
Comprehensive Plagiarism Detection in
Malayalam Texts Through Web and Database

Integration
Parvathy Raj, Meharuniza Nazeem, Rajeev R R, Anitha R, Navaneeth S

International Centre for Free and Open Source Solutions (ICFOSS)
Government of Kerala, Thiruvananthapuram, Kerala,India

parvathyraj12@gmail.com, meharuniza@icfoss.org, rajeev@icfoss.in,
anitha@icfoss.org, navaneeths@icfoss.org

Abstract—Plagiarism detection techniques have
become essential for recognizing instances of
plagiarism, particularly in the domain of
academics where scientific papers and documents
are of prime importance. We propose an
application that offers a comprehensive solution
for detecting plagiarism in scholarly articles
written in Malayalam, enabling users to submit
texts, analyze them for plagiarism, and review the
results interactively. With the increasing
accessibility of digital content, maintaining
originality in academic writing has become more
tedious. Our research addresses this challenge by
providing a solution tailored to the Malayalam
language. The application aids researchers and
academic institutions in detecting potential
plagiarism by accessing web-based content and
algorithmic text analysis. The study significantly
contributes to the field of plagiarism detection for
low resource language such as malayalam and
offers a practical way to preserve the originality of
Malayalam scholarly work. The performance of
four algorithms SequenceMatcher, N-Grams,
Rabin-Karp, and Cosine Similarity is thoroughly
evaluated. Cosine Similarity, with a 92.45%
detection rate, outperformed the others,
significantly surpassing Rabin-Karp(65.3%), N-
Grams(58.7%) and SequenceMatcher(51.4%).
Using this improved efficiency, a user-friendly web
application was developed that integrates web
search and database comparison features with the
Cosine Similarity algorithm.

Keywords: Plagiarism detection, Similarity Algorithms,
Regional Language Plagiarism

I. INTRODUCTION

Plagiarism occurs when someone presents another
person’s work (ideas, words, or creations) as their own
without acknowledging the original source.This
undermines the core values of honesty and integrity
essential for success in academia, professions, and
creative endeavors. At its core, plagiarism undermines
originality, honesty, and integrity, all of which are
essential to the pursuit of knowledge and creative

expression. The scope of plagiarism extends beyond
simply copying text verbatim. Plagiarism detection
employs various methods, broadly classified as
similarity-based and logic-based techniques. The
similarity-based techniques are the methods focused on
identifying textual similarities between the document in
question and other sources. They compare the
document’s content, such as words, phrases, and
sentence structures, to a vast database of existing texts
to find potential matches. The logic based techniques
are simple text matching and analyze the underlying
logic and structure of the document. They may examine
things like argumentation, citation patterns, and the
overall flow of ideas to identify inconsistencies or
evidence of plagiarism.

Algorithms commonly employed in plagiarism
detection include Rabin-Karp, Sunday’s algorithm, N-
grams methods, cosine similarity, Jaccard similarity,
and Latent Semantic Analysis (LSA). These
techniques operate by comparing texts or semantics of
two or more recomposed documents. In professional
and academic domains, plagiarism casts doubt upon
one’s originality and integrity. In creative industries, it
constitutes an infringement of intellectual property
rights, with potential legal ramifications. In the last
twenty years, automatic systems for the detection of
copying have changed greatly, for instance, in relation
to the English language. Plagiarism detection systems
utilize various techniques, including string matching,
semantic analysis, and machine learning. However,
their effectiveness can be limited by their reliance on
specific language features. This poses challenges
when dealing with languages with limited linguistic
resources. Therefore, developing effective plagiarism
detection systems requires careful consideration of the
unique characteristics of each language to ensure
accurate and reliable results.

Malayalam, a prominent Dravidian language spoken
by over 38 million people, possesses a rich linguistic
heritage. Its growing digital presence necessitates the
development of robust plagiarism detection tools.

While challenges like the potential for mistranslation
of nuanced features and the unique morphological
characteristics of Malayalam need to be addressed,
effective plagiarism detection systems are crucial for
maintaining academic integrity, upholding
professional standards, and promoting the ethical
development and use of the Malayalam language in
the digital age. These systems would ensure the
originality of student work, protect intellectual
property rights, and foster a culture of academic and
professional honesty within the Malayalam-speaking
community.

