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Abstract

Previous work on multilingual generation from
Abstract Meaning Representations has mostly
focused on High- and Medium-Resource lan-
guages relying on large amounts of training
data. In this work, we consider both High-
and Low-Resource languages capping training
data size at the lower bound set by our Low-
Resource languages i.e., 31K training instances.
We propose two straightforward techniques to
enhance generation results on Low-Resource
while preserving performance on High- and
Medium-Resource languages. First, we itera-
tively refine a multilingual model to a set of
monolingual models using Low-Rank Adapta-
tion - this enables cross-lingual transfer while
reducing over-fitting for High-Resource lan-
guages as the monolingual models are trained
last. Second, we base our training curriculum
on a tree structure which permits investigat-
ing how the languages used at each iteration
impact generation performance on High and
Low-Resource languages. We show an im-
provement over both mono and multilingual ap-
proaches. Comparing different ways of group-
ing languages at each iteration step we find two
beneficial configurations: grouping related lan-
guages which promotes transfer, or grouping
distant languages which facilitates regularisa-
tion.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a representation language
used to encode the meaning of sentences. Fig-
ure 1 shows an example AMR graph and some of
its possible verbalisations in 4 different languages.
AMR-to-Text generation is the task of verbalizing
the meaning encoded by an AMR graph. While
there has been constant progress on this task for
the English language (Hoyle et al., 2021; Ribeiro
et al., 2021b,c; Bevilacqua et al., 2021) and some
other High-Resource (HR) and Medium-Resource
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Eng: The police could help the victim.

Deu: Die Polizei konnte dem Opfer helfen.

Spa: La policía podría ayudar a la víctima.

Ita: La polizia potrebbe aiutare la vittima.
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Figure 1: An example AMR graph and its meaning in
English, German, Spanish and Italian.

(MR) languages (Fan and Gardent, 2020; Ribeiro
et al., 2021a; Xu et al., 2021; Martínez Lorenzo
et al., 2022; Sobrevilla Cabezudo and Pardo, 2022),
not much attention has been given to this task on
Low-Resource (LR) languages.

Previous work on machine translation (MT) ex-
poses a complex trade-off between High- and Low-
Resource languages. While Koehn and Knowles
(2017) show that neural MT models have a steep
learning curve leading to poor performance in Low-
Resource scenarios, Lin et al. (2020); Aharoni
et al. (2019) demonstrate that multilingual train-
ing mitigates this effect. Conversely, Conneau et al.
(2020) observe that the noise resulting from mul-
tilingual training negatively affects HR languages
while NLLB Team et al. (2022) show that cur-
riculum learning (Bengio et al., 2009) can help
reduce over-fitting on LR languages. Phyloge-
netic knowledge has sometimes been used to han-
dle this tradeoff both in multilingual NLU tasks
such as dependency parsing, part of speech tag-
ging, and natural language inference (Faisal and
Anastasopoulos, 2022) and in NLG tasks such as
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Knowledge Graph-to-Text generation (Soto Mar-
tinez et al., 2023). Recent work (Meng and Monz,
2024) has also shown that training on closely re-
lated languages facilitates transfer while training
on distant languages has a regularization effect. Fi-
nally, Parameter-Efficient Fine-Tuning approaches
have proven useful in learning new tasks and lan-
guages for text generation of LR languages (Vu
et al., 2022) while keeping memory requirements
low during training.

In this work, we focus on AMR-to-Text gener-
ation and propose two simple yet efficient tech-
niques to improve transfer from High- to Low-
Resource languages while preserving performance
on HR languages. First, we iteratively refine a
multilingual model to a set of monolingual mod-
els using Low-Rank Adaptation (LoRA) (Hu et al.,
2021). We hypothesise that this promotes cross-
lingual transfer, limits the impact of data sparsity
for LR languages and reduces over-fitting of HR
languages as the monolingual models are trained
last. Second, we base our training curriculum on
a tree structure whose nodes indicate which lan-
guages are included in the training data at each step
of the iteration. Using phylogenetic knowledge,
we group together High- and Low-Resource lan-
guages which are either closely related or distant.
In this way, we can investigate how using differ-
ent phylogenetic-based training strategies impact
performance.

