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Abstract

Social media has become a global platform
where users express opinions on diverse con-
temporary topics, often blending dominant lan-
guages with native tongues, leading to code-
mixed, context-rich content. A typical example
is Hinglish, where Hindi elements are embed-
ded in English texts. This linguistic mixture
challenges traditional NLP systems, which rely
on monolingual resources and need help to pro-
cess multilingual content. Sentiment analysis
for code-mixed data, mainly involving Indian
languages, remains largely unexplored. This
paper introduces a novel approach for senti-
ment analysis of code-mixed Hinglish data,
combining translation, different stacking clas-
sifier architectures, and embedding techniques.
We utilize pre-trained LoRA weights of a fine-
tuned Gemma-2B model to translate Hinglish
into English, followed by the employment of
four pre-trained meta embeddings: GloVe-T,
Word2Vec, TF-IDE, and fastText. SMOTE is
applied to balance skewed data, and dimen-
sionality reduction is performed before imple-
menting machine learning models and stacking
classifier ensembles. Three ensemble archi-
tectures, combining 22 base classifiers with
a Logistic Regression meta-classifier, test dif-
ferent meta-embedding combinations. Exper-
imental results show that the TF-W2V-FST
(TF-IDF, Word2Vec, fastText) combination per-
forms best, with SVM radial bias achieving
the highest accuracy (91.53%) and AUC (0.96).
This research contributes a novel and effective
technique to sentiment analysis for code-mixed
data.

1 Introduction

In communities where multiple languages are spo-
ken, individuals often blend their native language
with other prevalent languages during conversa-
tions. In digital space, including social media and
texting with friends and family (Thara and Poor-
nachandran, 2018), mixing languages emerges as

a key force to steer a paradigm shift. Using more
than one language in a single text, whether through
code-mixing or code-switching, is a distinctive fea-
ture of social media communication. Social media
and social networks (SMSN) platforms emerge as
the key systems to encourage this contextual data.

Today, social media platforms are used for var-
ious activities, including keeping up with news,
political and social events, sports, business, enter-
tainment, and socializing (Kamwangamalu, 1989).
Users also share reviews and opinions about prod-
ucts and services, often using multiple languages
(Kim, 2006). This code-mixed text, written in an-
other language’s phonetic script, conveys strong
sentiment and emotion, adding depth and authen-
ticity. A significant portion of this text is in lan-
guages like Spanish, Chinese, Arabic, Hindi, and
Urdu. The shift in opinion sharing has fueled
interest in sentiment analysis to understand user
content better. Initially, traditional data analytics
provided insights into product reviews, trending
topics, and targeted advertising. Now, NLP re-
searchers focus on the complex code-mixed text,
which includes spelling errors, hashtags, creative
spellings (e.g., "b4" for "before"), abbreviations
(e.g., "BTW" for "by the way"), phonetic typing
(e.g., "becoz" for "because"), and wordplays (e.g.,
"gooood" for "good").

In recent years, users in multilingual countries
like India have increasingly used native and Ro-
man scripts to express their feelings (Parshad et al.,
2016). With the growth of the internet and the
expansion of user-generated content online, this
practice has become increasingly prevalent in writ-
ten text. For instance, Hinglish Tweet: "@naren-
dramodi ji, 2024 ke chunav mein phir se PM bante
dekh khushi hui. Aapke netritva mein desh ka
vikas aur unnati hoga.” and English Translation:
"@narendramodi ji, It was a joy to see you become
PM again in the 2024 elections. Under your leader-
ship, the country will progress and prosper."



Sentiment analysis of code-mixed text is chal-
lenging (Srivastava and Singh, 2021) due to un-
structured sentences, phonetic typing, mixed lan-
guages, spelling variations, and grammatical errors.
This study builds on existing work by proposing a
novel approach for Code-Mixed sentiment analysis
for Hinglish. We utilize LoRA weights of fine-
tuned LLM, fine-tuned on a code mixed (Hinglish-
to-English) machine translation task, with different
NLP & meta-embedding techniques.

