
Proceedings of the 17th International Natural Language Generation Conference, pages 622–630
September 23–27, 2024. ©2024 Association for Computational Linguistics

622

Leveraging Large Language Models for Building Interpretable Rule-Based
Data-to-Text Systems

Jȩdrzej Warczyński1 and Mateusz Lango1,2 and Ondřej Dušek2

1Poznan University of Technology, Faculty of Computing and Telecommunications, Poznan, Poland
2Charles University, Faculty of Mathematics and Physics, Prague, Czechia

jedrzej.warczynski@student.put.edu.pl, {lango,odusek}@ufal.mff.cuni.cz

Abstract

We introduce a simple approach that uses
a large language model (LLM) to automati-
cally implement a fully interpretable rule-based
data-to-text system in pure Python. Exper-
imental evaluation on the WebNLG dataset
showed that such a constructed system pro-
duces text of better quality (according to the
BLEU and BLEURT metrics) than the same
LLM prompted to directly produce outputs, and
produces fewer hallucinations than a BART lan-
guage model fine-tuned on the same data. Fur-
thermore, at runtime, the approach generates
text in a fraction of the processing time required
by neural approaches, using only a single CPU.

1 Introduction

Data-to-text is a field of natural language genera-
tion (NLG) that focuses on converting structured,
non-linguistic data into coherent text (Gatt and
Krahmer, 2018). This paper, like many others in the
field (Castro Ferreira et al., 2020; Agarwal et al.,
2021; Kasner and Dusek, 2022), specifically ad-
dresses the challenge of generating text from data
expressed as RDF triples that consist of a subject,
a predicate, and an object. For instance, one pos-
sible textualization of the following RDF triples:
(Mozart, birthplace, Vienna), (Mozart, birth year,
1756) is “Mozart was born in 1756 in Vienna.”

There are two main approaches to the construc-
tion of data-to-text systems: rule-based and neural
methods (Gatt and Krahmer, 2018). Rule-based
approaches (Lavoie and Rainbow, 1997; White and
Baldridge, 2003) rely on predefined templates and
linguistic rules to transform structured data into
text, ensuring high precision and control over the
output. On the other hand, neural approaches lever-
age deep learning models to automatically learn the
mapping from data to text (Ke et al., 2021; Chen
et al., 2020). They offer greater flexibility and pro-
duce more natural and varied text, but have limited

interpretability, are more computationally intensive
and prone to producing hallucinations (Rebuffel
et al., 2022; Ji et al., 2023).

This paper combines these two perspectives on
building NLG systems and proposes to use a large
neural language model to train (implement) a rule-
based system. Specifically, we propose a training
procedure that processes the training set by asking a
large language model to write simple Python code
that would generate the reference text based on
the input data. The generated code is executed to
check for syntax errors and whether it produces the
correct output. The final result of the training of
the system is a single file of Python code that is
able to generate a textualisation for the input data.

Although experimental evaluation on the
WebNLG dataset (Gardent et al., 2017) showed
that our automatically written rule-based system
does not achieve the performance of a fully fine-
tuned neural model in terms of BLEU or BLEURT
score, it produces significantly fewer hallucinations
and outperforms a non-trivial neural baseline on
these measures. Moreover, our system is fully in-
terpretable and offers high controllability, as it can
be modified by a Python programmer if necessary.
Our approach also does not require a GPU during
inference and produces text almost instantaneously
on a single CPU.

2 Target rule-based system structure

We conceptualize a high-level fixed structure for
our proposed system’s Python code which organ-
ises processing according to the set of predicates
present in the input triples. It contains two main
elements: (1) an (initially empty) list of rules ca-
pable of converting a set of triples with particular
predicates into text, and (2) a rule selector that
processes the input triples and executes the corre-
sponding rules.

623

Figure 1: An overview of the training process of our rule-based system. Note that the output of the training process
is a NLG system implemented in pure Python code that does not need access to the LLM to generate text.

