmade annota-
tion. This shows that our system, in addition to
being lightweight compared to deep learning mod-
els, is also lightweight compared to classical ap-
proaches in terms of producing features effectively
and at low cost.

5.3. Error Analysis
In this section, we discuss our model’s performance
through error analysis. We present the error dis-
tribution for selected connectives in Table 5 and
discuss some examples. The table highlights the
first two connectives as those with the highest oc-
currence in our dataset, while the last two are iden-
tified as the most frequently mispredicted connec-
tives above the specific threshold of 3. For Turkish
data, the model tends to over-predict discourse con-
nective (DC) usage over non-discourse connective
(NDC) usage while in the PDTB, it is more cautious,
often missing instances where connectives serve
as DCs.

The examples below are provided to highlight the
mistakes of our model. We show the mispredicted
tokens by underlining, correctly predicted ones in
bold fonts.

Example (4) showcases an unusual case where
our model incorrectly identifies a noun in the Turkish
dataset, aklı (’mind’), as a discourse connective.

4. Laiklik zaten, inançlara saygı duyarak aklı
özgürleştirmektir.(False Positive)
‘Secularism already means liberating the mind
by respecting beliefs.’

This error is noteworthy because the sentence
does indeed contain a connective that expresses
a manner relation, specifically through the (intra-
sentential) suffixal connective -arak attached to the
verb preceding aklı. Yet, such suffixal connectives
are later added to the TDB in its 1.2 version (Zeyrek
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and Er, 2022) and are missing in the DISRPT train-
ing data. We have spotted several more cases
exhibiting the same behavior which suggests that
our model is generalizing to the connectives that
are not seen in its training data.

Examples (5) and (6) illustrate one of the most
common mistakes of our model, both in Turkish and
English datasets. In Turkish, it includes a phrasal
connective zaman da (’when’ used with the focus
particle); yet, our model only identifies the first part,
zaman (’when’), missing the focus particle, da. In
English, the system only recognizes for, missing the
rest of the connective. Due to the strict evaluation
strategy that requires an exact span match, this pre-
diction is classified as misprediction. Overall, the
phrasal connectives are particularly challenging.

5. Uygun düştüğü sanıldığı zaman da hemen bir-
birlerinin üzerinden kayıp gideceklerdi. (False
Negative)
‘When people thought [it] fits, they would im-
mediately slip over each other’.

6. For instance, Gannett Co. posted an 11%
gain in net income, as total ad pages dropped
at USA Today, but advertising revenue rose
because of a higher circulation rate base and
increased rates. (False Negative)

6. Conclusion and Further Studies

In this study, we introduced a lightweight, gradient-
boosting-based system for detecting discourse con-
nectives, achieving competitive performance with
significantly faster inference speeds compared to
deep learning-based alternatives. Our approach
demonstrated robustness across English and Turk-
ish, indicating its utility in multilingual settings and
scenarios with limited computational resources.
Thanks to the speed and accuracy of our system,
our model can be used to mine large amounts of
data that can be used to facilitate the development
of new discourse-annotated corpora or as the train-
ing data of discourse-focused language models.
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