1.1 Motivation and Research Questions (RQs)

Code-mixed text, standard on social media, is es-
sential for sentiment analysis and emotion detec-
tion tasks. However, existing NLP tools struggle
with the unique challenges of mixed-language data.
This work addresses the complexities of Hinglish,
a blend of Hindi and English prevalent on plat-
forms like Twitter, especially in regions like India.
This paper proposes a novel sentiment analysis
framework for Hinglish tweets on X platform. We
utilize LoRA weights of a fine-tuned LLM on a
Hinglish-to-English machine translation task, com-
bined with various NLP and meta-embedding tech-
niques. We aim to predict the sentiment (positive
or negative) of code-mixed tweets. This research
aims to enhance NLP tools for code-mixed social
media content, improving the analysis of emotions
and opinions on products, politics, and events from
social media. The conducted work is guided by the

following research questions (RQs):

* RQ1: How do various text representation
techniques (e.g., TF-IDF, meta-embeddings)
compare in their ability to capture semantics
relevant to code-mixed sentiment classifica-
tion when configured in different ways?

¢ RQ2: How do evaluation metrics like Accu-
racy and AUC differ across data balancing
techniques in category prediction for code-
mixed Hinglish data?

* RQ3: Can ensemble methods improve classi-
fication models’ reliability and generalization
efficiency, and how do different models com-
pare in their performance?

1.2 Contributions and Outline

The following outlines the contributions of this
work:

1. The proposition of a novel sentiment anal-
ysis framework for code-mixed language

"Hinglish’ tweets (from X platform) utiliz-
ing a fine-tuned Large Language Model for
Hinglish-to-English translation as introduc-
tory work.

2. The proposed framework explores the vari-
ous pre-trained meta-embedding techniques
and their combinations in conjunction with
an advanced sentiment analysis to deliver a
pipeline. It thus utilizes combined efforts for
the intended purpose.

2 Related Work

In recent work, Jadon et al. (Jadon et al., 2024)
explored a hybrid LSTM-GRU model for senti-
ment analysis on Hinglish data, combining Long
Short-Term Memory (LSTM) and Gated Recur-
rent Unit (GRU) architectures. This approach
handled Hinglish’s linguistic complexities effec-
tively, achieving 96.76% accuracy. Frias et al.
(Frias et al., 2023) examined Cross-lingual Word
Embedding (CLWE) for sentiment analysis on a
code-mixed Filipino-English corpus, developing
a large, manually annotated feedback dataset on
Higher Education Institutions. Using pre-trained
transformer-based CLWE methods like mBERT,
XLM-R, and XLM-T, they fine-tuned an Attention-
based BiILSTM-CNN neural architecture. XLM-T
achieved the highest performance with 91.30% ac-
curacy, 90.36% precision, 90.92% recall, and a
90.61% F1-score.

Sampath and Supriya (Sampath and Supriya,
2024) introduced a method for translating
code-mixed Hinglish, Malayalam-English, Tamil-
English, and Telugu-English text into monolingual
English using IndicLID for language identification
and IndicTrans for transliteration and translation.
IndicLID identified Indic languages with over 99%
accuracy and code-mixed variants with 95%. Addi-
tionally, various ML and DL models were assessed
for sentiment analysis on code-mixed data, with
the DistilBERT tokenizer and classifier proving
the most accurate. Similarly, Ansari and Govilkar
(Ansari and Govilkar, 2018) proposed language
identification at the word level along with POS
tagging. Identified words were transliterated into
native Indian languages (Hindi and Marathi), and
sentiment scores were derived from SentiWord-
Net. NB and SVM classifiers were used, with the
F1 scores for NB and Linear SVM outperforming
those of RBF-based SVM for Hinglish.