Each rule is a plain Python code snippet/subrou-
tine, coupled with with simplistic specifications of
the expected input, including the expected number
of triples and the list of their expected predicates.
The rules are arranged in a simple list. Before a
rule’s code is executed, the input triples are always
sorted to match the order of the predicates given in
the rule’s specification. This allows simpler rules
to be written and limits the number of potential
errors.

The rule selector processes the input triples by
extracting their predicates and executing the rule
that has the same list of predicates in the specifica-
tion. If there is no matching rule, the input is split
into several parts by a splitting mechanism that
aims to minimize the number of splits by apply-
ing greedy search. It iteratively searches for a rule
capable of processing the largest subset of input
triples, executes it, eliminates the already processed
triples from the input and repeats the process. If
no rule can be found by further splitting, the triples
are converted to text by a default rule “{subject}
{predicate} {object}”.

3 Training: LLM-based rule generation

The goal of the training procedure is to populate the
list of rules with useful rules capable of producing
a fluent and hallucination-free description of the
input triples.

First, the approach makes a single pass through
the training set, writing for each training example
a Python code capable of producing the reference
text (Sec. 3.1). The training procedure only analy-
ses instances that are not fully covered by already
trained rules (i.e. they cannot be processed without
applying the splitting mechanism), which signifi-
cantly reduces the size of the training set effectively

needed to train the system.
Next, the approach uses a simple mechanism

to improve the generalisability of the constructed
system (Sec. 3.2). The triples from the training
set are clustered to discover sets of predicates that
are likely to occur together on the input. Then, for
each likely set of predicates, an artificial training
example is constructed by interacting with an LLM,
and then a standard rule construction procedure is
applied.

3.1 Generating rules from training examples
The procedure for constructing a single rule for a
given training instance consists of the three follow-
ing steps:

Step 1: Prompt the LLM to write a rule The
LLM is instructed to generate Python code that
produces a factual textual description of the data
given in the input. Both the triples and the expected
output (reference text) are provided in the prompt,
but the model is informed that the code should be
general enough to produce correct text even if the
subjects/objects given in the triples are changed. A
simple code snippet is also included in the prompt
to inform the model about the classes used to repre-
sent the input and the general structure of the code.
See the full prompt in Appendix A.

Step 2: Execute and test the rule The code of
the rule is extracted from the response provided
by the LLM, and simple formatting heuristics are
applied to correct minor issues such as incorrect
code indentation. The code is then executed in a
separate process with a predefined timeout. If the
code terminates before the timeout, does not throw
an error, and the Levenshtein distance between the
output text and the reference is within a predefined
range, the rule is considered correct and added to

624

the list of rules. Otherwise, the rule is regarded as
incorrect.

Step 3: Correct the rule if needed If the rule
written by the LLM is incorrect, the model is in-
formed about the incorrect output produced or the
error returned, and it is asked to correct the issue
(see the prompt in Appendix A). This process is re-
peated twice. If the returned code is still incorrect,
the generation process is restarted from scratch,
beginning a new conversation with the model to
write the rule (Step 1). If this procedure fails a
second time, rule construction is skipped for the
given training instance.

3.2 Generating additional rules for improved
generalization

As mentioned above, we generate additional rules
for predicates that are likely to occur together in a
sentence to improve the generalisation of the con-
structed rule-based system.

Clustering predicates To cluster predicates from
the training set, we have developed a simple graph
clustering algorithm. We start by constructing a
graph, where each node represents a predicate in
the training set. We then add connections between
nodes (predicates) that co-occur in at least one train-
ing instance. Each connected component in such
a constructed graph represents an initial cluster of
predicates.

Since some clusters are too large for further pro-
cessing, we split connected components with more
than 20 nodes by systematically removing nodes
connected to all other nodes within the component.
After adjusting the cluster sizes, we generate train-
ing instances for all pairs, triples and quadruples of
predicates belonging to the same cluster using the
procedure described below.

Generating synthetic training examples To cre-
ate a training instance for a given list of predicates,
we again prompt the LLM. The prompt includes
an instruction to generate a full list of triples using
the specified predicates (i.e., come up with some
relevant subjects and objects for the predicates),
along with a corresponding reference text. Sev-
eral input-output examples from the training set are
provided to the LLM for context. The number of
these training examples varies to ensure coverage
of all requested predicate textualisations. Specifi-
cally, we used the splitting procedure from the rule
selector (see Sec. 2) to divide the list of predicates,

and then identified the relevant training examples
for each part. The template for the corresponding
LLM prompt can be found in Appendix A.