Considering these language barriers, it is vital to
create plagiarism detection systems that consider
specific characteristics of the Malayalam language.
Such systems are important in upholding the ethical
standards of scholarship as well as protecting the
intellectual property of researchers, writers and
content developers who write in Malayalam. It is
important to ensure that such tools are developed
because without them there is a high possibility of
plagiarizing which will affect the standard and the
integrity of scholarly and professional work produced
in Malayalam.

This paper offers solutions for the detection of
malayalam’s plagiarism, which is not widely
supported. It is the first study that employs four
similarity-based methods: SequenceMatcher, NGrams,
Rabin-Karp and Cosine Similarity for the analysis of
Malayalam language. Cosine Similarity achieved the
best performance when it comes to correlating
comparable tasks in the Malayalam language. This
piece also tackles the intricate structure of Malayalam
as an agglutinative language. Quite importantly, a
user-friendly web application is built for block
multiplication practical purposes The methodology
provided in this paper can help to form a base model
for further application of the terms in the context of
other morphologically elaborate and agglutinative
languages in plagiarism detection.

II. RELATED WORKS

Garg et al. [1] introduced a plagiarism detection
technology named Maulik, specifically designed for
Hindi. It uses methods such as sentence structure
analysis, word matching, and semantic analysis to
effectively detect plagiarism in Hindi literature,
particularly in academic settings. Gupta et al. [2]
discussed a method for detecting external plagiarism
(plagiarism occurring between documents) using
fuzzy-semantic similarity and natural language
processing (NLP) techniques, which produced
encouraging results when tested on multiple Indian
languages.

Lambda et al. [3] examined several plagiarism
detection techniques for Indian languages like
Marathi, Tamil, and Hindi. The study classified
methods based on machine learning algorithms, NLP
strategies, and similarity metrics, highlighting the
challenges of plagiarism detection in regional
languages due to the lack of linguistic resources and
tools. D. Thenmozhi et al. [4] explored deep learning
techniques for detecting paraphrases in Indian
languages such as Hindi and Tamil, using encoder-
decoder models to improve plagiarism detection
accuracy. N. Naik et al. [5] focused on using semantic
analysis for plagiarism detection in Marathi
documents. Dixit et al. [6] reviewed various
plagiarism detection tools and technologies,
emphasizing their mechanisms and algorithms.
Kulkarni et al.[7] explored different types of
plagiarism, including syntactic and semantic
plagiarism, with a focus on how techniques such as
Naive Bayes, N-gram analysis, and NLP can yield
positive results for regional languages like Hindi and
Marathi. Lamba et al. [8] emphasized the need for
customized methods for regional languages, proposing
techniques like fingerprinting and winnowing.

Eman Al-Thwaib et al.[9] discussed a two-stage
plagiarism detection technique for Arabic, leveraging
a thesis repository and an algorithm that can detect
various types of plagiarism, such as paraphrase and
word order changes. This method also employed
machine learning algorithms for cross-lingual
plagiarism detection between English and Arabic,
achieving significant improvements in performance
when using Support Vector Classifiers (SVC) with
multilingual encoders. The University of Jordan
library’s thesis repository is the first corpus that
contains a number of PhD and postgraduate
dissertations in order to detect plagiarism. The next
stage involves developing a plagiarism detection
system specifically for Arabic that can recognise
several types of plagiarism, such as word order
changes, synonym replacement, paraphrase, and exact
copying. There are ways where semantic and syntactic
information are extracted with the use of word
location, word embedding, and word order where
multilingual encoders are employed for sentence-level
cross-language plagiarism detection between English
and Arabic.

The identified characteristics are further integrated
with several machine learning (ML) algorithms to
assist in categorising phrases as either non-plagiarized
or plagiarised content [10]. SemEval-2017 datasets
have been utilised in the application and evaluation of
this approach. A study of experimental data
demonstrates that better outcomes are obtained when
these collected features are combined with various
machine learning (ML) classifiers. With an F1 score

of 0.879, the study also reveals that Support Vector
Classifiers (SVC), when built with all characteristics,
yield the best and most optimal outcome.