We apply our approach to 6 LR and 6 HR lan-
guages from two families (Germanic and Romance)
and compare it to a multilingual model, monolin-
gual models and a generate-and-translate pipeline.
Overall, we observe improvement over both the
multilingual and the monolingual approaches. In
line with Soto Martinez et al. (2023)’s results, we
find that the quality of the generate-and-translate
approach varies with the quality of machine trans-
lation for the target languages. Finally, we observe
similar performance for the two ways of grouping
languages, which seems to confirm the intuition
that training on related languages promotes trans-
fer while training on distant languages facilitates
regularisation.

2 Related Work

AMR-to-Text Generation beyond English. Us-
ing Europarl texts and silver AMRs derived from
the English part of that corpus, Fan and Gardent
(2020) train a multilingual AMR-to-Text genera-

tion model for 21 EU languages. They pre-train
the graph encoder and the language models on mil-
lions of graph and monolingual sentences. The
AMR-to-Text generation model is trained on 400K
to 8.2M (graph, text) pairs depending on the tar-
get language. Focusing on the four languages of
the AMR3.0 test set (German, Italian, Spanish,
Chinese, LDC2020T07)1, Ribeiro et al. (2021a)
show that combining a large 1.9M dataset of (sil-
ver AMR, human-written text) pairs with a small
dataset of 36.5K (gold AMR, machine-translated
text) pairs yield better results than using each
dataset separately when fine-tuning mT5base. Xu
et al. (2021) extend Ribeiro et al. (2021a)’s work
using multi-task learning. Their model is first pre-
trained on six tasks (AMR-to-English, English-to-
AMR, English-to-X , X-to-English, AMR-to-X ,
and X-to-AMR) with millions of (silver AMR,
human-written text) pairs. It is then fine-tuned
on 2 tasks (AMR-to-X and English-to-X) on 36.5K
(gold AMR, gold English, machine-translated X
text). Evaluating on German, Spanish and Italian,
they show that their approach outperforms previ-
ous work. Martínez Lorenzo et al. (2022) fine-
tune a model using 55.6K (gold AMRs, machine-
translated text) pairs. Their model is based on
SPRING (Bevilacqua et al., 2021), a bidirectional
AMR-to-text and text-to-AMR model pretrained
on 200K (silver AMR, human-written English text)
and fine-tuned on the AMR3.0 data for English.

Different from these approaches, we consider
both high- and Low-Resource languages, restrict
our approach to a Low-Resource scenario and pro-
pose a novel training strategy to derive monolingual
models from a multilingual one.

Curriculum learning. Bengio et al. (2009)
showed that curriculum learning can lead to im-
proved performance over a random training order
and Xu et al. (2020) propose a dynamic curricu-
lum learning approach that relies on training loss
and model competence to increase the difficulty
of the training samples shown to the model. To
train their massively multilingual machine trans-
lation model, the NLLB Team et al. (2022) use
a curriculum learning approach in which LR lan-
guages are introduced later into the training pool.
They show that this helps reduce over-fitting for
these languages. Similarly, Kuwanto et al. (2023)
propose a curriculum learning approach where the
model is first pretrained on monolingual data for

1https://catalog.ldc.upenn.edu/LDC2020T07
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English and a target LR language as well as syn-
thetic code-switching data in a second step.

We expand on these approaches by proposing
a tree-structured curriculum where the nodes indi-
cate the set of languages used at each step of the
curriculum.

