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Abstract

Few-shot learning benchmarks are critical for
evaluating modern NLP techniques. It is possi-
ble, however, that benchmarks favor methods
which easily make use of unlabeled text, be-
cause researchers can use unlabeled text from
the test set to pretrain their models. Given the
dearth of research on this potential problem, we
run experiments to quantify the bias caused by
pretraining on unlabeled test set text instead of
on unlabeled, independently drawn text. Con-
trolled few-shot and zero-shot experiments on
25 classification tasks and 3 language models—
BERT, GPT-2, and Mistral 7B—do not find
evidence of overoptimism. Furthermore, we
demonstrate the importance of repeated sub-
sampling when studying few-shot text classi-
fication, and recommend that few-shot learn-
ing benchmarks include multiple training folds.
Code and data are available here: https://
github.com/kddubey/pretrain-on-test/.

1 Introduction

It is common for NLP benchmarks to release text
from the test set, as researchers can submit a file of
predictions instead of submitting code. A potential
concern is that researchers can use this text during
training. Consider the Real-world Annotated Few-
shot Tasks (RAFT) benchmark (Alex et al., 2021),
which contains "few-shot" text classification tasks—
tasks where the training set contains a relatively
small number of labeled examples. Below is an
excerpt from the RAFT paper (emphasis added):

For each task, we release a public train-
ing set with 50 examples and a larger
unlabeled test set. We encourage unsu-
pervised pre-training on the unlabelled
examples and open-domain information
retrieval.

In the RAFT competition, a model is evaluated
by scoring its predictions on the same set of unla-

beled text which the model may have been trained
on (using an unsupervised training procedure).

It is wrong to train a model on test set features
with their labels and then evaluate on the test set
when one needs to estimate performance on out-
of-sample data. Test set performance would be
overoptimistic (Hastie et al., 2009). This fact is
widely known. But what if, as encouraged by Alex
et al. (2021), a model is trained on test set features
without test set labels? This paper studies this ques-
tion for the domain of few-shot text classification.

2 Motivation

NLP benchmarks for few-shot learning are preva-
lent, as having only a handful of labeled exam-
ples is more realistic. One consideration when
designing these benchmarks is that some few-shot
approaches can—at least theoretically—use unla-
beled text from the test set. With Pattern-Exploiting
Training (Schick and Schütze, 2021), for example,
one can train the final classifier on test set text with
soft labels predicted by an ensemble of supervised
models. With Pre-trained Prompt Tuning (Gu et al.,
2022), one can pretrain the language model (LM)
on unlabeled test set text before prompt-tuning on
the labeled training set. A more classical approach
would be to train a word2vec model (Mikolov et al.,
2013) on unlabeled test set text, run this model on
training text to get embeddings, and finally train a
classifier on these embeddings with labels from the
training set.

For other few-shot approaches, such as SetFit
(Tunstall et al., 2022) and in-context learning with
LLMs (as popularized by Brown et al., 2020), it is
more common to only use labeled text.

While the ability to exploit unlabeled text is use-
ful, applying this ability to test set text could be sub-
stantively different than applying it to text which is
statistically independent of the test set. This differ-
ence in methodology may be more concerning in
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the few-shot setting than in the many-shot setting.
It is conceivable that differences between few-shot
methods are due just as much to how unlabeled
text is used as they are to how the few, labeled
examples are used. This raises the question: does
pretraining a model on a benchmark’s unlabeled
test set text inflate the model’s performance on that
benchmark?

3 Related work

As indicated by the quote in §1, the RAFT bench-
mark implicitly assumes that the answer is no. The
validity of using test set features is not a fringe opin-
ion. The popular textbook by Hastie et al. (2009)
contains the following passage without a reference
or evidence (emphasis added):

There is one qualification: initial unsu-
pervised screening steps can be done be-
fore samples are left out. For example,
we could select the 1000 predictors with
highest variance across all 50 samples,
before starting cross-validation. Since
this filtering does not involve the class
labels, it does not give the predictors an
unfair advantage.

The opposite opinion—that exploiting unlabeled
test set features is unfair—may align more closely
with best practices. For example, Gururangan et al.
(2020) contains the following criticism of another
study when comparing performances on a text clas-
sification task:

Thongtan and Phienthrakul (2019) report
a higher number (97.42) on IMDB, but
they train their word vectors on the test
set.

Jacovi et al. (2023) argue that benchmarks which
release unlabeled test set text can be compromised,
but do not discuss potential problems with using
unlabeled test set text by itself.