4 Experimental evaluation

4.1 Experimental setup

Dataset We performed experiments on the
WebNLG benchmark (Gardent et al., 2017) con-
taining data expressed as RDF triples and corre-
sponding text references, which is prominent in
many previous works. The rule-based system was
trained only on the training part of the dataset, the
fine-tuned baseline additionally used the develop-
ment part as a validation set. All systems were
tested on the in-domain part of the test set.

Baselines We compare the results of our rule-
based approach with two baselines:

• The BART-base model (Lewis et al., 2020)
fine-tuned on WebNLG dataset with the de-
fault architecture for conditional language
modelling provided by HuggingFace li-
brary (Wolf et al., 2020). More training details
are in Appendix B.

• A prompted LLM – to generate textual de-
scriptions for provided triples, we use the
instruction-tuned 70B version of the Llama 3
model (Touvron et al., 2023; Llama Team,
2024), in a quantized version through the ol-
lama library.1 A simple post-processing of
the results was applied to remove superfluous
text, such as encouragements for further in-
teraction with the model. The prompt used is
provided in Appendix A.

Our rule-based approach We run our procedure
of training a rule-based approach with Llama 3
70B large language model. The threshold of 5
on the Levenshtein distance is used to verify the
correctness of a rule during training (see Sec. 3.1,
step 2). Training was performed on two NVidia
L40 48GB GPUs with quantized models (FP8).
The processing of the original WebNLG dataset
took less than 7 hours (6h 56m) and resulted in
the construction of 3,408 rules. The generation of
additional rules (Sec. 3.2) resulted in approximately
110k new rules.

1https://ollama.com/, model ID llama3:70b.

https://ollama.com/

625

inference time
BLEU METEOR BLEURT GPU CPU interpretability

Prompted Llama 3 70B 38.26 0.680 0.113 6,360 s n/a ×
Fine-tuned BART 53.28 0.716 0.257 249 s 1,910 s ×
Our rule-based approach (with Llama 3 70B) 42.51 0.671 0.157 - 3 s

Table 1: Results of automatic evaluation on the WebNLG test set using BLEU, METEOR and BLEURT. Additionally,
the inference time (in seconds) for the full test set is reported. The reported times do not include loading the models
into memory and were measured on a machine with an Nvidia A40 48 GB GPU and an AMD EPYC 7313 CPU.

hallucinations
minor major omissions disfluencies repetitions

Prompted Llama 3 70B 0.08 0.07 0.07 0.19 0.03
Fine-tuned BART 0.20 0.33 0.19 0.16 0.07
Our rule-based approach (with Llama 3 70B) 0.04 0.13 0.08 0.13 0.03

Table 2: Results of manual evaluation on a sample of 75 examples from the WebNLG test set (percentage of
examples with different types of errors, see Sec. 4.3 for details).

4.2 Automatic evaluation

We investigate the quality of generated output using
several popular metrics: BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005) and
BLEURT (Sellam et al., 2020). Implementations of
these metrics from HuggingFace (Wolf et al., 2020)
are used. The results are presented in Table 1.

In terms of automatic text quality metrics, the
fine-tuned BART model achieved the highest
scores. However, our rule-based approach ranked
second in both the BLEU and BLEURT metrics,
outperforming the prompted Llama 3 model. More-
over, this result was computed on a single CPU
83 times faster than the fastest neural approach
(BART) running on a GPU. We also assessed the
effect of the additional rules generated from syn-
thetic data by evaluated a variant of the system
without these rules. We found the effect on met-
rics to be minimal (BLEU gain of 0.3%, BLEURT
and METEOR stay within 0.001). Nevertheless,
we still retain these rules to increase fluency for
predicate combinations unseen in training data.