Exploiting Phylogenetic Knowledge. As illus-
trated in Figure 2b, a language phylogenetic tree
highlights the proximity or distance between lan-
guages. Previous works have shown that phylo-
genetic knowledge can be leveraged to improve
the performance of multilingual models, particu-
larly for LR languages. Neubig and Hu (2018)
show that training machine translation models on
a pair of closely related high- and Low-Resource
languages improves performance on LR languages.
Faisal and Anastasopoulos (2022) stacked bottle-
neck adapters (Houlsby et al., 2019) for different
levels of a phylogenetic tree to tackle diverse NLU
tasks (dependency parsing, part of speech tagging,
and natural language inference) on a variety of lan-
guages. Soto Martinez et al. (2023) used a soft
prompt-inspired technique (Lester et al., 2021) to
provide a model with information about the phylo-
genetic tree on RDF-to-Text generation of Celtic
languages. For AMR-to-Text, Fan and Gardent
(2020) noted that training on a pair of closely re-
lated languages of the same language family yields

better results than training on a pair of languages
from the same family that are more distant. Finally,
Meng and Monz (2024) studied transfer learning in
machine translation models and noted that closely
related languages have a strong transfer effect and
that augmenting the number of related languages
further enhances performance. Interestingly, they
also observed that introducing a balanced amount
of distant language instances during training can
provide unexpected regularizing effects.

Following up on these approaches, we use phy-
logenetic knowledge to guide curriculum learning
and we study the effect of grouping closely related
languages as well as grouping distant languages.

Low-Rank Adaptation. Hu et al. (2021) intro-
duced Low-Rank Adaptation (LoRA), a Parameter-
Efficient Fine-Tuning (PEFT) alternative to stan-
dard bottleneck adapters and prompt tuning ap-
proaches. Evaluating on multiple NLG datasets
for summarization and Data-to-Text Generation,
they showed their approach outperformed Full
Fine Tuning (FFT) and matched or outperformed
other PEFT techniques on GPT-2 models (Radford
et al., 2019). Following Faisal and Anastasopou-
los (2022), we propose to train a LoRA adapter
for each iterative step of our curriculum learning
training, stacking them as we go.

All Languages

Group 2

Group 2c

Haitian CreoleDutch

Group 2b

SicilianEnglish

Group 2a

LuxembourgishSpanish

Group 1

Group 1c

LimburgishFrench

Group 1b

Tok PisinItalian

Group 1a

AsturianGerman

(a) Distant Languages Hierarchy (DLH)
Indo-European

Romance

Gallo
Romance

Haitian CreoleFrench

Italo
Romance
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Iberian
Romance

AsturianSpanish

Germanic

Weser-Rhine
Germanic

LimburgishDutch

North Sea
Germanic

Tok PisinEnglish

High
German

LuxembourgishGerman

(b) Phylogenetic Tree Hierarchy (PTL)

Figure 2: Training hierarchies tested. The top one (DLH) maximizes the language difference within nodes of
each level. The bottom one (PTL) minimizes the language difference within nodes of each level. High-Resource
languages are in bold, Low-Resource languages are in italics and languages unseen by the pretrained base model
are underlined.
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3 A brief overview of LoRA and QLoRA

LoRA is a Parameter-Efficient Fine-Tuning ap-
proach where, during training, the weights of the
original base model (W0) are frozen and two low-
rank, trainable, decomposition matrices (A and B)
are added to selected layers of the model, rework-
ing the output hidden state of the layers (h) to the
addition of the original weights and the product
of the low-rank matrices (AB) as shown in Equa-
tion 1.

h = W0x+ABx (1)

AB happens to be a good approximation of a full
fine-tuning weight update while requiring fewer
parameters to be trained. Notably, after having
trained A and B on some task or language, we
can compute their final product (AB) and merge
this product into the original weights (W0) via sim-
ple matrix addition thereby creating a new model
specialised for the target task or language. Thus
the same model can be iteratively fine-tuned on
multiple tasks or languages. In our approach, we
start from a pre-trained multilingual model and it-
eratively derive 12 monolingual models from this
initial model in 4 steps, starting by fine-tuning this
model tuned on 12 languages (Step 0) and itera-
tively fine-tuning models for 6, 2 and 1 languages
(Steps 1, 2 and 3).

By merging the weights of the original model
with the parameters learned in the LoRA matri-
ces, the final models have no inference overhead,
which distinguishes LoRA from other PEFT ap-
proaches. Furthermore, since LoRA matrices are
smaller than the base model, LoRAs for multiple
tasks or languages can be trained and switched
faster and without requiring as much storage space
as other approaches.

