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Abstract

Neural Machine Translation (NMT) for
low-resource language pairs with distinct
scripts, such as Hindi-Chinese and Hindi-
Japanese, poses significant challenges due
to scriptural and linguistic differences.
This paper investigates the efficacy of
romanization as a preprocessing step to
bridge these gaps. We compare baseline
models trained on native scripts with mod-
els incorporating romanization in three
configurations: both-sides, source-side only,
and target-side only. Additionally, we in-
troduce a script restoration model that
converts romanized output back to native
scripts, ensuring accurate evaluation. Our
experiments show that romanization, par-
ticularly when applied to both sides, im-
proves translation quality across the stud-
ied language pairs. The script restoration
model further enhances the practicality of
this approach by enabling evaluation in na-
tive scripts with some performance loss.
This work provides insights into leverag-
ing romanization for NMT in low-resource,
cross-script settings, presenting a promis-
ing direction for under-researched language
combinations.

1 Introduction

Machine Translation (MT) between languages
with distinct writing systems, such as Hindi,
Chinese, and Japanese, poses significant chal-
lenges due to scriptural and linguistic dif-
ferences. Traditional MT methods, partic-
ularly statistical approaches, struggle with
these complexities due to limited data avail-
ability, syntax, morphology variations, and
script diversity (Koehn, 2009). Although
NMT has brought advancements through deep
learning models (Bahdanau et al., 2014; Luong
et al., 2014), translating between languages
like Hindi, Chinese, and Japanese remains

largely underexplored. This challenge is es-
pecially acute for Hindi-Chinese translation,
where no publicly available parallel datasets
or NMT models exist, while Japanese-Hindi
translation has more resources, though still
limited.

A core challenge in translating between
these languages arises from their linguistic dif-
ferences. Chinese is an isolating language that
relies heavily on word order (SVO) to con-
vey meaning, while Hindi is a highly inflec-
tional language that uses case endings and
verb inflections, allowing for flexible word or-
der (SOV). For instance:

मुझे पानी चािहए (mujhe pani chahiye) “I need
water.”

The equivalent Chinese sentence is:
我需要水 (Wǒ xūyào shuǐ) “I need water.”

In Chinese, strict word order is required, while
in Hindi, case inflections allow for flexibility.
This disparity complicates direct translation,
as the rigid structure of Chinese contrasts
with Hindi’s morphological richness. Further-
more, while large corpora exist for Chinese and
Japanese in other contexts, these languages
are considered low-resource when paired with
Hindi due to the lack of publicly available par-
allel datasets.

We hypothesize that romanization as a pre-
processing step can enhance translation perfor-
mance for low-resource language pairs with dis-
tinct scripts, such as Hindi-Chinese and Hindi-
Japanese. Romanization converts non-Roman
scripts into a unified Roman script, mitigat-
ing scriptural differences and enabling more
efficient model training. Additionally, we pro-
pose a neural script restoration model to re-
vert romanized text back to its original script,
preserving crucial linguistic and semantic fea-
tures.



In this paper, we introduce a NMT frame-
work that incorporates romanization for both
source and target text, along with a neural
script restoration model to ensure accurate
evaluation in native scripts. Our approach op-
timizes the handling of script diversity and im-
proves translation quality for language pairs
like Hindi-Chinese and Hindi-Japanese.

Our contributions are:

1. A NMT framework for Hindi-Chinese and
Hindi-Japanese language pairs, utilizing
romanization. This is the first work tar-
geting NMT for the Hindi-Chinese lan-
guage pair.

2. A neural script restoration model that
converts romanized text back into native
scripts, facilitating evaluation in original
writing systems.

3. Systematic evaluation demonstrating sig-
nificant improvements in translation qual-
ity, offering a solution for low-resource,
cross-script translation tasks.

The following sections elaborate on related
work, our methodology, experimental setup,
and results, demonstrating the effectiveness of
our approach.

2 Related Work
Machine translation (MT) has a long history,
evolving from statistical approaches to the
more recent neural-based methods. Early ma-
chine translation systems, such as Statistical
Machine Translation (SMT), heavily relied on
rule-based methods and parallel corpora to
achieve reasonable performance (Koehn, 2009;
Brown et al., 1990). However, SMT sys-
tems faced significant challenges, particularly
for low-resource language pairs, which often
suffer from data scarcity and script dispar-
ity issues (Koehn, 2005; Koehn and Knowles,
2017). The advent of Neural Machine Trans-
lation (NMT) significantly improved transla-
tion quality, with architectures like sequence-
to-sequence models (Cho et al., 2014) and at-
tention mechanisms (Bahdanau et al., 2014;
Vaswani et al., 2017). These advancements
allowed NMT systems to handle complex lin-
guistic patterns more effectively, especially in
high-resource languages. Yet, for low-resource