Singh and Lefever (Singh and Lefever, 2020)



investigated sentiment analysis for Hinglish using
unsupervised cross-lingual embeddings to capture
word meanings across languages. This method,
trained on SemEval 2020 data ((Patwa et al., 2020)),
outperformed models trained on monolingual em-
beddings, achieving an F1-score of 0.635 compared
to a baseline of 0.616. The cross-lingual embed-
dings facilitated transfer learning, allowing a senti-
ment model trained on English data to be applied
to Hinglish data, resulting in an F1-score of 0.556.
Singh (Singh, 2021) found that the highest F1-
score of 0.6907 on the SemEval 2020 dataset was
achieved using an Ensemble Voting (soft) ((Patwa
et al., 2020)) classifier. This ensemble included
SVM, Logistic Regression, and Random Forest,
with the RF estimator parameter set to 750 and the
SVM probability parameter set to true. The data
was vectorized using a TF-IDF vectorizer with un-
igrams and a minimum occurrence frequency of
2.

To analyze Hinglish data, Sasidhar et
al.(Sasidhar et al., 2020) created a dataset
of 12000 Hindi-English code-mixed texts and
annotated them with Happy, Sad, and Anger
emotions.  Then, a trained bilingual model
was used to generate feature vectors, and deep
neural models like 1D-CNN, LSTM, Bi-LSTM,
CNN-LSTM, and CNN-BiLSTM were employed
as classification models. They observed that the
selected features, CNN-BiLSTM, performed best
with 83.21% classification accuracy. Awatramani
et al. (Awatramani et al., 2021) discussed the
Lexicon-Based, Rule-Based, and ML approaches
to study the effectiveness of classifying the text
corpus with their appropriate sentiment labels.
The Support Vector Machine (SVM) and Logistic
Regression (LR) approaches gave the best results,
with both algorithms giving an F1-score of 0.86
and an accuracy of 86%.

Gupta et al. (Gupta et al., 2021) introduced an
unsupervised self-training framework for sentiment
analysis of code-switched data using fine-tuned
BERT models with pseudo labels from zero-shot
transfer, achieving an Fl-score of 0.32 and 36%
accuracy for Hinglish. Mamta and Ekbal (Mamta
and Ekbal, 2024) proposed a multilingual, multi-
task model with a transformer-based pre-trained
encoder for sentiment analysis of code-mixed and
English texts. By incorporating English sentiment
analysis as an auxiliary task, they fine-tuned the
BERT encoder to capture shared and task-specific
features, outperforming SOTA single-task systems

on Hindi-English, Punjabi-English, and English
datasets.

3 Study Design

Figure 1 illustrates the proposed pipelines of the
work, with all the computational elements and inter-
actions placed. The computational modules are de-
signed using either of the fundamental techniques,
e.g. meta-embedding, data balancing, feature se-
lection, feature scaling, or classification. The pro-
posed research study consists of two individual sets
of modules: the Translation and Prediction mod-
ules. The translation module is a dedicated module
for the ’'Hinglish to English’ translation of code-
mixed Tweets from Twitter, aka the *X’ platform.
This module is prefixed and postfixed using data-
cleaning techniques. Further, prediction modules
take care of computations using different methods.
The inherent details within each technique are pro-
vided subsequently.
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Figure 1: Proposed Pipeline for Sentiment Prediction
on Hinglish Code-Mixed Text.

3.1 Dataset Details

In this research, we utilized a dataset of tweets
from the Mendeley Data repository (Pratibha et al.,
2024) (dataset available at Mendeley Data). This
data contains Hinglish tweets that vividly express
raw emotions, sentiments, and textual gestures re-
lated to various conflict situations, with 410 and
984 for Positive and Negative sentiment labels, re-
spectively. This includes, but is not limited to, wars,
crises, civil unrest, and world wars I, 11, etc.

1. tweets emotion 200: This file contains 195
rows of Hinglish tweets, each labelled with




one of 15 emotions, such as empathy, compas-
sion, resilience, hope, gratitude, fear, anger,
etc. The emoji field contains any emoji or
emoticons if present in the tweet.

2. emotions_tweets 1205: This file contains
1,204 rows of Hinglish tweets, each labelled
with one of 15 emotions: empathy, compas-
sion, resilience, etc.