Another advantage of LoRA adaptation is that
it lowers the memory requirements for fine-tuning
very large models compared with full fine-tuning.
To further reduce memory requirements during
training, Dettmers et al. (2024) proposed QLoRA,
where unquantized LoRA modules are applied to a
quantized model. While training quantized weights
is unstable (Wortsman et al., 2023), only training
the few unquantized weights of the LoRA module
makes this approach stable.

4 Task

We aim to verbalise AMR graphs into both high-
and Low-Resource languages. To factor out the im-
pact of training data size, we keep this size constant

across languages restricting the number of distinct
training instances per language to 31K, the Lower
bound set by the language with fewer resources.
In this way, differences between languages can
be traced back to differences between models and
training strategies rather than to the size of the
available data for each language.

For our experiments, we select a combination of
6 Low- and 6 High-Resource languages (as classi-
fied by the NLLB Team et al. (2022)). We select
these languages so that they can be grouped in a
balanced phylogenetic tree (see Figure 2b). Table 1
includes further information about the selected lan-
guages noting in particular, how much training data
per language was seen by our underlying pretrained
mT5large base model.

Language Code H/L % PT Data
German DEU High 3.05%
Luxembourgish LTZ Low 0.68%
English ENG High 5.67%
Tok Pisin TPI Low 0.00%
Dutch NLD High 1.98%
Limburgish LIM Low 0.00%
Spanish SPA High 3.09%
Asturian AST Low 0.00%
Italian ITA High 2.43%
Sicilian SCN Low 0.00%
French FRA High 2.89%
Haitian Creole HAT Low 0.33%

Table 1: Target languages, their ISO 639-3 code,
whether they are high- or Low-Resource (H/L) lan-
guages, and how much of the base model pretraining
data (PT Data) they cover.

5 Hierarchical QLoRA (HQL)

To mitigate the effects of data scarcity (over-fitting)
and multilingual training (noise), we propose a
variation of curriculum learning that leverages both
phylogenetic knowledge and the modularity and
memory efficiency of LoRAs to iteratively refine a
base multilingual model into a set of monolingual
models.

Base Model. Our base model is mT5large (Xue
et al., 2021)2, a multilingual encoder-decoder
model which we extend with LoRA modules to
support modular Parameter-Efficient Fine-Tuning
and 4-bit quantization to reduce memory footpring
during training.

Refining Models. We learn 12 monolingual mod-
els by iteratively fine-tuning a model trained in

2https://huggingface.co/google/mt5-large
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12 languages in four steps as follows. In the first
step (Level 0), the base model (mT5large) is fine-
tuned on 12 languages using LoRA fine-tuning.
The resulting model – which is created by merging
mT5large’s weights with the A and B matrices as
explained above – is then fine-tuned on two sets
of 6 languages yielding two 6-language models,
each trained with a separate LoRA module (Level
1). We repeat this process twice: first, fine-tuning
the two 6-language models into 6 bilingual models
(Level 2) and second, fine-tuning each of the bilin-
gual models into 12 monolingual models (Level 3).
Algorithm 1 in Appendix A specifies our training
strategy in more detail.

Choosing Language Groups. Which set of lan-
guages should be used at each step of the iteration?
Our training strategy follows a four-level deep tree
where each node in the tree determines the set of
languages used for fine-tuning the parent model.
Based on previous work, we compare the effect of
two training hierarchies as shown in Figure 2.

Meng and Monz (2024) showed that balanced
amounts of data from distant languages during
training can act as a regularizing factor. Accord-
ingly, our first strategy consists in increasing the
average distance between languages for each node
in our training hierarchy. This produces the Distant
Languages Hierarchy depicted in Figure 2a.