Experiments with different LLMs To investi-
gate the impact of a particular selection of large
language model, we additionally performed exper-
iments with two smaller, general-purpose LLMs:
Mistral 7B (Jiang et al., 2023), Llama 3 7B (Llama
Team, 2024), as well as with one model spe-
cially tailored for programming: Code Llama 7B
(Rozière et al., 2023).2 The results of automatic
evaluation are presented in Table 3. It can be ob-

2Corresponding ollama model IDs: mistral, llama3,
codellama:7b-instruct.

BLEU METEOR

Llama 3 70B 42.51 0.671
Llama 3 7B 39.70 0.670
Mistral 7B 35.36 0.636
Codellama 7B 36.67 0.611

Table 3: Results of automatic evaluation of our rule gen-
eration approach using different LLMs on the WebNLG
test set using BLEU and METEOR metrics.

served that the task of writing NLG rules is quite
challenging for the language models, as there is a
significant performance gap, especially in terms of
BLEU, between the results of Llama 3 70B and
smaller models.

4.3 Human evaluation
To validate the results obtained from automatic
metrics, we conducted a small-scale in-house hu-
man evaluation. We selected 75 instances from
the test set of the WebNLG dataset and evaluated
the outputs of our approach and both baselines,
totalling 225 system outputs. Following our previ-
ous research (Lango and Dusek, 2023), the annota-
tion was performed by asking binary questions re-
lated to the existence of minor hallucinations (such
as typos in named entity names), major hallucina-
tions (output containing facts not supported by the
data), omissions (missing information), disfluen-
cies (grammar errors or difficult-to-read text), and
repetitions (information mentioned twice). The an-
notation was performed by five NLP experts, each
output was evaluated by a single annotator. The
annotators were shown the input triples along with
corresponding outputs from all three evaluated sys-

626

tems. The annotation process was blinded, with the
system outputs order randomly shuffled for each
example.

Results The results are presented in Table 2. The
proposed rule-based approach produces fewer mi-
nor hallucinations than both neural counterparts,
has the lowest number of disfluencies and, ex ae-
quo with the prompted LLM, the lowest number
of repetitions. The model also makes omissions
at a frequency comparable to prompted LLM and
significantly lower than fine-tuned BART. In terms
of major hallucinations, the proposed approach of-
fers a statistically significant improvement over
fine-tuned BART3, but falls short of the prompted
LLM. We hypothesise that the gap between our
system and LLM is a result of error accumulation:
our system is partially trained with silver-standard,
LLM-generated references that may contain hallu-
cinations, and also suffers from potential errors in
the written rules. There is also a possibility that the
LLM results on generating outputs from WebNLG
dataset are affected by data leakage (Balloccu et al.,
2024), which is not the case for generating rules
that are not present in the original dataset.

Human intervention experiment Since the man-
ual evaluation identified several hallucinations pro-
duced by a rule-based system, we assessed the hu-
man effort required to fix them. We randomly se-
lected five examples with hallucinations and asked
an experienced Python programmer to fix the code.
The programmer was able to use a standard IDE,
but without the support of AI tools such as Copi-
lot. The average time to fix one example was three
minutes. In the automatic evaluation performed,
none of the automatic metrics showed any degrada-
tion in the quality of the results, and the results for
all selected examples were correct. This demon-
strates the interpretability and controllability of the
generated rule-based system.

How do the rules looks like? The code of a typ-
ical rule has 5 lines of code (median) and very
often contains renaming or extracting data from
the input into a custom data structure (e.g. a dic-
tionary, defaultdict, list) and then filling a textual
template. The final text is often constructed by iter-
ating over the input triples or custom data structure
and appending parts of the sentence to the output.
However, some of the rules are quite complex as

3Confirmed by a two-sample T-test for proportions with
continuity correction, with p = 0.006.

they list possible conversions of data into text ac-
cording to the context (e.g. a list how to convert
month number into a month name). The code of the
longest rule produced has 51 lines. Several exam-
ples of written rules are provided in Appendix C.