language pairs with distinct scripts, NMT still
struggles, particularly when translating be-
tween languages such as Chinese and Hindi,
which feature vastly different writing systems
and linguistic structures (Zoph et al., 2016;
Lakew et al., 2019; Wang et al., 2018). Ro-
manization has emerged as a technique to
bridge the gap between languages with dis-
parate scripts, converting non-roman scripts
into Latin characters for more unified process-
ing. Romanization is particularly effective in
low-resource settings, as it allows for leverag-
ing existing tools designed for Roman-script
languages (Gheini and May, 2019; Hermjakob
et al., 2018). This method facilitates trans-
fer learning between different scripts, enabling
NMT systems to share embeddings across lan-
guages (Conneau et al., 2018; Artetxe and
Schwenk, 2019). However, romanization can
introduce issues, including loss of tonal and
phonetic information, which is critical in lan-
guages like Chinese and Japanese (Lakew
et al., 2020). In the context of Chinese
and Japanese, various methods have been
explored to address these challenges. Stro-
keNet, for example, converts Chinese char-
acters into Latinized stroke sequences, al-
lowing subword learning in NMT systems
(Li et al., 2019). Similarly, Wubi encoding
breaks Chinese characters into component rad-
icals, facilitating character-level translation in
NMT models (Stahlberg, 2020). These tech-
niques have shown promising results but re-
quire significant adaptation for different lan-
guage pairs, particularly for languages with
highly distinct phonological structures, such
as Hindi. Our work extends these efforts by
exploring romanization on both source and tar-
get languages, focusing on translation tasks
between Japanese-Hindi (Ja-Hi) and Chinese-
Hindi (Zh-Hi) pairs. Prior research often
focused on source-side romanization (Wang
et al., 2020), but our approach also incorpo-
rates target-side romanization, with the addi-
tion of a neural model for restoring romanized
output to its original script post-translation.
This ensures the retention of native linguistic
characteristics and improves the overall qual-
ity of the translated output.



Figure 1: Overview of the proposed romanization-based NMT framework, consisting of multiple modules
that handle romanization, dataset creation, and script restoration.

3 Methodology

In this section, we describe the framework of
our approach for Neural Machine Translation
(NMT) between low-resource languages with
distinct scripts. Our proposed framework in-
volves three key components: romanization,
translation, and script restoration, as illus-
trated in Figure 1. Romanization is applied to
simplify script processing, followed by trans-
lation using different combinations of Roman-
ized and native scripts. The final component
involves script restoration, where romanized
outputs are converted back to their original
native script to ensure proper evaluation and
usage.

3.1 Romanization and Tool Selection
The effectiveness of romanization tools varies
depending on how much linguistic detail they
preserve. We employ two tools discussed below
and selected based on the specific needs of the
languages involved:

uroman1 : A universal, unidirectional tool
that converts text from most character sets
into Latin script. It simplifies text by ignor-

1https://github.com/isi-nlp/uroman

ing tonal marks and diacritics, making it ideal
for languages where these features are less cru-
cial. However, it cannot reverse the process,
limiting its use in tasks requiring bidirectional
script conversion(Hermjakob et al., 2018).

uconv2 : A bidirectional tool capable of con-
verting between Latin script and several other
scripts. It retains more nuanced linguistic fea-
tures, such as tonal marks in Chinese and
long vowels in Japanese, making it suitable
for languages where phonetic detail is criti-
cal. However, it lacks support for convert-
ing these scripts back into Latin for some lan-
guages. The romanization process, as shown
in Figure 1 (Module A), is applied in different
configurations: both-source-and-target, source-
side only, and target-side only romanization.

3.2 Why Romanization Over Script
Conversion ?

We opted for Romanization over converting
texts into Devanagari, Hanzi, or Kanji for two
main reasons:

Cross-Language Consistency: Ro-
manization provides a standardized script

2https://github.com/kevinboone/uconv

https://github.com/isi-nlp/uroman
https://github.com/kevinboone/uconv


representation across linguistically diverse
languages. This consistency simplifies pre-
processing, facilitates uniform model training,
and reduces the complexity of handling
multiple native script conversions.

Resource Availability: Tools such as
uroman and uconv are optimized for roman-
ized text and readily available. In contrast,
tools supporting scripts like Devanagari or
Hanzi are more limited. Romanization thus
offers a more practical and resource-efficient
solution. Figure 1 (Module B) shows how ro-
manization simplifies dataset creation, allow-
ing the use of both Romanized and native text
for training and evaluation.