Conversely, multiple previous studies have
pointed to the benefits of training multilingual mod-
els on closely related languages (cf. Section 2).
Based on this, our second training hierarchy fol-
lows the phylogenetic tree shown in Figure 2b
where at each level of the hierarchy, the correspond-
ing LoRA module is trained on smaller, less diverse
and more closely related groups of languages. Un-
der this Phylogenetic Tree Hierarchical QLoRA
(PTHQL) approach, the expectation is to increase
the transfer learning and reduce the noise of other
languages as training progresses.

6 Experimental Setup

6.1 Data
As parallel (AMR, text) data only exists for a re-
stricted set of languages, we use both machine
translation and AMR-parsing to create multilingual
training and test data.

Training Data. The AMR 3.0 dataset (Knight,
Kevin et al., 2020)3 includes 55.6K (gold AMR,

3https://catalog.ldc.upenn.edu/LDC2020T02

human-written text) pairs where the texts are in
English. We create training data for our target
languages using machine translation and language
identification scores as follows. First, we trans-
late the English texts to our target languages us-
ing a 4-bit quantized NLLB-3.3B model (NLLB
Team et al., 2022)4. Second, we filter the machine-
translated texts using the GlotLID (Kargaran et al.,
2023)5 language identification model and remov-
ing all instances with a score less than 0.5. Third,
we keep the top 31K instances for each language
so that the quantity of training data is the same for
all languages. This yields a dataset of 31K (gold
AMR, machine-translated texts) for each of our
target languages except English where texts are
human-written.

In addition, we create a small parallel dataset for
all our target languages where the AMR are silver
and the texts are human-written. We derive this
dataset from the FLORES-200 dataset of parallel
texts (NLLB Team et al., 2022) and obtain silver
AMR graphs by parsing the English texts of this
dataset using AMR3-structbart-L (Drozdov et al.,
2022)6. Since FLORES-200 does not include train-
ing data, we used the validation data for training.
We then split the test data in half to create two small
validation and test sets.

Test Data. We evaluate on (gold AMR, human-
written text) for English, German, Spanish and
Italian using LDC2020T07 (Damonte and Cohen,
2018; Damonte, Marco and Cohen, Shay, 2020)7,
which is a subset of AMR3.0 with gold AMR
graphs and human translated and corrected texts.
For the remaining 8 languages, we used our subset
of the FLORES-200 test set of 506 (silver AMR,
human-written text) pairs. While we could instead
have used (gold AMR, machine-translated texts)
derived from AMR3.0, we prefer to use silver AMR
graphs paired with human-verified sentences. The
rationale behind this decision is that the noise intro-
duced by an AMR parser when producing the silver
AMR graphs will be uniform across all tested lan-
guages, whereas the noise that machine-translated
silver sentences have would vary across languages
given the uneven performance of machine transla-
tion models. Table 2 summarizes the size and type

4https://huggingface.co/facebook/nllb-200-3.
3B

5https://github.com/cisnlp/GlotLID
6https://github.com/IBM/

transition-amr-parser/
7https://catalog.ldc.upenn.edu/LDC2020T07
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of our data.

Dataset Quality Instances per Language
AMR Text Train Test Valid

FLORES-200 Silver Gold 997 506 506
AMR 3.0 Gold Silver 30 000 1 000 1 000
AMR3.0 Gold Gold N/A 1 371 N/A

Table 2: Our final datasets after preprocessing.

6.2 Training

Implementation Details. All our experiments
are done using mT5large as the underlying base
model via the Transformers 8 library. We use the
PEFT 9 library to handle the LoRA implementa-
tion. The model is quantized to 4-bit precision for
memory efficiency. Following (Dettmers et al.,
2024), we apply LoRA to all linear layers of the
model as this was shown to improve performance.
Both Rank and Alpha are set to 256 using Rank-
Stabilized scaling, these high values are selected
given the model’s need to learn both an entirely new
task (AMR-to-Text vs Spam Correction) as well as
generate into scarcely seen and previously unseen
languages. As pointed out by Hu et al. (2021) new
languages and tasks might require much higher
ranks. The base model contains around 1.2B pa-
rameters and introducing the LoRA adds almost
300M new trainable parameters.