Research has been done on plagiarism detection
methods that can detect syntactic parsing, synonym
thesauri, and tracking citations. According to these
findings, machine learning methods perform well
when it comes to plagiarism detection [11]. While
research on text-based plagiarism detection is
advanced, methods for detecting images, drawn
figures, tables, equations, and scanned documents are
still lacking. Improved outcomes can be achieved by
combing and combining several plagiarism detection
techniques, particularly those based on machine
learning. Combining textual and non-textual data with
quality assessment criteria is one possible avenue for
future research [12]. A benchmark corpus of 10,872
excellent documents organized at the sentence and
paragraph granularity levels is offered by certain
studies. This dataset is used for a number of tasks,
such as intrinsic plagiarism detection, author
clustering in Urdu, and verbatim text reuse
identification. It also helps researchers and
practitioners in natural language processing by making
it easier to create plagiarism detection algorithms that
are specific to the Urdu language [13]. These models
help identify plagiarised information in Urdu literature
by improving the precision of plagiarism detection,
which is useful in publishing and education.

A collaborative test consisting of fifteen web-based
text-matching algorithms appropriate for scenarios
where plagiarism may be suspected has been
researched. Researchers from seven different nations
took part, using test materials in eight different
languages to evaluate the performance of the
algorithms on papers with many sources as well as
single sources. The findings suggest that some
systems do better than others when it comes to
particular languages or language families. Major
languages like English, German, and Spanish have
more sources covered overall than minor languages
like Czech or Slovak [14]. Numerous research
examine approaches, features, classification, and
obstacles related to the detection of plagiarism in
source code and natural language. It gives a summary
of popular plagiarism detection programs, their
features, and the difficulties that can arise while using
them. Additionally, the study establishes the
foundation for creating future approaches and
instruments that are more effective in addressing
efficiency-related problems [15].

III. METHODOLOGY

This section describes the process, which includes
managing text data in Malayalam, looking out
pertinent online resources, and determining how
comparable various data sources appear. The process
begins with input documents containing Malayalam
content in formats like DOC, TXT, ODT, or PDF.
These documents are tokenized into smaller chunks
for analysis, and the tokenized text is stored in an
internal database for later comparison, as shown
below. 1.

Fig. 1. Model Architecture

After tokenization, the system uses the Google Search
API to retrieve URL search results related to the
Malayalam input. The content from these URLs is
extracted using web scraping, forming a ”scraped
corpus.” Cosine similarity is then calculated between
the scraped corpus and the original tokenized text.
Cosine similarity measures the similarity between two
text vectors in multidimensional space, providing a
score between 0 (no similarity) and 1 (perfect
similarity).

The last step is to find the cosine similarity between
the text from the scraped web corpus and the
tokenised internal text from the original documents. A
popular metric in natural language processing is
cosine similarity, which calculates the degree of
similarity between two text passages by visualising
them as vectors in a multidimensional space. The
similarity score is given here as a percentage and runs
from 0 (no resemblance) to 1 (perfect similarity). This
score is useful for things like answering questions,
detecting plagiarism, and cross-referencing material
by indicating how closely the web text matches
internal Malayalam papers. This methodology offers a
solid strategy for evaluating Malayalam literature,
gathering data from the internet, and contrasting it
with regional statistics to determine relevance and
accuracy.

IV.IMPLEMENTATION

A. Database creation and retrieval:

Data was collected from two sources: the Malayalam
monthly Thudi and the Shodhganga thesis database.
After identifying relevant papers, Tesseract OCR was
used to extract Malayalam text from the PDFs,
followed by pre-processing to clean the text. The
cleaned text was stored in an SQLite database with
metadata, including titles, authors, and publication
dates.

1) Data Collection

The well-known Malayalam periodical Thudi and the
sizable Indian theses and dissertations database
Shodhganga served as the study’s two primary data
sources. The approach begins with locating relevant
research papers in Malayalam and is subsequently
refined by using certain keywords and filters. To
locate pertinent records that are within the scope of the
study, both sources are extensively investigated. After
being identified, the documents are downloaded,
typically in PDF format, and stored in a carefully
organised folder to make processing easier later in the
workflow.