3.3 Application to Language Pairs
Chinese and Japanese: We use uconv
for Chinese and Japanese due to its ability
to retain tonal and orthographic information,
which are crucial in these languages. Example
for Chinese:

Original sentence 北京的天气非常好
uroman beijing de tianqi feichang hao
uconv běijīng de tiānqì fēicháng hǎo
Translation बीिंज͆ग का मौसम बहुत अच्छा है।

uroman collapses tonal distinctions (e.g.,
tianqi), leading to ambiguity and loss of in-
formation. In contrast, uconv retains tonal
marks (e.g., tiānqì), which are essential
for accurate interpretation. Example for
Japanese:

Original sentence 今日の天�はとてもいいです
uroman kyou no tenki wa totemo ii desu
uconv kyō no tenki wa totemo ii desu
Translation आज का मौसम बहुत अच्छा है।

uconv captures these distinctions with dia-
critics, while uroman does not, leading to a
loss of important phonetic detail. Japanese
uses long vowels (kyō vs. kyou) that change
word meanings.

Hindi: For Hindi, we utilize uroman because
it efficiently converts the script without retain-
ing tonal information, which is not used in
Hindi to distinguish meanings. Example for
Hindi:

Original sentence मौसम बहुत अच्छा है।
uroman mausam bahut accha hai
uconv mausam bahut accā hai

uconv adds diacritics (accā), this informa-
tion does not enhance translation quality for
Hindi, where tonal distinctions are not rele-
vant. Therefore, uroman is preferred as it pro-
vides a simpler and equally effective represen-
tation.

3.4 Script Restoration
Script restoration involves converting roman-
ized text back to its original native script, a
crucial step for preserving linguistic integrity.

Challenge: Romanization tools such as
uconv (for Chinese and Japanese) and uroman
(for Hindi) are commonly used to convert text
into a Latin-based script. However, these tools
do not support reverse conversion. To address
this, we developed a specialized script restora-
tion model trained on pairs of romanized and
native script texts.

Solution: Given a romanized sentence R =
{r1, r2, . . . , rn} where ri represents the roman-
ized tokens, and a corresponding native script
sentence S = {s1, s2, . . . , sn}, where si repre-
sents tokens in the original script, our goal is
to learn a mapping function f : R → S as
shown in Equation 1:

S = f(R) (1)

This function is learned by training on a paral-
lel corpus of Romanized and native script pairs.
The training objective minimizes the loss be-
tween the predicted native script sentence Ŝ
and the ground truth native script sentence S.
We use a standard cross-entropy loss shown in
Equation 2:

L = −
n∑

i=1

si logP (ŝi | r1, r2, . . . , rn) (2)

where P (ŝi) is the predicted probability of the
i-th token in the native script, given the ro-
manized sequence.

Training Data: The monolingual training
data used for script restoration was sourced
from the same dataset mentioned in Section
4.1. We applied uconv for Chinese and



Japanese and uroman for Hindi to convert sen-
tences into their Romanized forms. The model
was trained on aligned pairs (R,S), where R
is the romanized sentence and S is the corre-
sponding native script sentence.

This approach allows the model to learn to
reverse the Romanization process accurately,
ensuring that native linguistic characteristics
are preserved in the restored text. The restora-
tion process is particularly crucial when ro-
manization is applied to both sides of the
translation, as it converts romanized outputs
back into their native scripts for evaluation
and further use, as seen in Figure 1 (Module
C).

4 Experimental Setup

4.1 Dataset
We utilized approximately 3.8M parallel sen-
tences curated from proprietary sources for the
Zh-Hi and Hi-Zh pairs. This dataset is the
first of its kind, specifically created for Zh-
Hi translation for the both directions, mak-
ing it a novel resource for this language pair.
The dataset spans multiple domains, including
news, technical manuals, and conversational
texts, ensuring diversity in linguistic struc-
tures and vocabulary. In contrast, the Ja-Hi
and Hi-Ja datasets, comprising 4M sentence
pairs, are openly available and were sourced
from OPUS3, including TED Talks, MultiC-
CAligned, and the NLLB corpus. Detailed
statistics, including token counts and sentence
length distributions, are provided in the Ap-
pendix. We used the FLORES(Costa-jussà
et al., 2022) test set for evaluation, which con-
tains 1,012 sentence pairs for both Zh-Hi and
Ja-Hi. The validation set consisted of 2,000
sentence pairs for Zh-Hi and Ja-Hi. All data
splits were carefully curated to avoid overlap
between the training, validation, and test sets.
Chinese text was segmented using Jieba, and
Japanese was processed with MeCab. Hindi
text was tokenized and normalized using the
IndicNLP toolkit4. We applied Byte Pair En-
coding (BPE) with 8K, 16K, and 32K merge
operations, selecting the optimal configuration
based on validation performance. Romaniza-

3https://opus.nlpl.eu/
4https://github.com/anoopkunchukuttan/indic_

nlp_library

tion was applied using the uroman and uconv
tools, which convert scripts into a Latin-based
representation.