Training Scheme. We use a batch size of 8
and a maximum length per training instance of
256 tokens, which is similar to the values chosen
by Ribeiro et al. (2021a) while keeping the total
batch size as a power of 2 which benefits the train-
ing speed. This limit implies the truncation of
around 8% of tokens on the input sequence but
does not affect the output sequences.

To factor out the impact of training data size, we
train each model on the same amount of data. For
each language, we have 30 997 distinct instances
and we train for one epoch on each level of the
training hierarchy. Thus L0 models are trained on
371 964 (= 30 997 × 12) unique instances, L1 mod-
els on 185 982 instances, L2 on 61 994 instances
and L3 on 30 997 instances. Hence by the end
of the training, each monolingual model has seen
650 937 instances in total, with unique instances be-
ing seen 4 times across models, which is equivalent
to 4 epochs on the full dataset.

8https://huggingface.co/docs/transformers
9https://huggingface.co/docs/peft

It is worth noting that, given the modularity of
LoRAs and the way we can reuse the intermediate
levels in the training of the new ones, the total num-
ber of instances used for training all 12 monolin-
gual models is 1 487 856. In comparison, without
our approach, directly fine-tuning 12 monolingual
models that have seen 650 937 instances would re-
quire training on 7 811 244 instances (= 650 937 ×
12). As explained in section 5, we consider two
training hierarchies, the Distant Languages Hier-
archy and a Phylogenetic Tree Hierarchy. A sum-
mary of all training hyperparameters can be found
in Table 5 in Appendix B.

6.3 Models

We compare our approach with previous work and
with three strong baselines.

6.3.1 Previous Work
F&G (Fan and Gardent, 2020) is an Encoder-
Decoder multilingual model that supports 21 High-
and Medium-Resource languages. The encoder in-
cludes structural embeddings and the model was
fine-tuned on (silver AMR, human-written text)
pairs with data sizes ranging from 400K to 8.2M
pairs depending on the target language.

Ribeiro (Ribeiro et al., 2021a) is a mT5base
model that supports 4 HR languages and was
fine-tuned on millions of (silver AMR, human-
written text) and tens of thousands of (human AMR,
machine-translated text) pairs for each target lan-
guage.

Xu (Xu et al., 2021) consists of 3 Transformer
models trained separately on 3 HR languages us-
ing multi-task pretraining on 6 tasks (AMR-to-
English, English-to-AMR, English-to-X , X-to-
English, AMR-to-X , and X-to-AMR) with mil-
lions of (silver AMR, human-written text) pairs.
The models are then fine-tuned on 2 tasks (AMR-
to-X and English-to-X) on 36.5K (gold AMR, gold
English/machine-translated X text).

Martinez (Martínez Lorenzo et al., 2022) the
mBARTlarge model trained separately on 4 HR lan-
guages. We use the version trained on plain AMR
inputs which was trained for up to 30 epochs on
55K (gold AMR, machine-translated text) pairs.

6.3.2 Baselines
Monolingual QLoRA (MonoQL). 12 monolingual
models obtained by fine-tuning mT5large on each
language separately using LoRA. We expect this
model to perform worse than ours, particularly
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on LR languages, due to the limited training data
which can lead to either a lack of generalization or
to over fitting. Each final model of our HQL ap-
proach has seen 650 937 instances during training
(subsection 6.2). To allow for a fair comparison,
we train each MonoQL model with that many in-
stances.

Multilingual QLoRA (MultiQL). Fine-tuned
mT5large using LoRA on data from all 12 languages.
We expect this model to perform worse than ours
due to the noise from the language mix. Since our
HQL models are trained on 1 487 856 instances (cf.
subsection 6.2), we let this multilingual model train
up to that many instances.

Generate and Translate (Gen&Trans). We gen-
erate from AMR-to-English using the English
MonoQL. Then we translate that output into the
target languages with the same model used to gen-
erate our silver data (4-bit quantized NLLB-3.3B).
We expect this model to mirror the uneven quality
of machine translation models, performing well in
HR but less well in LR languages.