SQLite was chosen for this study due to its simplicity,
ease of integration, and sufficiency for handling the
scope of the application. The study required a
lightweight, file-based database that could manage
structured text data with metadata such as titles and
authors. SQLite provided an efficient way to store and
query this data without the overhead of a server-based
database system.

2) Data Extraction using Tesseract OCR

Tesseract OCR (Optical Character Recognition) is
used to transform the text from the downloaded PDFs
into a machine-readable format after data collection.
In order to ensure correct Malayalam text extraction,
the method starts with setting Tesseract OCR with a
Malayalam language pack.
We create a script to do the following tasks
automatically:

• Open every PDF file.
• Create a picture from each page if necessary.
• To extract text from the photos or straight from the

PDF, use Tesseract.
However, because of the intricacies of the Malayalam
script and frequent OCR faults, the recovered text
frequently has mistakes or unnecessary letters. The
collected text goes through a pre-processing step in
order to address this:

• Cleaning the text: content cleaning includes deleting
superfluous characters, correcting frequent OCR
misunderstandings, and standardising content to
ensure consistency.

• Tools for normalising text: The output is refined using
regular expressions and language-specific libraries to
make sure the retrieved text is precise and prepared for
analysis.
The text is saved in a SQLite database for convenient
future access after it has been extracted and cleaned.
Each document’s key metadata is represented by
clearly specified tables and columns in the database
structure. Among these columns are:

• Title
• Author
• Publication date
• Cleaned text content

3) Database Construction

Because every document entry is saved along with its
associated metadata, future analysis will be able to
search, retrieve, and compare documents with ease.
The content is readily available for analysis, such as
content comparison or plagiarism detection, thanks to
the organised database format.

B. Pre-processing and Tokenization:

Tokenising the gathered content is the first step in the
research process; this entails dividing the text into
more digestible, smaller chunks known as tokens.
Tokenisation is an important step because it makes the
text easier to absorb and analyse by breaking it up into
discrete words, sentences, or other relevant parts.
Finding patterns, connections, and underlying
structures in the text is made possible by this
segmentation, and this is crucial for tasks like content
comparison and plagiarism detection.

Users can enter the text directly into a specific text
area on the interface or submit a document containing
the text in the earliest stages of the procedure. After
submission, the text is tokenised, which divides the
content into manageable chunks or sentences using the
period (.) as a delimiter. Every sentence or part is
handled as a unique token, which is subsequently
investigated further on its own. The algorithm can do
more thorough evaluations by independently
evaluating these smaller pieces, making it easier to
spot patterns like unique phrases, repeating structures,
or replicated information. Due to the independent
processing of each token, this granular method enables
more accurate analysis and provides deeper insights
into the structure and meaning of the information.

C. Web search and corpus creation
This stage involved searching the internet for each
token or passage of the supplied text using the
Googlesearch Python package. To make sure that only
genuine web pages were taken into consideration, the
search results were filtered to retain only authentic,

non-empty URLs. Using Python’s urlparse package,
the domains of these URLs were extracted in order to
count and prevent duplicate domains. The requests
library was used to make an HTTP GET request with
a 30-second timeout for each valid URL.
BeautifulSoup was then used to parse the HTML
content of the website and extract the primary text,
with an emphasis on paragraph (¡p¿) components. In
the following stages of the study, similarity analysis
was performed on the corpus that contained the
retrieved text.

D. Feature extraction and Similarity checking:
In document comparison and plagiarism detection,
feature extraction and similarity verification are
essential procedures. The process of feature extraction
entails locating and separating important elements
from text, such as linguistic patterns, sentence
structures, and word frequencies. These elements
function as a condensed depiction of the content in the
document. Following that, similarity checking
compares several texts to ascertain how much they
resemble one another using these features that were
extracted. The paragraph discusses the application of
three alternative algorithms for similarity analysis,
suggesting a comparative comparison of several
techniques for determining textual similarity.