5 Summary

We presented a new way of training NLG systems
for data-to-text problems: we use a large black-
box language model to write fully interpretable
Python code that is able to generate data textuali-
sation in a fraction of the processing time required
by fully neural systems. The experimental evalua-
tion showed that the quality of the generated text
is somewhere between that of a few-shot prompted
LLM and BART finetuned on the same training
data, offering an interesting trade-off between com-
putational and training data requirements, inter-
pretability and predictive performance. In future
work, we will extend the synthetic data genera-
tion to out-of-domain situations. We also plan to
include new types of rules, such as rules operat-
ing at the sentence level (e.g. adding subordinate
clauses).

Limitations

Currently, our approach does not allow the gener-
ation of rules for unseen, i.e. out-of-domain pred-
icates. This could be circumvented by providing
a list of out-of-domain relations or even examples
of out-of-domain inputs (without reference texts)
to our clustering mechanism (Sec. 3.2). Alterna-
tively, these procedures could be applied on-the-fly,
but this would require access to an LLM during
inference.

The presented approach may also generate hal-
lucinated (i.e. non-factual) outputs, but the exper-
iments demonstrated that the number of halluci-
nations is smaller than in the text generated by a
fine-tuned transformer-based language model.

Supplementary Materials Availability
Statement

Source code is available in our GitHub repository.4

All experiments were performed on the version of
WebNLG dataset available through the Hugging-
Face Hub.5

4https://github.com/jwarczynski/RuLLeM
5https://huggingface.co/datasets/webnlg-challenge/

web nlg

https://github.com/jwarczynski/RuLLeM
https://huggingface.co/datasets/webnlg-challenge/web_nlg
https://huggingface.co/datasets/webnlg-challenge/web_nlg

627

Acknowledgments

Co-funded by the European Union (ERC, NG-
NLG, 101039303) and National Science Cen-
tre, Poland (Grant No. 2022/47/D/ST6/01770).
This work used resources of the LINDAT/
CLARIAH-CZ Research Infrastructure (Czech
Ministry of Education, Youth, and Sports project
No. LM2018101).

References
Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami

Al-Rfou. 2021. Knowledge graph based synthetic
corpus generation for knowledge-enhanced language
model pre-training. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 3554–3565, Online. As-
sociation for Computational Linguistics.

Simone Balloccu, Patrı́cia Schmidtová, Mateusz Lango,
and Ondrej Dusek. 2024. Leak, cheat, repeat: Data
contamination and evaluation malpractices in closed-
source LLMs. In Proceedings of the 18th Confer-
ence of the European Chapter of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 67–93, St. Julian’s, Malta. Association
for Computational Linguistics.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Thiago Castro Ferreira, Claire Gardent, Nikolai Ilinykh,
Chris van der Lee, Simon Mille, Diego Moussallem,
and Anastasia Shimorina. 2020. The 2020 bilingual,
bi-directional WebNLG+ shared task: Overview and
evaluation results (WebNLG+ 2020). In Proceed-
ings of the 3rd International Workshop on Natu-
ral Language Generation from the Semantic Web
(WebNLG+), pages 55–76, Dublin, Ireland (Virtual).
Association for Computational Linguistics.

Wenhu Chen, Yu Su, Xifeng Yan, and William Yang
Wang. 2020. KGPT: Knowledge-grounded pre-
training for data-to-text generation. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 8635–
8648, Online. Association for Computational Lin-
guistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. Creating training
corpora for NLG micro-planners. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),

pages 179–188, Vancouver, Canada. Association for
Computational Linguistics.

Albert Gatt and Emiel Krahmer. 2018. Survey of the
state of the art in natural language generation: core
tasks, applications and evaluation. J. Artif. Int. Res.,
61(1):65–170.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput.
Surv., 55(12).

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Tim-
othée Lacroix, and William El Sayed. 2023. Mistral
7B. ArXiv:2310.06825 [cs].

Zdeněk Kasner and Ondrej Dusek. 2022. Neural
pipeline for zero-shot data-to-text generation. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3914–3932, Dublin, Ireland. As-
sociation for Computational Linguistics.

Pei Ke, Haozhe Ji, Yu Ran, Xin Cui, Liwei Wang, Lin-
feng Song, Xiaoyan Zhu, and Minlie Huang. 2021.
JointGT: Graph-text joint representation learning for
text generation from knowledge graphs. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 2526–2538, Online.
Association for Computational Linguistics.