Moscovich and Rosset (2022) contains experi-
ments and theory for unsupervised methods which
are common to tasks involving tabular data. They
find that estimators of out-of-sample performance
which were subject to these methods may be biased
positively or negatively, depending on the param-
eters of the problem. They recommend further
research on this bias in more domains, particularly
when dealing with small sample sizes and high-
dimensional data.

4 Experimental design

We study whether pretraining on unlabeled test set
text biases test set performance for 25 diverse text
classification tasks and two types of LMs: BERT
(Devlin et al., 2019) and GPT-2 (Radford et al.,
2019). Appendix A describes each task.

The goal of the experiment is to first establish
that pretraining is beneficial, in line with Guru-
rangan et al. (2020). Second, given that pretrain-
ing has a detectable effect, the experiment mea-
sures the accuracy difference between using test set
text for the pretraining stage—an arguably unfair
methodology—and using text which is independent
of the test set—an inarguably fair methodology.

In more detail, the experiment starts by subsam-
pling three separate sets of data from the full sam-
ple of data for a given text classification task:

• extra: n (either 50, 100, 200 or 500) unla-
beled texts which are optionally used for pre-
training

• train: m (either 50 or 100) labeled texts for
classification training

• test: n labeled texts to report accuracy.

Next, three accuracy estimators are computed. Pro-
cedures used to obtain them are described below.

4.1 accextra

1. Train a freshly loaded, pretrained LM on the
n unlabeled texts in extra using the LM’s
pretraining objective—masked language mod-
eling loss for BERT, or causal language mod-
eling loss for GPT-2. Texts are passed inde-
pendently, and padded to form batches.

2. Add a linear layer to this model and finetune
all of the LM’s weights to minimize classifi-
cation cross entropy loss on train.

3. Compute the classification accuracy of this
model on test.

Step 1 is task-adaptive pretraining—a procedure
broadly recommended by Gururangan et al. (2020).
Step 2 is a canonical way to train a transformer-
based LM for a classification task, according to
Section 2 of Zhang et al. (2021).

accextra is clearly an unbiased estimator of out-
of-sample accuracy because it never trains on test.
In other words, the expected value of accextra is
the accuracy one would observe on independent,
identically distributed data.
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Figure 1: The experimental design (§4) for n = 500 as an example.

Figure 2: Pseudocode for the accuracy estimators defined in §4.

4.2 acctest

acctest is identical to accextra, except that task-
adaptive pretraining is done on unlabeled text from
test instead of extra in step 1.

acctest represents what one might see in a com-
petition like RAFT, where pretraining on unlabeled
text from test is encouraged. It is unclear whether
this accuracy estimator is unbiased, because it in-
volved pretraining and evaluating on the same set
of test set text. A reasonable hypothesis is that it is
overoptimistic, i.e., E[acctest] > E[accextra].

4.3 accbase

accbase does not do task-adaptive pretraining; it
does not make any use of unlabeled text. It trains
a pretrained LM on train to do classification, and
then computes this model’s accuracy on test.

This score provides a sanity check. If there is
no boost from accbase to accextra, then it may not be
surprising to observe no difference between accextra
and acctest. A boost from accbase to accextra would
rule out undertraining as the cause of a null differ-
ence between accextra and acctest due to insufficient
pretraining epochs or too low a learning rate.

4.4 Repeated subsampling

The accuracy estimators are paired, because their
classification training and test data are identical.
The only difference is the source of unlabeled text
for pretraining. For accextra, the source is indepen-
dent of test data. For acctest, the test set text is used.
For accbase, no unlabeled text is used.

A potentially important source of variation in
this experiment is the particular subsamples, i.e.,
the particular realizations of extra, train, and
test for a given classification task. To expose this
variation, the experiment procedure is repeated tens
of times for each task.1 For example, for n = 500,
and for each of the 25 tasks, 20 (accextra, acctest,
accbase) triples are computed.

Appendix B explains more experiment choices.

5 Results

Appendix D.2 visualizes the distributions of accextra
− accbase and acctest − accextra. accextra − accbase is
a control: it is the accuracy boost from pretraining

1For n = 50 and n = 100, the experiment is repeated
100 times. For n = 200, the experiment is repeated 50 times.
For n = 500, the experiment is repeated 20 times. In total,
81, 000 finetuned BERT and GPT-2 models were evaluated.
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on unlabeled independent text versus not pretrain-
ing at all. acctest − accextra is the main quantity of
interest: it is the evaluation bias from pretraining
on unlabeled test set text instead of on unlabeled
independent text.