3.2 Data Preprocessing

The preprocessing steps are essential to ensuring
the dataset’s suitability and enhancing the over-
all performance of the sentiment analysis work-
flow. Three key processing steps are integrated:
Pre-translation data cleaning and Class grouping,
translation of Hinglish text, and post-translation
data cleaning and Normalization elaborated below.

3.2.1 Sentiment Class Grouping and
Pre-Translation Text Cleaning

Datasets contain 15 emotion classes in both files.
These emotions are grouped into two major classes:
positive and negative. positive class included
classes such as ’empathy’, ’compassion’, ’re-
silience’, hope’, and ’gratitude’, while negative
class encompassed *fear’, *anger’, ’sadness’, ’anx-
iety’, ’shame’, ’guilt’, "hopelessness’, ’frustra-
tion’, ’disgust’, and ’grief’. A new column named
"Sentiment” was created to store these respective
binary labels, positive or negative. This binary clas-
sification facilitated an effective sentiment analysis.
Further, the text cleaning within Hinglish tweets in-
cludes the removal of hashtags, Mentions, Special
Characters and URLSs, and Lowercasing. We have
used regular expressions and pattern matching for
this step. As a result of this thorough cleaning pro-
cess for Hinglish tweets, the file emotions_tweets
1205 lost four rows of data. Consequently, the total
number of rows in the file decreased from 1204 to
1199. We then concatenated both files to make a
single CSV file.

3.2.2 Translation of Hinglish Tweets and
Post-Translation Cleaning

To handle code-mixed Hinglish tweets, we utilized
pre-trained Low-Rank Adaptation (LoRA) weights
of a fine-tuned high-performance LLM (available
on the Hugging Face platform) to translate Hinglish
to standard English. The model, fine-tuned on
gemma-2b !, employs PEFT (LoRA) with rank 128.

"hf://google/gemma-2b-keras

This approach adapts the model’s attention and
feed-forward layers using low-rank matrices, al-
lowing significant adaptation to Hinglish’s unique
syntactical and lexical characteristics with mini-
mal parameter updates. Low-rank weight metrics
occupy less storage space and provide similar per-
formance.

We enabled LoRA on the GemmaCausalLM
model with a rank of 128 and a sequence length
of 256; loading pre-trained LoRA weights fine-
tuned for Hinglish-to-English translation. A tem-
plate with placeholders for Hinglish input and En-
glish output was used. To maintain grammatical
integrity, we created a utility function to append
periods to sentences lacking terminal punctuation.
The translation process involved formatting the
Hinglish sentence with the template, generating the
English translation using the LoRA-enabled Gem-
maCausalLM model from the keras_nlp library,
and extracting the translated text. We applied this
translation function to each tweet in our dataset,
creating a new column named ’Translated_Tweet’
to store the English versions. This translation
step was a critical component of our preprocess-
ing pipeline, ensuring that our sentiment analysis
approach could operate effectively on a uniform
language basis, thus enhancing the accuracy and
robustness.

The translated tweets underwent text cleaning
and normalization using the Natural Language
Toolkit (NLTK) for punctuation, special character
removal, and stop-word removal. These preprocess-
ing steps ensured the dataset was clean and consis-
tent, enhancing the input data quality and signifi-
cantly improving the machine learning model’s per-
formance in subsequent stages. Our choice of trans-
lating to English was influenced by the strengths
of the employed LLM and embeddings in English,
which allowed for higher accuracy and contextual
understanding.

3.3 Mocktails of Word Embeddings
Techniques

Word embeddings are critical in transforming tex-
tual data into a numerical format, enabling ma-
chine learning models to process and understand
language effectively. We employed four pre-
trained word embedding techniques, e.g. GloVe-T,
Word2Vec (CBOW approach), TF-IDF, and fast-
Text (character n-grams), in different combinations,
aka Mocktail, e.g. TF-FST, TF-GL-FST, etc, to rep-
resent the textual data in a continuous vector space.