This study’s utilisation of several algorithms enables a
thorough assessment of various similarity detecting
methods. Every algorithm probably uses a different
approach to compute similarity scores between texts
and to mathematically represent the collected
information. With this strategy, researchers can
evaluate how effective different techniques are,
pinpoint each one’s advantages and disadvantages,
and even combine methods to get more precise results.
Research of this kind is essential to the development
of content recommendation systems, plagiarism
detection programs, and other applications that use
textual similarity analysis. This study’s comparative
design indicates an attempt to raise the precision and
dependability of similarity analysis in diverse settings.

1) N grams similarity algorithm:
The n-gram technique detects plagiarism by
comparing the n-grams, or substrings of length n,
of two text passages and calculating how similar
they are First, the original text and the possibly
plagiarized text are divided into n-grams [16], or
overlapping sequences of n characters, in the
context of Malayalam. The two texts are then
compared using these n-grams to find any
overlaps or commonalities.

The program then determines the frequency with
which each n-gram occurs in the two texts. By
applying a similarity metric such as the Jaccard
similarity coefficient, the technique evaluates how

many n-grams are shared between the two texts
relative to the total number of unique ngrams. A
greater probability of plagiarism is indicated by a
higher similarity score [17]. The following are the
steps in the n-gram comparison algorithm:
N-gram Extraction: Every input string is divided
into n-character sequences that overlap. For
instance, the n-grams for the string ”hello” with
n=3 would be ”hel”, ”ell”, and ”llo”. Counting N-
grams: Following the separation of the strings into
n-grams, the next stage is to tally the number of
times each distinct n-gram appears in each of the
two strings. This aids in determining whether n-
grams are more prevalent or overlap between the
two strings [18]. Finding Similarity: The method
counts the two strings and then compares their n-
gram sets. The Jaccard similarity metric is used to
obtain the similarity score by calculating the
degree of overlap between the two sets.

Jaccard Similarity (1)

Where:
• A ∩ B is the number of common n-grams

(intersection),
• A∪B is the total number of unique n-grams from

both strings (union).
2) Cosine similarity

Cosine similarity, which converts two texts into
vectors and measures their similarity, is a
commonly used method in Malayalam plagiarism
detection. In a multi-dimensional space, every text
or document is represented as a vector, with each
dimension denoting a distinct word across the text
corpus. The degree to which the texts are similar
based on word usage is indicated by the cosine
similarity [19], which calculates the cosine of the
angle between these two vectors. Since the focus
of this method is on the direction of the vectors
rather than their magnitude, it may identify
similarities in texts of different lengths, making it
especially effective for Malayalam.

In order to apply cosine similarity in Malayalam,
the texts must first undergo tokenisation, a
preprocessing step in which every word is
dissected and stop words—common, unimportant
words—are eliminated. These terms are frequently
vectorised using the term frequency inverse
document frequency (TF-IDF) approach. For
every vector in the dataset, the frequency of a
word is correlated with its relevance. The cosine of
the angle between these vectors is used to compute
the similarity score [20]. A value of 1 indicates
that the vectors and, by extension, the texts, are
identical, while a value of 0 indicates that they are
wholly unlike. This technique is robust for

detecting semantic similarities in Malayalam texts
and performs well even when the plagiarism
comprises small adjustments like sentence
reordering or synonym replacement.

Cosine Similarity (2)

Where:
• A·B is the dot product of vectors A and B,
• ∥A ∥ is the Euclidean norm (magnitude) of vector A,
• ∥B ∥ is the Euclidean norm of vector B.

The cosine similarity value ranges from -1 to 1:
• 1 indicates perfect similarity (the vectors are

identical),
• 0 indicates orthogonality (no similarity),
• -1 indicates complete dissimilarity (opposite vectors).

3) The Rabin Karp Algorithm
Hashing is a technique used by the RabinKarp
algorithm to quickly identify a pattern in a longer
text. Rather than comparing the complete pattern to
every substring in the text, it computes the pattern’s
hash value first, then compares it to the hash values
of all the text’s substrings that have the same length
shown below 2. The method then verifies that the
pattern has been found by looking at the real
characters if the hash values match. This two-step
procedure, which compares hashes and then
verifies characters, considerably accelerates the
search process.