Table 1 contains means of these differences for
each configuration of the experiment. It roughly
suggests that while pretraining is consistently ben-
eficial, pretraining on unlabeled test set text does
not bias test set performance one way or the other.

BERT GPT-2

n = 50
4.1%

0.19%
3.8%

0.18%

n = 100
3.9%

0.18%
4.1%

0.11%

n = 200
3.9%

-0.39%
4.4%

-0.05%

n = 500
3.5%

0.48%
4.6%

-0.08%

(a) m = 50

BERT GPT-2

n = 50
6.2%

-0.08%
2.2%

-0.05%

n = 100
6.1%

-0.37%
2.5%

0.03%

n = 200
4.1%

0.33%
6.3%

-0.01%

n = 500
6.1%

-0.16%
3.9%

-0.21%

(b) m = 100

Table 1: Means of accuracy differences taken across
all subsamples of all 25 classification tasks. For each
cell, the upper-left of the diagonal corresponds to the
sample mean of accextra − accbase, and the lower-right
corresponds to the sample mean of acctest − accextra.

6 Analysis

Reporting means is not enough, especially when
studying few-shot learning. Appendix D.2 demon-
strates that there is considerable variance, despite
pairing the accuracy estimators.2 While these vi-
sualizations tell us about how raw accuracy dif-
ferences vary, they do not tell us how the mean
accuracy difference varies. We seek a neat answer
to the core questions: on this benchmark of 25
classification tasks, how much does the overall ac-
curacy differ between two modeling techniques,
and how much does this difference vary?

2One source of variance is intentionally introduced: the
subsample splits, as explained in §4.4. The other source of
variance is inherent: the added linear layer to perform classifi-
cation is initialized with random weights.

One way to communicate the variance is to es-
timate the standard error of the mean difference
across classification tasks. But the standard er-
ror statistic can be difficult to interpret (Morey
et al., 2016). Furthermore, its computation is not
completely trivial due to the data’s hierarchical de-
pendency structure: each triple, (accextra, acctest,
accbase), is drawn from (train, test), which is
itself drawn from the given classification dataset.

6.1 Model

This analysis does not aim to estimate standard
errors. Instead, a hierarchical model is fit. Specif-
ically, for each LM type (indexed by i = 1, 2
for BERT and GPT-2), each classification task (in-
dexed by j = 1, 2, . . . , 25), each of their subsam-
ples (indexed by k = 1, 2, . . . , 20 for n = 500,
for example), and a control and treatment (indexed
by l = 0, 1), the number of correct predictions is
modeled (∗ is short for ijkl):

Y∗ ∼ Binomial(n, λ∗) (1)

logit(λ∗) = µ+ αzi + Uj + Vjk +Wjl + βxl (2)

µ ∼ Normal(0, 1) (3)

α ∼ Normal(0, 5) (4)

Uj ∼ Normal(0, σU ) (5)

Vjk ∼ Normal(0, σV ) (6)

Wjl ∼ Normal(0, σW ) (7)

β ∼ Normal(0, 1) (8)

σU , σV ∼ HalfNormal(0, 1) (9)

σW ∼ HalfNormal(0, 3.5355) (10)

(1) number of correct predictions

(2) logit link for accuracy rate, additive effects

(3) prior for the global intercept

(4) prior for the effect of the type of LM (BERT
or GPT-2)—a control variable

(5) prior for the effect of the classification task
(partial-pooled to reduce overfitting)

(6) prior for the nested effect of the task’s sub-
sampled dataset

(7) prior for the interaction effect of the task and
the intervention (to reduce underfitting)

(8) prior for the effect of the intervention

(9) prior for standard deviations

(10) prior for standard deviation.
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Figure 3: Distributions of average accuracy differences (11). The evaluation bias is akin to acctest − accextra. The
pretraining boost is akin to accextra − accbase.

The model is fit using Markov Chain Monte
Carlo, using the interface provided by the bambi
package (Capretto et al., 2022).

To analyze the pretraining boost, the control,
Yijk0, is n· accbase, and the treatment, Yijk1, is n·
accextra. Here, the intervention refers to pretraining
on unlabeled independent text versus not pretrain-
ing at all.

To analyze the evaluation bias, the control, Yijk0,
is n· accextra, and the treatment, Yijk1, is n· acctest.
Here, the intervention refers to pretraining on unla-
beled text from the test set instead of on unlabeled
independent text.