Our approach leverages meta-embedding learning,
which involves generating a single (meta) word
embedding from a set of pre-trained source word
embeddings without pre-training the source embed-
dings or requiring access to the text corpora used
to train them. Employed embeddings are computa-
tionally lightweight, require less computationally
intensive resources.

3.4 Data Sampling and Feature Selection

To address the class imbalance, we used the
Synthetic Minority Over-sampling Technique
(SMOTE), which generates synthetic samples by
interpolating between existing minority class sam-
ples. This method helps balance the class distri-
bution and improves the model’s learning from
majority and minority classes.

For feature selection, we used a correlation-
based dimensionality reduction approach. We re-
moved highly correlated features by calculating
correlation coefficients between feature pairs (ab-
solute correlation coefficient > 0.7) to reduce re-
dundancy, eliminating multicollinearity and pre-
serving the most informative features. We have
also normalized these datasets using a Min-Max
scaler, ensuring feature values ranged between 0
and 1, and removed columns with NaN values to
maintain data integrity.

3.5 Classification Techniques and Validation

In the proposed pipeline, various stacking clas-
sifier configurations with different base learners
were evaluated using cross-validation. We designed
stacking classifiers with two to four base learners to
enhance predictive performance, each operating on
distinct meta-embedding feature spaces for diverse
perspectives. The base learners included Naive
Bayes (Gaussian, Bernoulli, Multinomial), Deci-
sion Trees, Logistic Regression, k-nearest Neigh-
bors, and Support Vector Classifiers (linear, ra-
dial bias, polynomial kernel). Ensemble classifiers
such as Bagging, Random Forest, Extra Trees, Ad-
aBoost, Gradient Boosting, XGBoost, LightGBM,
and Multi-Layer Perceptron (MLP) with different
solvers (Ibfgs, sgd, adam) were also employed. Lo-
gistic Regression served as the final estimator. Each
stacking classifier incorporated two to four mod-
els from 22 machine-learning models trained on
different meta-embedding features. For instance,
Figure 2 shows a three-model stacking classifier us-
ing three distinct meta-embedding features for each
classifier. Fifteen combinations of four embedding

techniques were utilized, and the mentioned classi-
fiers (excluding ensembles) were assessed for the
single meta-embedding techniques. We used 3-fold
cross-validation for robust performance evaluation,
shuffling and splitting the data into training and
testing sets.
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Figure 2: Instance of embedding Mocktails, as Triadic
Word Embedding concatenation

4 Experimental Evaluation and Analysis

In the experimental analysis, the original dataset
(ORGD) is transformed using 4 meta-embedding
techniques, creating 4 new datasets. These datasets
are balanced with SMOTE, resulting in 8 datasets.
Dimensionality reduction is then applied, produc-
ing 16 datasets. We evaluate the predictive perfor-
mance of various classifiers using our standalone
meta-embedding techniques and three stacking ar-
chitectures, combining various meta-embedding
techniques with 2 to 4 classifiers from 22 ML mod-
els, using Logistic Regression as the meta-classifier.
This process is applied to all 08 datasets, explor-
ing 15 combinations of the 4 meta-embeddings
for each of the 02 sets (SMOTE and ORGD). In
total, 660 unique classification pipelines are cre-
ated, representing different combinations of meta-
embeddings, data balancing techniques, and clas-
sification algorithms. This comprehensive setup
allows for a robust analysis of tweet categorization,
enhancing the predictive modeling process.

The prediction pipelines are evaluated using Ac-
curacy and AUC metrics, where accuracy indicates
the proportion of correctly classified instances, and
AUC measures the classifier’s ability to distinguish
between classes. Comparisons are made using box
plots for AUC and accuracy, descriptive statistics
(min, max, mean, median, Q1, Q3), and hypothesis
testing using the Friedman and Wilcoxon Signed
Rank Test.

4.1 Exploring the effect of Word-Embedding
Techniques

The impact of embedding techniques on pipeline
performance is evaluated using AUC and Accuracy,
analyzed with box plots, descriptive statistics, and
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Figure 3: Performance box plots of employed Embedding techniques and Mocktails

hypothesis testing via the Friedman and Wilcoxon
Signed Rank Test.