Mateusz Lango and Ondrej Dusek. 2023. Critic-driven
decoding for mitigating hallucinations in data-to-text
generation. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2853–2862, Singapore. Association for
Computational Linguistics.

Benoit Lavoie and Owen Rainbow. 1997. A fast and
portable realizer for text generation systems. In Fifth
Conference on Applied Natural Language Processing,
pages 265–268, Washington, DC, USA. Association
for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Llama Team. 2024. The Llama 3 Herd of Models.
ArXiv:2407.21783 [cs].

https://doi.org/10.18653/v1/2021.naacl-main.278
https://doi.org/10.18653/v1/2021.naacl-main.278
https://doi.org/10.18653/v1/2021.naacl-main.278
https://aclanthology.org/2024.eacl-long.5
https://aclanthology.org/2024.eacl-long.5
https://aclanthology.org/2024.eacl-long.5
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://aclanthology.org/2020.webnlg-1.7
https://aclanthology.org/2020.webnlg-1.7
https://aclanthology.org/2020.webnlg-1.7
https://doi.org/10.18653/v1/2020.emnlp-main.697
https://doi.org/10.18653/v1/2020.emnlp-main.697
https://doi.org/10.18653/v1/P17-1017
https://doi.org/10.18653/v1/P17-1017
https://arxiv.org/abs/1703.09902
https://arxiv.org/abs/1703.09902
https://arxiv.org/abs/1703.09902
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.18653/v1/2022.acl-long.271
https://doi.org/10.18653/v1/2022.acl-long.271
https://doi.org/10.18653/v1/2021.findings-acl.223
https://doi.org/10.18653/v1/2021.findings-acl.223
https://doi.org/10.18653/v1/2023.emnlp-main.172
https://doi.org/10.18653/v1/2023.emnlp-main.172
https://doi.org/10.18653/v1/2023.emnlp-main.172
https://doi.org/10.3115/974557.974596
https://doi.org/10.3115/974557.974596
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.48550/arXiv.2407.21783

628

Kishore Papineni, Salim Roukos, Todd Ward, and Wei
jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318, Philadelphia, PA,
USA.

Clement Rebuffel, Marco Roberti, Laure Soulier, Geof-
frey Scoutheeten, Rossella Cancelliere, and Patrick
Gallinari. 2022. Controlling hallucinations at word
level in data-to-text generation. Data Mining and
Knowledge Discovery, 36(1):318–354.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-
tin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. 2023. Code Llama: Open Foundation
Models for Code. ArXiv:2308.12950 [cs].

Thibault Sellam, Dipanjan Das, and Ankur P. Parikh.
2020. BLEURT: Learning Robust Metrics for Text
Generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7881–7892, Online.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Michael White and Jason Baldridge. 2003. Adapting
chart realization to CCG. In Proceedings of the 9th
European Workshop on Natural Language Genera-
tion (ENLG-2003) at EACL 2003.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

A Prompts

In Figures 2, 3 and 4, we provide templates of
prompts used in our approach for training a rule-
based system.

In Figure 5, we show the prompt used for the
zero-shot prompted LLM baseline to generate triple
verbalizations directly.

All prompts are templates, with placeholders
containing the specific data instances denoted by
“{name}”, i.e. they follow the Python string format-
ting convention.

B Hyperparameters of BART fine-tuning

We used the BART-base model provided by the
HuggingFace library.6 AdamW with learning rate
η = 2 · 10−5 and parameters β = (0.9, 0.997),
ϵ = 10−9 was used as optimizer. Additionally, we
applied polynomial scheduler of η with a warmup
equal to 10% of optimization steps. The training
was scheduled for 20 epochs with early stopping
on validation loss (patience of 10 epochs). We used
batch size equal to 8 and label smoothing with 0.1
smoothing factor.

C Examples of constructed rules

In Figure 6, we provide several examples of rules
constructed by our approach.