This technique may calculate hash values for
numerous patterns at once, making it very useful
when numerous patterns need to be searched at
once. The efficacy of this method improves with
the quantity of patterns it searches, which makes it
perfect for extensive text matching jobs like
plagiarism detection. When looking for many
patterns or lengthy texts, the algorithm is faster
than standard search methods because it uses
hashing to limit the amount of needless character
comparisons.

Fig. 2. Rabin- Karp hash table

 (3)

Where:
• S is the string (either the pattern or a substring of the

text), m is the length of the string S,

• d is the number of possible characters in the input (for
example, the size of the alphabet), • q is a prime
number used to reduce the hash value.

V. RESULT AND DISCUSSION
This study tested four algorithms: SequenceMatcher,
N-Grams, Rabin-Karp, and Cosine Similarity. Cosine
Similarity achieved the highest detection rate at
92.45%, followed by Rabin-Karp (65.3%), N-Grams
(58.7%),and SequenceMatcher(51.4%).A web
application using the Cosine Similarity algorithm was
developed, offering a user-friendly interface for
plagiarism detection. The similarity percentages for all
four algorithms are displayed in Figure 3 shown
below, which was created as a means of testing each
algorithm’s accuracy in detecting similarities between
texts.

Fig. 3. Similarity percentage of different algorithms

However, it was less successful in identifying content
that had been paraphrased. By calculating the cosine
of the angle between two vectors in multidimensional
space, the Cosine Similarity algorithm, which was
able to discover both precise and close matches,
finally displayed the highest similarity percentage
(92.45%).

Fig. 4.Malayalam Plagiarism Checker

Using the Cosine Similarity algorithm, an application
was created in the second research phase with an
emphasis on efficiency and simplicity. To make the
plagiarism-checking process go more smoothly, the
application is divided into three columns, each of
which has a specific function. Users can upload or
enter text for analysis in the first column, and there are
options to format the text and get a comprehensive
PDF report that includes a summary of the results.

Convenience and flexibility are provided by the ability
for users to paste text directly or upload text files.

The subsequent column provides the findings of the
plagiarism check in an easy-to-read, organised format.
Important details are highlighted in this column, such as
the proportion of identified plagiarism, pertinent
sources, and lines that align with other content. The
results are initially suppressed for clarity, but they can
be extended for a more thorough investigation. To
improve user engagement, more tools and options are
available in the third column. This includes tools like
interactive visualisations that visually show the analytic
findings and filters to narrow down results and prioritise
information. As seen in Figure 5, these features
facilitate users’ interpretation and action on the data.

Fig. 5.Malayalam Plagiarism Checker

The user interface of a plagiarism checker program is
seen in this image. Three pieces make up the main
screen: a document details panel on the right, a central
area for text input and document upload, and a
navigation menu on the left. The application provides
several methods for entering text for verification, such
as importing from a book, direct text pasting, and file
upload. For content fetching, you can also specify the
URL of a website. The Malayalam text that is shown
in the input box indicates that the interface accepts
scripts other than Latin.

Users can add metadata, including author, title, and
description, to the submitted content by going to the
document details area. A visibility setting is also there,
and since it is currently set to ”Private,” users may be
able to restrict who can view their documents. Orange
and white make up the majority of the colour scheme,
which is simple and clean overall. This tool’s features
and style suggest that it is made to be user-friendly,
however it has extensive plagiarism checking
capabilities that can be used to a wide range of sources
and document types.