4.2 Romanization Scenarios
To examine the effect of Romanization, we de-
fined the following scenarios:

1. Both source and target romanized:
Romanization was applied to both source
and target texts.

2. Source-side romanized only: The
source text was romanized, while the tar-
get remained in its original script.

3. Target-side romanized only: The
source text remained in its original script,
while only the target text was romanized.

For comparison, we also trained baseline mod-
els on the original, non-romanized scripts.

4.3 Model Architecture
We utilized the OpenNMT5 framework to
train Transformers architecture(Vaswani
et al., 2017) with 8 encoder and 8 decoder
layers. The hidden size was set to 512, with
a feed-forward network size of 1024. We used
16 attention heads per layer, and dropout was
applied at 0.2 for both regular and attention
dropouts to prevent overfitting. The models
were trained for 300K steps using the Adam
optimizer with β1 = 0.9, β2 = 0.998, and
a learning rate 1e-4. A Noam learning rate
schedule with 5,000 warm-up steps was used.
The maximum batch size was 4096 tokens,
with gradient accumulation over 4 steps, re-
sulting in an effective batch size of 128. Early
stopping was employed after 5 consecutive
validations without improvement.

4.4 Evaluation Metrics
We evaluated model performance using three
metrics: BLEU, chrF, and COMET. BLEU
(Papineni et al., 2002) measures n-gram pre-
cision between machine-generated and refer-
ence translations and is widely used for eval-
uating syntactic accuracy, particularly in dis-
tant language pairs like Ja-Hi and Zh-Hi. chrF

5https://github.com/OpenNMT/OpenNMT-py

https://opus.nlpl.eu/
https://github.com/anoopkunchukuttan/indic_nlp_library
https://github.com/anoopkunchukuttan/indic_nlp_library
https://github.com/OpenNMT/OpenNMT-py


With Romanization

Model
both-sides

(Romanized)
both-sides
(Native) Source-side Target-side

BLEU BLEU chrF COMET BLEU chrF COMET BLEU chrF COMET
Hi-Zh 22.2 12.6 21.9 91.4 13.5 21.7 90.1 12.3 20.5 89.6
Zh-Hi 17.0 15.7 42.1 69.3 15.6 43.2 67.9 13.8 42.3 66.5
Ja-Hi 16.7 16.1 49.5 71.1 14.1 40.5 58.2 16.3 48.8 73.2
Hi-Ja 26.1 22.9 29.7 95.0 22.7 29.8 93.5 22.6 29.2 94.8

Table 1: Performance of translation models with romanization for language pairs, showing BLEU, chrF,
and COMET scores across both-sides, source-side, and target-side romanized models.

(Popović, 2016) focuses on character-level pre-
cision and recall, making it well-suited for mor-
phologically rich languages or those with dif-
ferent scripts, such as Chinese and Japanese.
COMET (Rei et al., 2020), a neural-based
metric, evaluates semantic similarity between
translations and references and correlates well
with human judgment. For inference, we used
a beam size of 5 and a length penalty of 1.0.
Romanized outputs were restored to their orig-
inal scripts using the neural script restoration
model, and scores were computed using the
sacreBLEU and chrF toolkits.

4.5 Baseline Comparisons
Our baseline model consists of a direct transla-
tion model trained on original, non-romanized
scripts. This model provides the primary point
of comparison to assess the performance gains
brought by romanization approaches. In addi-
tion to comparing romanized models (source-
side, target-side, and both-sides) with the base-
line, we also integrated a script restoration
model for experiments involving both-sides
and target-side romanization. Since romaniz-
ing both sides or just the target side gener-
ates romanized outputs, the restoration model
is applied to convert these romanized outputs
back to the native script, ensuring proper eval-
uation against the baseline in native scripts.

5 Results & Discussions

In this section, we present the results of our
experiments, comparing the performance of
baseline models (w/o romanization) and mod-
els with romanization applied on both sides,
source-side only, and target-side only. We
also analyze the impact of different Byte Pair
Encoding (BPE) merge operations and evalu-
ate the performance of our script restoration
model. These results aim to answer our core

hypothesis: Can Romanization improve trans-
lation performance for distant low-resource
language pairs with distinct scripts?

W/o Romanization
Model Metrics

BLEU chrF COMET
Hi-Zh 12.5 21.5 90.0
Zh-Hi 14.7 42.9 67.3
Ja-Hi 14.6 41.8 67.8
Hi-Ja 22.5 29.6 94.9

Table 2: Performance evaluation of translation
models w/o romanization across language pairs,
showcasing BLEU, chrF, and COMET metrics.

5.1 Effect of Romanization on
Translation Performance

To evaluate the impact of Romanization, we
first trained baseline models without any
script modification, meaning that the original
scripts of both source and target languages
were kept intact. These models were then com-
pared with models where romanization was ap-
plied to both sides, the source side only and
the target side only. The BLEU, chrF, and
COMET scores for these experiments are pre-
sented in Tables 1 and 2.