6.4 Metrics

Following NLLB Team et al. (2022), we use BLEU,
a simple surface-based metric that does not rely
on training data, which is an advantage when
dealing with multiple languages, particularly low-
resource ones. We compute the scores with Sacre-

BLEU (Post, 2018)10 and the default settings (in-
cluding 13a tokenizer) for comparability with previ-
ous works. We also report Chrf++ and BLEURT 11

scores in Appendix C, however we discuss mostly
BLEU given its widespread use in the past, being
the only metric available on all previous works that
use the same test as we do. We compute statisti-
cal testing via paired bootstrap resampling (Koehn,
2004) for BLEU and ChrF++ and Wilcoxon signed-
rank test (Wilcoxon, 1945) for BLEURT-20 and
report them on Appendix D.

7 Results

We report results obtained when generating from
both Silver and Gold AMR comparing our ap-
proach with previous works and baselines and ex-
amining results on both High- and Low-Resource
languages.

HQL outperforms or is on par with mono and
multilingual baselines (Silver and Gold AMRs).
On silver AMRs, HQL models are consistently bet-
ter than both the mono and the multilingual base-
lines, except for Tok Pisin (Figure 3, Table 3, Fig-
ure 4). Statistical tests (Appendix D) confirm that
the difference is statistically significant in most
cases. On gold AMRs, the results are more mixed.

10https://github.com/mjpost/sacrebleu
11https://github.com/google-research/bleurt
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Figure 3: BLEU score on our sub set of FLORES-200 test data. *Languages unseen by the mT5large base model.

Model DEU LTZ ENG TPI NLD LIM SPA AST ITA SCN FRA HAT
MonoQL 12.2 8.6 29.2 12.9 9.3 4.7 11.0 9.5 9.3 6.1 15.0 10.0
MultiQL 11.6 8.8 30.7 11.2 10.2 4.0 12.1 8.6 10.5 5.9 14.9 10.5
Gen&Trans* 16.4 10.6 29.2 11.2 12.9 4.9 14.2 11.9 14.2 5.2 23.1 11.6
DLHQL 14.2 10.9 36.3 11.6 12.4 5.1 13.9 11.9 13.2 8.3 19.8 12.4
PTHQL 15.0 11.5 35.9 11.8 12.3 5.0 13.5 12.0 13.3 8.1 20.0 12.5

Table 3: BLEU score on our sub set of FLORES-200 test data. *English Gen&Trans is simply the result of MonoQL.
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Figure 4: Average score (Y axis) across all 12 languages vs. total instances seen during training (X axis) for 3
metrics on our subs set of FLORES-200 test data. HQL models include results on all the intermediary levels of the
hierarchy.

Our models outperform on Italian and German but
not on English and Spanish - this is likely due to
both languages being among the most represented
in the pretraining data of the base model (Table 1).

HQL outperforms the Gen&Trans Baseline on
all LR languages. While the Gen&Trans base-
line outperforms our models on most HR languages
(except English), our approach outperforms the
Gen&Trans models on all LR languages (Figure 3).
This shows the benefits of HQL for LR languages
where MT yield low quality texts while our stacked
LoRA approach seems to enhance transfer. Simi-
lar results are seen on other metrics (Appendix C)
where HQL comes ahead in most LR languages.

We also see that two languages previously un-
seen by the base model (Tok Pisisn and Asturian)
show a transfer effect as they perform on par with
LR languages present in the base model’s training
data. For Limburgish and Sicilian, we conjecture
that the low scores result from the low-quality of
the machine translation as evidenced by the poor
performance of the Gen&Trans baseline on these
languages.

HQL optimizes faster than the three baseline
models and on average, outperforms them all.
Figure 4 plots the average BLEU, Chrf++, and
BLEURT-20 score for all 12 languages against
the number of instances seen during training. We
see that already at level L2, our HQL models out-
perform all three baselines (monolingual, multilin-
gual, Gen&Trans ) on two of the metrics despite
seeing fewer total training instances. The graph
also shows that each new level of the hierarchy

improves performance.