Descriptive statistic and Box-plots analysis: Fig-
ure 3 provides the box-and-whisker diagram of
accuracy and AUC values. The stacking classifiers
are trained on 15 combinations of our four orig-
inal meta-embeddings. Figure 3 depicts that the
models developed using the embedding technique
TF-W2V-FST (TF-IDF, Word2Vec, and fastText)
show the best performance with a mean AUC of
0.94, a median AUC of 0.94 and mean accuracy of
88.74%. TF-W2V technique shows similar perfor-
mance.

Friedman test with Wilcoxon signed rank test:
Two hypothesis tests have also been conducted on
performance analysis: the Friedman and Wilcoxon
Signed Rank Test with Bonferroni correction. First,
the Friedman test has been used to examine the
null hypothesis “The performance values of stack-
ing classifiers trained using twenty-two different
classifiers show no significant improvement after
applying different embedding techniques and their
combinations”. We rejected Hy only if p < 0.05.

Table 2 present the Friedman test results on Ac-
curacy and AUC values, demonstrating that the
models trained using different embedding tech-
niques are significantly different. As indicated in
Table 2, TE-W2V-FST secures the best mean rank
on accuracy values of 3.18, and on AUC values, it is
3.30. This concludes that the technique TF-W2V-
FST is best for developing the models for code-
mixed sentiment analysis. Conversely, GLOVE
has the highest mean rank, 13.02 on Accuracy and
12.80 on AUC, indicating that the model devel-
oped using standalone embeddings like GLOVE
has the worst performance. After the Friedman test

results, the study performed the Wilcoxon signed-
rank test with Bonferroni correction. The consid-
ered hypothesis for the Wilcoxon test is “The per-
formance values of different embedding techniques
when compared pairwise are significantly same”.
Table 2 shows the results of this test. This table
shows that the performance of various word em-
bedding techniques differs significantly for the task
of code-mixed sentiment classification.

RQ1: How do various text representation tech-
niques (e.g., TF-IDF, meta-embeddings) compare
in their ability to capture semantics relevant to
code-mixed sentiment classification when con-
figured in different ways? ut of all the meta-
embedding techniques and their combinations, TF-
W2V-EST outperformed every other configuration
with a mean AUC value of 0.94 and a mean AUC
rank of 3.30.

4.2 Exploring the effect of Data Balancing
Technique

The effectiveness of the SMOTE data balancing
technique is evaluated by comparing accuracy
and AUC, with results analyzed through box-and-
whisker diagrams and hypothesis testing.
Descriptive statistic and Box-plots analysis:
Figure 4 provides the box-and-whisker diagram of
accuracy and AUC values. Figure 4 shows that the
models trained on SMOTE-augmented data outper-
formed, with a mean AUC of 0.94, a median AUC
of 0.95, and a mean accuracy of 87.96%. In com-
parison, models trained on original data achieved
a mean AUC of 0.89 and a median AUC of 0.91.
Thus, employing the SMOTE approach improved
the AUC values of models from 0.89 to 0.94, rep-
resenting a 5.62% enhancement in their predictive



Table 1: Hypothesis testing statistics of different Word Embedding and Mocktails.