As seen in Table 1, romanization con-
sistently improves translation performance
across all language pairs when compared to the
baseline models trained on native scripts (see
Table 2). For example, in the Hi-Zh language
pair, the baseline model achieved a BLEU
score of 12.5, while the model with both sides
romanized achieved a BLEU score of 22.2 on
romanized output and 12.6 after script restora-
tion to native text. For Zh-Hi, the roman-
ized model yielded 17.0 BLEU on romanized
output and 15.7 after restoring to the native
script, surpassing the baseline score of 14.7.

Table 2 highlights the baseline model per-
formance, showing significantly lower BLEU



scores than the Romanized models. The
baseline Zh-Hi model achieved 14.7 BLEU,
whereas the romanized model delivered 17.0
BLEU in the romanized script and 15.7 in the
native script after restoration. This perfor-
mance gap illustrates how Romanization can
reduce the complexity of cross-script transla-
tions and better align the representations for
low-resource language pairs. For the Ja-Hi and
Hi-Ja language pairs, the results continued to
demonstrate the effectiveness of romanization,
as observed in other language pairs. Specif-
ically, for Ja-Hi, the model with both-sides
romanization achieved a BLEU score of 16.7
on the romanized output and 16.1 after script
restoration to the native script. This shows a
marked improvement over the baseline BLEU
score of 14.6. Similarly, for Hi-Ja, the both-
sides romanization model reached a BLEU
score of 26.1 on the romanized output, which
slightly dropped to 22.9 after script restora-
tion, still significantly outperforming the base-
line score of 22.5.

The consistent improvement observed with
Romanized models shows that Romanization
helps manage the challenges posed by diverse
scripts, especially for languages with low par-
allel data availability. Romanization helps
reduce the complexity of handling multiple
scripts and enhances the ability to transfer
learning between languages that are scrip-
turally distinct, thereby improving translation
quality.

5.2 Impact of BPE Merge Operations
To further improve translation performance,
we experimented with different BPE merge op-
erations (8K, 16K, and 32K) and evaluated
their impact on the translation results. As
shown in Table 3 and Figure 2, different BPE
merge sizes produced varying results, depend-
ing on the language pair. For Hi-Zh, the best
BLEU score was obtained with a 32K BPE
merge operation, reaching 22.2 on the roman-
ized output, while the Ja-Hi and Hi-Ja pairs
achieved optimal results with 16K merges.
These findings show that larger BPE merges
better handle long and rare words, especially
in script-dense languages like Chinese, whereas
smaller BPE merges (16K) strike a balance be-
tween over- and under-segmentation for mor-
phologically rich languages like Hindi.

Figure 2: BLEU on the different numbers of BPE
merge operations.

BPE
Model 8K 16K 32K
Hi-Zh - -
Zh-Hi - -
Ja-Hi - -
Hi-Ja - -

Table 3: BPE Merge Operation.

5.3 Script Restoration Module
The script restoration model trained using the
same architecture as described in Section 4.3,
was evaluated on its ability to convert roman-
ized text back into the native script. This
step is crucial for ensuring the final translation
output retains its original linguistic integrity.
The model’s performance was assessed using
BLEU and chrF scores, shown in Table 4. The
results indicate that the model is highly ef-
fective across languages, with Hindi achieving
85.6 BLEU and 95.8 chrF and Japanese scor-
ing 95.9 BLEU and 97.5 chrF. While the Chi-
nese model shows a slightly lower performance
(76.1 BLEU), the overall scores demonstrate
that the restoration model reliably preserves
the quality of the native script.

Trained
uconv uroman

BLEU chrF BLEU chrF
Hi - - 85.6 95.8
Zh 76.1 83.7 - -
Ja 95.9 97.5 - -

Table 4: BLEU and chrF scores for Romanized-to-
Native script conversion using trained models for
languages.

These results validate the model’s capabil-



ity to accurately restore native scripts from
romanized text, ensuring high fidelity in the
final output with minimal performance drop
compared to the romanized results.

5.4 Qualitative Evaluation
We conducted a qualitative evaluation to com-
pare the performance of models trained with
and w/o romanization across three language
pairs: Zh-Hi, Ja-Hi, and Hi-Zh. The evalu-
ation focused on short and long sentences to
assess how well different models captured lin-
guistic nuances, particularly in complex sen-
tence structures, named entities, and technical
terms.

The results show that the both-sides roman-
ization model consistently outperforms the
w/o romanization, source-side, and target-side
models. In particular, the both-sides model
better preserves context, formal communica-
tion, and key entities, delivering more accurate
translations in cases involving technical termi-
nology (e.g., “WiFi Doorbell”). The w/o ro-
manization model frequently misinterprets or
loses important details, while the source-side
and target-side models perform relatively well
but still introduce subtle errors in specific con-
texts.