4,000 samples from the posterior predictive,
Ŷijkl, are drawn. Appendix E.1 includes a simula-
tion demonstrating the model’s ability to correctly
recover null and non-null effects.

6.2 Overall effects

Benchmarks assess methods by taking their aver-
age performance across tasks. To place the results
in this context, samples from the posterior predic-
tive distribution of Yijk1 − Yijk0 (6.1) are taken,
then averaged across i (the 2 LM types—BERT
and GPT-2), j (the 25 classification tasks), and
k (their subsamples), and divided by n to obtain

the distribution of the average accuracy difference
(expressed in dot notation, where dots are used as
placeholders for indices that have been averaged
over):

¯̂
Y···1 − ¯̂

Y···0
n

. (11)

Each distribution is that of the marginal effect of
the modeling intervention: pretraining versus not
pretraining (the pretraining boost), or pretraining
on unlabeled test set text instead of on unlabeled
independent text (the evaluation bias).

6.3 Task-level effects

While taking an average across tasks provides a
concise summary, it cannot be used to rule out the
existence of an evaluation bias. If the direction of
the bias depends on latent properties of the task,
averaging may cancel out real, positive biases with
real, negative ones. Alternatively, it may dilute the
few real, positive biases with many null ones.

Jin et al. (2021) argue and demonstrate that the
benefit of task-adaptive pretraining depends on the
task’s causal direction. If the principle of inde-
pendent causal mechanisms is also relevant to the
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fairness of pretraining on test set features, then
our accuracy data may contain (for the sake of ar-
gument) positive evaluation biases for anti-causal
tasks, and null biases for causal tasks.3

One way to analyze tasks is to sample from the
posterior predictive distribution of the accuracy
difference, and only average across subsamples:

¯̂
Yij·1 − ¯̂

Yij·0
n

. (12)

A more concise way is to perform a hypothesis
test for each setting of m,n, and the LM type:

H0 : E[acctest − accextra] = 0 (13)

H1 : E[acctest − accextra] > 0. (14)

The p-value is estimated via permutation testing.
It is then adjusted to control the false discovery rate
(Benjamini and Hochberg, 1995).

7 Discussion

Figure 3 demonstrates that the average pretraining
boost is significant in every configuration of the
experiment. This finding replicates that from Guru-
rangan et al. (2020). After averaging across settings
for m, n, and the 2 LM types, only two of the 25
classification tasks had a pretraining boost less than
0, and both were greater than -1%. 4 Task-adaptive
pretraining had the intended effect.

As shown in Figure 3, the evaluation bias
bounces inconsistently and insignificantly around
0. After averaging, 12 of the 25 classification tasks
had a positive evaluation bias, 13 had a negative
evaluation bias, and all tasks had an average evalu-
ation bias less than 1% in absolute value.

To avoid excessive averaging, we lemon-picked
tasks which reported a bias of at least +3% in any
experiment configuration. All tasks matching this
criterion were from experiments with BERT, as
BERT had greater training variance. If there were
a task-dependent evaluation bias, one could expect
that the bias is consistent across m or n within a
task, or there is a consistent pattern with how the
bias changes with m or n across tasks. Figure 4
does not clearly support either of these hypotheses.

3We will not assess any particular hypothesis about the
role of causality. We are only motivating task-level analysis.

4The tasks were blog_authorship_corpus and
movie_rationales.

Moscovich and Rosset (2022) found that the
evaluation bias caused by unsupervised methods
for tabular data converges to 0 as n increases. This
finding is not confirmed by this experiment. Fig-
ure 3 shows that within m = 50 and m = 100,
distributions of the evaluation bias hover around 0
across n. Figure 4 also does not support a relation-
ship between n and the evaluation bias for lemon-
picked tasks. But far more experiments varying n
are needed to thoroughly assess this insensitivity.

8 Overtraining

§7 rules out undertraining on unlabeled text as the
cause of a null evaluation bias. What if we over-
train? Overtraining on labeled test data trivially
increases test set performance. Perhaps overtrain-
ing on unlabeled test set text has a similar effect.
To test this hypothesis for text classification, GPT-2
is intentionally overtrained on unlabeled text for 2
epochs instead of 1.

For each of the 25 classification tasks and their
subsamples, pretraining for 2 epochs instead of 1 re-
sulted in a lower pretraining loss. The final pretrain-
ing loss is 20% lower on average, and the pretrain-
ing boost is negative, which indicates overfitting,
as intended. Figure 5 demonstrates that, despite
overtraining, the evaluation bias hovers around 0.
All 50 p-values from the test in (13) are greater
than 0.5.5 Overtraining on unlabeled test set text
causes test set performance to degrade to the same
degree that overfitting on unlabeled independent
text does.