6https://huggingface.co/facebook/bart-base

https://www.aclweb.org/anthology/P02-1040
https://www.aclweb.org/anthology/P02-1040
https://doi.org/10.1007/s10618-021-00801-4
https://doi.org/10.1007/s10618-021-00801-4
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2308.12950
https://aclanthology.org/2020.acl-main.704/
https://aclanthology.org/2020.acl-main.704/
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://www.aclweb.org/anthology/W03-2316
https://www.aclweb.org/anthology/W03-2316
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://huggingface.co/facebook/bart-base

629

Complete Python code to convert given facts (triples) into a factual textual
description (output).

Write only a fragment of Python code that will replace the comment in the snippet
below and nothing else. Do not include code that I have already written. triples
is a list of tuples where each tuple is (subj , relation , obj).

Your code should be included inside this template:

triples = {triples}
relations = [triple.pred for triple in triples]
if (relations == {relations }):

// your code to generate output
output = ...
print(output)

The output should be "{ output }". The code should work even if the values of subj and
obj in the triples are different , but the relations (pred) at the input of the

program will always be the same and in the same order. Wrap any code in <code ></
code > tags.

Figure 2: Prompt used to generate rules in our approach.

The desired output is: "{}"
but your code yields: "{}"
Could you produce code that returns the correct output? Remember to wrap the code in

<code ></code > tags.

Figure 3: Prompt used to inquire for rule edits in our approach.

Your task is to create a sample for data -to-text dataset.
For a given set of relations generate a corresponding list of RDF triples and a text

that describes them. Keep the same formating as in the example below.
All the triples should be related (e.g. add information about already mentioned

entities).
The output text should ONLY describe the input triples and NOT add any extra

information.

Example
relations: birth place , birth year , capital of
<sample >
in: (Mozart | birth place | Viena), (Mozart | birth year | 1756), (Vienna | capital

of | Austria)
out: Mozart was born in 1756 in the capital of Austria , Vienna.
</sample >

Example
relations: {relations}
<sample >
in: {input}
out: {out}
</sample >

Figure 4: Prompt used to generate artificial training instances in our approach.

You are given the following list of RDF triples.
{triples}
Write a plain text description of this data. Output only the text of the description

.

Figure 5: Prompt for the zero-shot prompted LLM direct data-to-text generation baseline.

630

subj = triples [0]. subj
obj = triples [0]. obj
relation = triples [0]. pred
output = f"{subj} {relation} {obj}."

(a) A simple rule to describe the “is part of” relation.

subj = triples [0][0]
birth_date = next(obj for subj , pred , obj in triples if pred == 'birth date')
birth_place = next(obj for subj , pred , obj in triples if pred == 'birth place ')
alma_mater = next(obj for subj , pred , obj in triples if pred == 'alma mater')
award = next(obj for subj , pred , obj in triples if pred == 'award ')

output = f"{subj}, born on {birth_date} in {birth_place}, graduated from {alma_mater
}, his alma mater. He won the prestigious {award}."

(b) A rule for describing an input with the following set of relations: “alma mater”, “award”, “birth date” and “birth place”.

subj = triples [0]. subj
output = f"{triples [1]. obj} is the {triples [1]. pred} of {subj} located at {float(

triples [2]. obj):.0f} metres above sea level in {triples [0]. obj}. The airport
runway , named {triples [3]. obj} has a length of {float(triples [4]. obj):.0f}."

(c) A rule for describing an input with the following set of relations: “city served”, “operating organisation”, “elevation above
the sea level”, “runway name” and “runway length”. Note the use of number formatting functions.

subj = triples [0]. subj
industry_obj = [triple.obj for triple in triples if triple.pred == 'industry '][0]
product_obj = [triple.obj for triple in triples if triple.pred == 'product '][0]

if product_obj.lower() == 'world wide web':
product_obj = 'web'

output = f"{subj} not only offers applications in the {industry_obj.lower()}
industry , but also produces {product_obj} services."

(d) A rule for describing an input with the following set of relations: “industry”, “product”. The rule overfitted to the training
example related to web applications.

Figure 6: Examples of rules automatically constructed by our approach. Note that by default, the input is accessible
to the rules via the “triples” list.