VI. CONCLUSION AND FUTURE WORKS

This study highlights the importance of addressing
plagiarism detection in regional languages. The spread
of digital content has made it easier for people to share
knowledge in local languages, but it has also made
plagiarism in these languages more likely. It is

essential to create plagiarism detection techniques that
are specifically suited to regional languages in order to
preserve academic integrity, safeguard intellectual
property, and encourage originality in scholarly work.
Several plagiarism detection methods for Malayalam
texts were investigated throughout the experimental
phase. With a high similarity detection rate of 92.45%,
Cosine Similarity was shown to be the most successful
among them. This indicates its potential as a strong
option for thorough Malayalam plagiarism detection.
The accuracy of Rabin-Karp (65.3%), N-Grams
(58.7%), and SequenceMatcher (51.4%) was much
lower, highlighting the need for more sophisticated
algorithms to handle the subtleties of academic
literature. Building on these discoveries, the
subsequent phase would entail incorporating the
Cosine Similarity algorithm into an online application,
providing a dependable and easy-to-use instrument for
identifying and averting plagiarism in Malayalam
academic writing.

Integrate semantic analysis for plagiarism detection to
identify closely paraphrased content and cross-lingual
copying. Leveraging transformer models can
effectively capture these subtle nuances. Incorporating
NoSQL databases like Elasticsearch would be highly
beneficial for scaling the current system to production.
A web-based plagiarism detection tool leveraging this
technology will significantly enhance and uphold
academic integrity in research publications,
particularly in Malayalam.

ACKNOWLEDGMENT

We would like to express our sincere gratitude to
Dinesh Lal D L for his invaluable coordination and
support throughout our study. Special thanks are also
extended to Sabeerali K P, B Arya Jagish, , Adarsh J,
and Yadu Krishnan P K for their exceptional technical
expertise, which was instrumental in the successful
completion of this research.

REFERENCES

[1] A.Garg and M.Goyal, Maulik: A Plagiarism
Detection Tool for Hindi Documents,
Proceedings of the 9th International Conference
on Natural Language Processing (ICON 2016),
2016, pp. 80–85.

[2] S.Gupta R.Chatterjee, and S.Bhatnagar, Using
Natural Language Processing Techniques and
Fuzzy-Semantic Similarity for Automatic
External Plagiarism Detection, International
Journal of Computational Linguistics Research,
vol. 5, no. 2, pp. 42-49, 2014.

[3] N.Lamba and S.Govilkar, A Survey on
Plagiarism Detection Techniques for Indian
Regional Languages in 2017 International
Conference on Computing Communication

Control and Automation (ICCUBEA), Pune,
India, 2017, pp. 1–6.

[4] D.Thenmozhi and S.Kayalvizhi, Paraphrase
Detection in Indian Languages Using Deep
Learning in Proceedings of the International
Conference on Computational Intelligence in
Data Science (ICCIDS 2020), Chennai, India,
2020, pp. 30–42.

[5] N.Naik and K.Landge, Plagiarism Detection in
Marathi Language Using Semantic Analysis in
Proceedings of the 4th IEEE International
Conference on Computing Communication,
Control and Automation (ICCUBEA), Pune,
India, 2019, pp. 1–7.

[6] Dixit R, Hegde S,and P. Pai, A Literature
Review on Plagiarism Detection in Computer
Programming Assignments, International
Research Journal of Engineering and
Technology (IRJET), 2022.

[7] Sagar Kulkarni,Sharvari Govilkar,and Dhiraj
Amin , Analysis of Plagiarism Detection Tools
and Methods, Proceedings of the 4th
International Conference on Advances in
Science and Technology (ICAST2021), 17 Jun
2021.

[8] Harshall Lamba, Sharvari Govilkar , A Survey
on Plagiarism Detection Techniques for Indian
Regional Languages, International Journal of
Computer Applications (0975 – 8887) Volume
164 – No 4, April 2017.

[9] Eman A Thwaib, Bassam H Hammo and
SaneYag, An academic Arabic corpus for
plagiarism detection: design, construction and
experimentation, International Journal of
Educational Technology in Higher Education,
2020.

[10] Naif Alotaibi and Mike Joy, English-Arabic
Cross-language Plagiarism Detection,
Proceedings of Recent Advances in Natural
Language Processing, pages 44–52 ,Sep 1–3,
2021.

[11] Anchal Pokharana and Urvashi Garg, A Review
on diverse algorithms used in the context of
Plagiarism Detection, 2023 International
Conference on Advancement in Computation &
Computer Technologies (InCACCT), 05-06 May
2023.