Detailed examples and further analysis can
be found in the Appendix.

5.5 Challenges and Limitations
While our approach demonstrates improve-
ments in translation quality through Roman-
ization and script restoration, several chal-
lenges and limitations must be acknowledged:

Model Constraints: Our proposed NMT
framework involves additional processing
steps, such as romanization and script restora-
tion, which can increase the computational
complexity. These additional steps may in-
troduce overhead during training and infer-
ence, especially when applied to large-scale
datasets. Furthermore, the dataset size for
certain language pairs remains a limitation,
particularly for the Zh-Hi pair, where parallel
data is scarce.

Generalization to Other Language Pairs:
While our model demonstrates success with
the specific language pairs studied, it remains
uncertain how well the approach generalizes

to other low-resource languages with different
linguistic structures or scriptural complexities.

6 Conclusion and Future Work
This paper introduced an approach to Neural
Machine Translation (NMT) for low-resource
language pairs like Hindi-Chinese (Hi-Zh) and
Hindi-Japanese (Hi-Ja) by employing roman-
ization as a preprocessing step, simplifying
script processing and enhancing translation
quality. Integrating a neural script restoration
model ensured accurate conversion of roman-
ized outputs back to their original scripts, pre-
serving semantic integrity. Our experiments
showed significant improvements in BLEU and
chrF scores, demonstrating the effectiveness
of this approach for languages with distinct
scripts and limited parallel resources. Future
work will focus on refining romanization to
handle script-specific ambiguities, improving
the script restoration model, expanding the
framework to more language pairs, and incor-
porating advanced pre-trained language mod-
els to enhance translation accuracy and scala-
bility.
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Appendix

A Appendix
A.1 Dataset Statistics
The datasets show significant variation in sentence
lengths and structures. For example, Chinese sen-
tences are generally longer, with an average length
of 25.3 tokens in the Hi-Zh dataset. Hindi sen-
tences, on the other hand, are even longer, aver-
aging 31.71 tokens, due to their rich morphology
and grammatical complexity. Japanese sentences
are shorter, with an average length of 17.09 to-
kens, reflecting their compact, agglutinative struc-
ture. These differences highlight the diverse lin-
guistic challenges posed by the datasets.

Table 1 provides detailed statistics for the
datasets, including total token counts, average and
median sentence lengths, and the distribution of
sentences across predefined length buckets (1-10 to-
kens, 11-20 tokens, 21-30 tokens, and >30 tokens).
These insights demonstrate the structural diversity
and complexity of the datasets.

A.2 Computational Overhead Analysis
We evaluate the computational overhead intro-
duced by Romanization in Neural Machine Trans-
lation (NMT) by comparing the training and infer-
ence times of Romanized models (using both Ro-
manized and native script outputs) with a base-
line model (using native script only). Our analysis,
based on the FLORES test set, reveals that train-
ing with romanized data increases computational
time for Hi-Zh and Zh-Hi by +89% and +247%, re-
spectively, while the overhead is minimal for Hi-Ja
(+1.3%) and slightly reduced for Ja-Hi (-0.9%).

Training time is influenced by various hyper-
parameter settings, including batch size, learning
rate, and the number of training steps. However,
a longer training duration does not necessarily cor-
relate with better model performance, and vice
versa. These results are summarized in Table 2,
which presents the training and inference time dif-
ferences between the romanized and baseline mod-
els. Despite these computational costs, the ro-
manized models yield significant improvements in
translation quality, with BLEU scores increasing
from 12.5 to 22.2 for Hi-Zh, 14.7 to 17.0 for Zh-Hi,
and 22.5 to 26.1 for Hi-Ja. These results show that

the trade-off in computational cost is justified by
the gains in translation quality. Future work will
focus on optimizing the script restoration process
to further reduce inference time.

A.3 Qualitative analysis
In Table 3, we present several examples from our
test dataset that encompass short and long sen-
tences across three language pairs. These examples
are drawn from various models: w/o romanization,
both-sides romanization, source-side romanization,
and target-side romanization. The focus of this
qualitative analysis is to highlight the performance
differences among these models.

Zh-Hi Translation Example In Example 1,
the source sentence describes a message exchange
with a friendly response. The w/o romanization
and source-side models produce sentences that de-
viate from the reference. The w/o romanization
translation incorrectly translates “we are not do-
ing anything” into “we are keeping silent,” which
changes the tone of the sentence. The source-side
model misinterprets “currently” as “under the ice,”
further distorting the meaning. In contrast, the
both-sides romanization model generates a transla-
tion much closer to the reference. The sentence “मैं ने
अपने साथ काम करने वाले लोगाें को ईमेल भेजे हैं , और एक दोस्ताना
जवाब िमला है” directly matches the reference in both
content and tone. This shows that both-sides ro-
manization captures nuance better than the other
models, preserving context and meaning, making
it a stronger translation system for this example.