TFIDF GLOVE W2V FST TF-GL TF-W2V TF-FST GL-W2V GL-FST W2V-FST TF-GL-W2V TF-GL-FST TF-W2V-FST GL-W2V-FST All

TFIDF 1.00 0.63 023  0.64 0.00 0.00 0.00 0.01 0.03 0.08 0.00 0.00 0.00 0.02 0.00
GLOVE 0.63 1.00 0.28 098  0.00 0.00 0.00 0.02 0.05 0.11 0.00 0.01 0.00 0.03 0.00
w2v 0.23 0.28 1.00  0.31 0.05 0.01 0.03 0.14 0.37 0.57 0.08 0.10 0.01 0.19 0.06
FST 0.64 0.98 031 1.00 0.01 0.00 0.00 0.02 0.06 0.15 0.01 0.01 0.00 0.04 0.00
TF-GL 0.00 0.00 0.05 0.01 1.00 0.37 0.71 0.52 0.27 0.16 0.92 0.80 0.37 0.40 0.81
TF-W2V 0.00 0.00 0.01 0.00 037 1.00 0.58 0.19 0.06 0.03 0.29 0.25 0.99 0.15 0.45
TF-FST 0.00 0.00 0.03 0.00 0.71 0.58 1.00 0.41 0.17 0.09 0.63 0.52 0.52 0.34 0.82
GL-W2V 0.01 0.02 0.14 0.02 052 0.19 0.41 1.00 0.46 0.32 0.83 0.70 0.20 0.81 0.53
GL-FST 0.03 0.05 037 0.06 027 0.06 0.17 0.46 1.00 0.77 0.43 0.39 0.05 0.61 0.26
W2V-FST 0.08 0.11 057 0.15 0.16 0.03 0.09 0.32 0.77 1.00 0.24 0.23 0.03 0.39 0.13
TF-GL-W2V 0.00 0.00 0.08 0.01 0.92 0.29 0.63 0.83 0.43 0.24 1.00 0.89 0.25 0.71 0.72
TF-GL-FST 0.00 0.01 0.10  0.01 0.80 0.25 0.52 0.70 0.39 0.23 0.89 1.00 0.22 0.65 0.57
TF-W2V-FST  0.00 0.00 0.01  0.00 0.37 0.99 0.52 0.20 0.05 0.03 0.25 0.22 1.00 0.13 0.43
GL-W2V-FST  0.02 0.03 0.19 0.04 040 0.15 0.34 0.81 0.61 0.39 0.71 0.65 0.13 1.00 0.46
All 0.00 0.00 0.06 0.00 081 0.45 0.82 0.53 0.26 0.13 0.72 0.57 043 0.46 1.00
Accuracy 12.01 13.02  10.74 12.02 7.67 3.69 6.42 7.08 8.32 7.67 6.83 7.35 3.18 7.80 6.19
AUC 12.73 12.80  10.09 1230 6.64 3.32 5.61 691 8.59 9.73 7.52 7.30 3.30 748 5.70

capability, with optimally balanced data to the pre-
diction task.

Friedman test with Wilcoxon signed rank test:
The same Friedman and Wilcoxon Signed Rank
Test has been used here with Bonferroni correction
to find the significant impact of using the sampling
approach. Further, Table 4 lists the Friedman test
values for SMOTE are 1.09 on accuracy and 1.01
on AUC, both lower than ORGD. Thus, models
trained with SMOTE data are better for CMSA.
A comparison of ORGD with SMOTE using the
Wilcoxon signed rank test has been conducted fol-
lowing this test. Table 4 shows the result of this
test, and we reject the hypothesis suggesting signif-
icantly improved performance on SMOTE-based
prediction models than ORGD.
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Figure 4: Performance box-plots of ORGD vs. SMOTE-
based data.

Table 2: Hypothesis testing stats of Classes Imbalanced
problem.

ORGD SMOTE
ORGD 1.00 0.63
SMOTE 0.63 1.00
Accuracy 1.91 1.09
AUC 1.99 1.01

RQ2: How do evaluation metrics like Accuracy
and AUC differ across data balancing techniques
in category prediction for code-mixed Hinglish
data? After applying SMOTE, the mean AUC
value for ORGD, 0.89, improved to 0.94. Mean-
while, mean accuracy improved from 85.19% to
87.96%. Thus, balancing the data using SMOTE
proved beneficial for CMSA task.