HQL performs on par with previous work (Gold
AMRs). Table 4 compares our results with pre-
vious works on Gold AMRs. In HR Romance lan-
guages, our HQL approach outperforms all pre-
vious works, in English, the score is close to the
best-performing model and in German, our model
underperforms both Xu’s and Lorenzo’s approach -
possibly due to differences in training data size and
the impact of multi-task learning.

Model DEU ENG SPA ITA
F&G 15.3 24.9 21.7 19.8
Ribeiro 20.6 — 30.7 26.4
Xu 25.7 — 31.4 28.4
Martinez 23.2 44.8 34.6 29.0
MonoQL 18.2 49.2 38.6 22.7
MultiQL 19.8 42.9 34.1 27.2
Gen&Trans* 28.0 49.2 39.6 33.8
DLHQL 21.2 44.2 37.4 29.2
PTHQL 22.8 43.4 37.2 29.7

Table 4: BLEU score on LDC2020T07 test data.
English Gen&Trans is simply the result of MonoQL.

HQL performs well compared to previous works
despite being trained on fewer data. In previ-
ous work, F&G, Ribeiro and Xu trained on 400k
to 8.9M synthetic training pairs per language while
the Martinez model is trained for up to 30 epochs
on close to 55K monolingual instances. In contrast,
our models are trained on 4 epochs and less than
31K instances per language. Despite this, our mod-
els come close to and in some cases, outperform
those previous approaches, while also enabling sup-
port for LR languages.
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Distant vs. Close Languages. We observe al-
most no significant difference when training on
distant (DLHQL) vs. closely related (PTHQL)
languages. While this could confirm Meng and
Monz (2024)’s observation that both are useful in
inducing transfer and regularisation respectively,
this could also be due to the restricted size of our
training tree since because of computation con-
straints, we limited ourselves to a small number of
languages which induces a strong overlap of train-
ing data between the two hierarchies: 100% on L0
and L3, 50% on L1 and L2, for a total training
overlap of 81%. To further evaluate the difference
between this approaches, future studies could re-
duce the overlap by selecting a larger hierarchy or
by starting with a reduced number of instances and
increasing their number as the training progresses
through the levels.

8 Conclusion

We proposed a novel approach for multilingual
AMR-to-Text generation and showed that it sig-
nificantly outperforms fully monolingual and fully
multilingual approaches. We demonstrated that, on
LR languages, it can outperform a Gen&Trans ap-
proach, despite most training data being machine-
translated. We compared different techniques for
selecting a training hierarchy and found that, while
the Phylogenetic approach usually achieves better
results than the distant languages approach, differ-
ences were not significant.
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10 Ethical Considerations

While there have been significant advances in mul-
tiple NLP tasks over the last couple of years, these
benefits tend to focus on High-Resource languages.
By researching how to improve performance over
a more diverse set of languages we hope to make

the field more inclusive and democratize the tech-
nology. This seems to us particularly relevant in
Graph-to-Text tasks, which help verbalize text into
more languages. Despite all these advantages, we
are still aware of the shortcomings of these tech-
nologies. Current models are capable of generat-
ing inaccurate text and misleading users in High-
Resource languages, and they remain even more
unreliable on Low-Resource tasks.

Supplementary Materials Availability State-
ment: All the required code and data can be
obtained, although some of the data is not free.
Our source code for training the models can be
found at https://gitlab.inria.fr/wsotomar/
HQL-Hierarchical-QLoRA. The NLLB-200-3.3B
model used for Machine Translation is avail-
able at https://huggingface.co/facebook/
nllb-200-3.3B. The AMR3-structbart-L seman-
tic parser is available at https://github.com/
IBM/transition-amr-parser/. The Flores-200
data is available at https://huggingface.co/
datasets/facebook/flores. The AMR 3.0
dataset (LDC2020T02) is available at https:
//catalog.ldc.upenn.edu/LDC2020T02. AMR
3.0 - 4 Translations dataset (LDC2020T07) is
available at https://catalog.ldc.upenn.edu/
LDC2020T07.
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