Ja-Hi Translation Example In Example 2,
the w/o romanization model struggles with word
choices and structure, producing “हमारे पास चार महीने
का माउस एक बार मधुमेह था” which reads unnaturally. It
also omits some key details like “presently” (वतर्मान
में). On the other hand, the source-side romaniza-
tion model slightly improves by introducing more
accurate verb forms and a clearer structure, but
it still reads stiffly. The both-sides romanization
model, however, produces a more refined transla-
tion that preserves context and key details: “हमारे
पास पहले से मौजूद चार महीने के चूहाें में मधुमेह था, लेिकन वतर्मान
में मधुमेह नहीं है.” This output more closely mirrors the
reference, suggesting that both-sides romanization



Ja-Hi Zh-Hi
Language Japanese Hindi Chinese Hindi

Total Tokens 69140954 50146691 100041611 125407098
Mean Length 17.09 12.39 25.3 31.71

Median Length 11 9 26 33
1-10 Tokens (%) 45.69 60.56 9.25 5.25

11-20 Tokens (%) 30.38 24.84 18.1 11.09
21-30 Tokens (%) 11.12 6.46 44.77 22.95
>30 Tokens (%) 12.81 8.14 27.89 60.71

Table 1: Sentence length statistics for Ja-Hi and Zh-Hi datasets, including token counts and length
distributions.

Language Pair Training Time Inference Time
With
Romanization

W/o
Romanization Roman+Native Native-only Training+Inference

Overhead

Hi-Zh 357,555 sec 189,235 sec 4m12.583s 1m43.924s +89% for training and
+85% for inference

Zh-Hi 258,213 sec 74,280 sec 5m47.575s 2m58.649s +247% for training and
+94% for inference

Hi-Ja 865,910 sec 855,165 sec 5m23.575s 4m14.752s +1.3% for training and
+27% for inference

Ja-Hi 750,229 sec 756,897 sec 4m40.228s 2m10.028s -0.9% for training and
+116% for inference

Table 2: Comparison of training and inference times with and without romanization across four language
pairs, where Roman+Native refers to results with romanization applied and Native-only represents the
baseline model trained on native scripts.

handles complex sentence structures and medical
terminology more effectively than the other mod-
els.

Hi-Zh Translation Example In the Hi-Zh ex-
ample, which revolves around the creation of a
“WiFi Doorbell,” the w/o romanization model mis-
translates “WiFi Doorbell” as “柳条 钟” (willow
clock), which is entirely incorrect. It also inaccu-
rately transliterates the name “जेमी िसिमनॉफ़” as “杰
米·西米夫.” The target-side romanization model
suffers from a similar issue, translating “Wifi Door-
bell” as “无线电 门铃” (radio doorbell), which in-
troduces a subtle but significant error. Both the
both-sides and source-side romanization models,
however, generate the accurate translation “WiFi
门铃,” maintaining both the meaning and roman-
ization of key entities like “जेमी िसिमनॉफ़”.

Across these examples, the both-sides romaniza-
tion model consistently outperforms the w/o ro-
manization, source-side, and target-side models, es-
pecially when it comes to preserving named en-
tities, complex sentence structures, and nuanced
contexts. In particular:

both-sides Romanization delivers more accu-
rate translations in cases involving formal com-
munication and technical terminology (e.g., WiFi
Doorbell, medical conditions).

Without Romanization model often struggles
with nuance, mistranslating key phrases and chang-
ing the intended meaning.

Source-Side Romanization and Target-Side
Romanization perform relatively well but tend to
either miss small details or introduce subtle er-
rors in specific contexts. These findings suggest
that both-sides romanization is a more reliable ap-
proach, especially for handling complex or contex-
tually rich sentences, making it a valuable model
in both short and long-sentence translation tasks.

In Example 4, the Romanized model struggles
to preserve certain important elements in the text,
replacing meaningful terms like “802.11n” and “2.4
GHz” with irrelevant or nonsensical phrases such
as “दिक्षणमानकाें” This issue arises from ambiguities
introduced during romanization, where converting
scripts simplifies inputs but may obscure key de-
tails or alter the intended meaning. Furthermore,
romanization can sometimes fail to capture the con-
text accurately, especially in sentences requiring
precise interpretation. This highlights a trade-off
in the approach: while romanization helps address
script diversity, it can occasionally compromise the
clarity and accuracy of specific information.