4.3 Exploring the performance of
Classification Techniques

The stacking classifier architectures are validated
with 3-fold cross-validation, and their effectiveness
is assessed using Accuracy and AUC metrics, fol-
lowed by hypothesis testing for further analysis.
Descriptive statistic and Box-plots analysis:
Figure 5 shows the accuracy and AUC box plots
for the different classifiers. The examination of Fig-
ure 5 concluded that among the general classifiers,
the SVM with radial bias (SVCR) demonstrated
superior performance, achieving a mean AUC of
0.96 and a mean accuracy of 91.53%. In contrast,
the NB Bernoulli (BNB) classifier exhibited the
lowest performance, with a mean AUC of 0.73 and
a mean accuracy of 74%. Within the ensemble clas-
sifiers, LightGBM (LGBMC) performed the best
with a mean AUC of 0.96 and a mean accuracy of
91.23%, closely followed by XGBoost (XGBC).
However, AdaBoost (AdaB) and GradientBoosting
(GRaB) displayed the lowest performance, with
a mean AUC of 0.88. For MLP classifiers utiliz-
ing different solvers, the MLP with Adam solver
(MLPA) outperformed, achieving a mean AUC of
0.94 and a mean accuracy of 89.56%. In contrast,
the MLP with SGD solver (MLPS) had the lowest
performance, with a mean AUC of 0.90 and a mean
accuracy of 86.69%. Overall, the SVCR classifier
emerged as the top performer, while LGBMC and
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Figure 5: Performance Box-plots of employed Classifiers for Prediction.

XGBC performed similarly, securing second-best
results. BNB classifier had the weakest perfor-
mance.

Friedman test with Wilcoxon signed rank test:
The Friedman test employs the Null hypothesis
‘performance values of stacking classifiers show
no significant improvement after changing training
algorithms’, and the summary listed in the Table
6 depicts that the stacking classifiers trained us-
ing different algorithms are not significantly sim-
ilar. From Table 6, with a mean AUC rank of
2.00 and mean accuracy rank of 2.10, the analysis
of the experiment concludes that SVCR performs
best, while the GRaB classifier technique performs
worst, with a mean AUC rank of 20.67 and mean
accuracy rank of 19.78. AdaB offers a similar per-
formance. After finding the best training algorithm,
the investigation used the Wilcoxon signed rank
test with Bonferroni correction to compare differ-
ent training methods pairwise. The considered hy-
pothesis for the Wilcoxon test is “The performance
values of stacking classifiers of different training
algorithms, when compared pairwise, are signif-
icantly same”. Table 6 shows the results of the
Wilcoxon test with Bonferroni correction. Finally,
it is observed that the SVCR outperforms signifi-
cantly compared to other training methods. There-
fore, the investigation recommends a classifier like
SVCR to predict the sentiment of the code-mixed
text.

RQ3: Can ensemble methods improve the re-
liability and generalization efficiency of classifi-
cation models, and how do different models com-
pare in their performance? As we saw, the TF-
W2V-EST embedding approach outperformed oth-
ers, demonstrating that a triad model ensemble is
more effective than standalone classifiers. Among
all the base classifiers, SVCR performed best with

a mean AUC of 0.96 and an accuracy of 91.53%.

5 Conclusion

The paper exemplifies how LLMs, classifiers, em-
bedding techniques, feature selection, and sam-
pling can be combined effectively to enhance the
performance and efficacy of predicting sentiment
for code-mixed tweets. Accuracy and AUC are
used to validate the effectiveness of each technique,
while the Wilcoxon Sign Rank test and Friedman
test statistically analyze the findings. The results
conclude that for code-mixed Hinglish data, the TF-
W2V-FST embedding approach achieved the best
rank based on AUC and accuracy values, demon-
strating that combining embedding techniques with
ensembling outperforms standalone embeddings
with general classifiers. The experimental findings
also demonstrated improved performance after em-
ploying the SMOTE sampling technique. Addition-
ally, the best mean rank for the CMSA task was
obtained with the SVM radial bias (SVCR) classi-
fication algorithm, and LGBMC and XGBC both
showed second-best results. The future directions
may employ optimization methods to refine our re-
search findings. Additionally, we aim to develop an
LSTM-based approach for generating embeddings
specifically tailored to Hinglish.
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