[12] Tomas Foltynek, Norman Meuschke, and Bela
Gipp, Academic Plagiarism Detection: A
Systematic Literature Review, ACM Computing
Surveys, Vol. 52, No. 6, Article 112. Publication
date: October 2019.

[13] Muhammad Haseeb, Muhammad Faraz
Manzoor, Muhammad Shoaib Farooq, Uzma
Farooq and Adnan Abid, A versatile dataset for
intrinsic plagiarism detection, text reuse
analysis, and author clustering in Urdu,

Published by Elsevier Inc. This is an open access
article under the CC BY license.

[14] Tomas Foltynek, Dita Dlabolova, Alla
AnohinaNaumeca, Salim Razi, Julius Kravjar,
Laima Kamzola, Jean Guerrero-Dib, Ozgur
Celik, and Debora Weber-Wulff, Testing of
support tools for plagiarism detection,
International Journal of Educational Technology
in Higher Education,2020.

[15] MAC Jiffriya, MAC Akmal Jahan, and RG
Ragel, Plagiarism detection tools and
techniques: A comprehensive survey, Journal of
Science-FASSEUSL (2021) 02(02) 47-64.

[16] Nicholas Gahman and Vinayak Elangovan, A
Comparison of Document Similarity Algorithms,
International Journal of Artificial Intelligence
and Applications (IJAIA) , Vol. 14, No.2, March
2023.

[17] Abdul Fadlil, Sunardi, and Rezki Ramdhani,
Similarity Identification Based on Word Trigrams

Using Exact String Matching Algorithms,
INTENSIF, Vol.6 No.2 August 2022.

[18] Ifeanyi-Reuben Nkechi J, Ugwu Chidiebere, and
Nwachukwu E. O, Comparative Analysis of
Ngram Text Representation on Igbo Text
Document Similarity, International Journal of
Applied Information Systems (IJAIS) – ISSN :
2249-0868.

[19] Tebatso Gorgina Moape, Oludayo O. Olugbara,
and Sunday O. Ojo, Integrating Lesk Algorithm
with Cosine Semantic Similarity to Resolve
Polysemy for Setswana Language, (IJACSA)
International Journal of Advanced Computer
Science and Applications, Vol. 15, No. 4, 2024.

[20] Kylie L. Anglin, Vivian C. Wong, and Arielle
Boguslav, A Natural Language Processing
Approach to Measuring Treatment Adherence
and Consistency Using Semantic Similarity
Arielle Boguslav, AERA Open January-
December 2021, Vol. 7, No. 1, pp. 1–18.

[21] Vipkas Al Hadid Firdaus, Implementation of
Rabin Karp Algorithm in E-Commerce Search
Box Feature (Case Study: Sinar Baja Store), 22
Jun 2023 - SISFORMA - Vol. 10, Iss: 1, pp 19-
25.

[22] Dimas Dwi Ichtiarto, Penerapan Algoritma
Rabin-Karp Pada Sistem Tracer Study Fakultas
Teknologi Informasi UNISBA Blitar Berbasis
Web, 05 Mar 2024 - Journal Zetroem .

[23] Riskya Fajar Ningtyas, Siti Nurhayati,
Muhammad Riandi Widiyantoro, Salahudin
Robo, and Mursalim Tonggiroh, The application
of RabinKarp algorithm and stemming to detect
similarity of electronic documents, Journal of
Nucleation and Atmospheric Aerosols, 01
january 2024.

	I. INTRODUCTION
	II. RELATED WORKS
	III. METHODOLOGY
	Fig. 1. Model Architecture
	1) Data Collection
	2) Data Extraction using Tesseract OCR
	3) Database Construction
	C. Web search and corpus creation
	2) Cosine similarity
	3) The Rabin Karp Algorithm
	Fig. 2. Rabin- Karp hash table

	V. RESULT AND DISCUSSION
	Fig. 3. Similarity percentage of different algorithms
	Fig. 4. Malayalam Plagiarism Checker
	Fig. 5. Malayalam Plagiarism Checker

	VI. CONCLUSION AND FUTURE WORKS
	ACKNOWLEDGMENT