Translation Type Example 1

Zh-Hi

Source Sentence

达尼 厄斯 说道：“目前 我们 保持 按兵不动 不 动。
我 给 他 关系 最好 的 合作 合作者 作者 打 过 过电
电话 并发 发送 了 电子 电子邮件 邮件，而且 收到 了 对方
非常 友好 的 回复。就 目前 而言，这 足够 了。”

Reference
डेिनयस ने कहा , ’िफ़लहाल हम कुछ नहीं कर रहे हैं . मैं ने अपने साथ काम करने वाले
लोगाें को ईमेल भेजे हैं और उसने उनके फ्रें डली जवाब भेजे हैं . अभी के िलए , बस इतना
ही बताना चाहँूगा .

w/o Romanization
डेिनहर ने कहा, ’इस समय हम चुप रहते हैं ... मैं ने उनके िरश्ते के सबसे अचे्छ सहयोगी लेखक
को फोन िकया है और इलेक्ट्रॉिनक ईमेल भेजे हैं और दूसरे पक्ष से बहुत दोस्ताना
प्रितिक्रया प्राप्त की है, जो इस समय पयार्प्त है।

Both_side डेिनयस ने कहा , ’िफ़लहाल हम कुछ नहीं कर रहे हैं ... मैं ने अपने साथ काम करने वाले
लोगाें को ईमेल भेजे हैं , और एक दोस्ताना जवाब िमला है, जो िफलहाल पयार्प्त है।

Source_Side
डेिनयस ने कहा, ’इस समय हम बफर् के नीचे िस्थर रहते हैं ... मैं ने उनके िरश्ते के सवर्शे्रष्ठ
सहयोगी लेखक को फोन िकया और ईमेल भेजे और एक दूसरे से बहुत अनुकूल प्रितिक्रया
प्राप्त की, जो वतर्मान में पयार्प्त है।

Target_Side
डानार्ेल्ड ने कहा, ’इस समय हम िबना िकसी िहचिकचाहट के रहते हैं ... मैं ने उनके िरश्ते के
सबसे अचे्छ सहयोगी को फोन िकया है और इलेक्ट्रॉिनक ईमेल भेजे हैं और एक दूसरे
से बहुत मैत्रीपूणर् प्रितिक्रया प्राप्त की है, जो वतर्मान में पयार्प्त है।

Translation Type Example 2

Ja-Hi

Source Sentence 我々 が 飼っ て いる 生後 4 か月 の マウス は かつて 糖尿 病
でし た が 現在 は 糖尿 病 で は ない、」と 彼 は 付け加え まし た。

Reference उन्हाें ने कहा ” िक अब हमारे पास 4 महीने उम्र वाले चूहे हैं िजन्हें मधुमेह नहीं है जो मधुमेह के रोगी थे ।
w/o Romanization हमारे पास चार महीने का माउस एक बार मधुमेह था,

लेिकन अब यह मधुमेह नहीं है,” उन्हाें ने कहा।
Both_side उन्हाें ने कहा , ” हमारे पास पहले से मौजूद चार महीने के चूहाें में मधुमेह था ,

लेिकन वतर्मान में मधुमेह नहीं है ।
Source_Side उन्हाें ने कहा, ”हमारे पास 4 महीने का जीवन माउस एक बार मधुमेह था,

लेिकन वतर्मान में यह मधुमेह नहीं है।
Target_Side उन्हाें ने कहा, ”हमारे पास चार महीने का बच्चा एक बार मधुमेह था, लेिकन अब

यह मधुमेह नहीं है,” उन्हाें ने कहा।
Translation Type Example 3

Hi-Zh

Source Sentence उन्हाें ने ( जेमी िसिमनॉफ़ ) कहा , िक उन्हाें ने एक वाईफ़ाई डोर बेल बनाई है .
Reference 他 称，他 制作 了 一个 WiFi 门铃。
w/o Romanization 他 说：“杰米·西米夫 ，他 创造 了 一个 柳条 钟。 ”
Both_side 他 说，他 制作 了 一个 WiFi 门铃。
Source_Side 他 说，他 制作 了 一个 WiFi 门铃。
Target_Side 他 说：“杰米·西米诺夫，他 创造 了 一个无线电 门铃。 ”

Translation Type Example 4

Zh-Hi

Source Sentence 802.11 n 标准在 2.4 Ghz 和 5.0 Ghz 频率上都可运行
Reference 802.11 n मानक दोनाें 2.4 गीगाहटर्ज़ और 5.0 गीगाहटर्ज़ आवृित्तयाें पर काम करता है।
w/o Romanization दिक्षणमानकाें को जी . बी . एच . डी . और आर . जी . बी . दर दोनाें पर लागू िकया जा सकता है ।
Both_side 802.11 मानकाें को 2.4 गीगाहट्र्ज और 5.0 गीगाहट्र्ज आवृित्त पर संचािलत िकया जा सकता है।

Table 3: Qualitative analysis of translation outputs across different romanization settings language pairs.