9 Zero-shot text classification

Prompting an LLM is a popular choice for solving
NLP problems. These prompts can be pretrained
on. For example, Gemma 2 (Team et al., 2024) is
intentionally pretrained on prompts from the LM-
SYS benchmark (Zheng et al., 2023).

To study a more modern prompting approach,
the experiment in §4 is repeated with two modi-
fications. First, task-adaptive pretraining is done
on prompts—unlabeled texts with instructions for
solving the task. Second, classification training
is not performed; train is unused. The further-
pretrained LLM is immediately prompted to do the
task on test.

More specifically, pretraining is performed by
adding a QLoRA adapter layer (Dettmers et al.,

5Note that all p-values from the test in (13) are adjusted to
control the false discovery rate.
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Figure 4: Distributions of average evaluation biases (12) for the subset of tasks which reported an average evaluation
bias of at least +3% accuracy in any configuration of the experiment.

2024) to every linear layer in Mistral 7B (Jiang
et al., 2023). Perhaps notably, instructions mention
the set of possible answers—the class names.

Figure 6 (left) shows that, while pretraining on
prompts improves accuracy, pretraining on test
set prompts does not increase test set accuracy
compared to pretraining on independently drawn
prompts. 12 of the 25 tasks had a positive evalua-
tion bias and 13 had a negative evaluation bias. All
25 p-values from (13) are greater than 0.5; there is
no evidence of a task-level evaluation bias.

A limitation of this experiment is that it does
not account for contamination. If Mistral 7B’s
pretraining data included labeled or unlabeled parts
of the datasets used here, the pretraining boost and
evaluation bias may be diluted.

9.1 Packing instead of padding

Experiments so far passed pretraining texts inde-
pendently, adding and masking pad tokens to en-
able batching. Packing instead combines texts into
a single sequence of tokens whose length is the
model’s context length. Packing is often used dur-
ing the initial pretraining of an LLM, where the
model is trained on continuous streams of text to
increase throughput (Brown et al., 2020).

Does packing impact evaluation bias differently
than padding? One hypothesis is that, without spe-
cial handling of the attention mask, packing causes
the model to attend to previous texts, so the trans-
former has greater flexibility in modeling unlabeled
text. To study the effects of packing, the zero-shot
experiment in §9 is repeated with packing instead
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Figure 5: Average accuracy differences (11) after pretraining GPT-2 for 2 epochs instead of 1 (§8).

Figure 6: Average accuracy differences (11) for zero-shot classification (§9) with padding (left) and packing (right).
For each of the 25 classification tasks, 20 subsamples were taken.

of padding. Figure 6 (right) shows that there is a
pretraining boost, but no evaluation bias. All 25
p-values from (13) are greater than 0.5.

9.2 On testing test set contamination

Contamination detectors aim to flag overoptimistic
LLM evaluations. An LLM is contaminated if it
was pretrained and evaluated on the same set of
labeled data, as this procedure results in an evalua-
tion bias. In contrast, the result from §9.1 implies
that contamination of unlabeled test set text does
not result in an evaluation bias. Do contamination
detectors pick up this nuance?

The experiment in §9.1 is run for the ag_news
task and n = 500. Next, text-label pairs from test
are passed to the contamination hypothesis test in
Oren et al. (2024). The p-value for the model pre-
trained on unlabeled text from extra is 0.33. The
p-value for the model pretrained on unlabeled text
from test is 0.015, which indicates contamination.
However, the observed evaluation bias for this task
is statistically indistinguishable from 0.

Detectors need to be able to differentiate the con-
tamination of labeled text from the contamination
of unlabeled text. For those that do not, contami-
nation flags should be interpreted with care. Even
if such a detector never raises false flags, a con-
tamination flag may not indicate an overoptimistic
evaluation.

10 Meta-analysis

§4.4 briefly argues for subsampling multiple
datasets from the full classification dataset. To
assess this argument, the analysis was repeated
on 500 random slices of the m = 100, n = 500
dataset of accuracies such that exactly 1 (accextra,
acctest, accbase) triple per classification task (instead
of 20 triples) is included. This de-replicated data is
often all one gets from benchmarks.

Figure 7 (left) displays the cumulative distribu-
tion of the posterior mean of the evaluation bias
for m = 100, n = 500 under this de-replicated ex-
perimental design. The distribution is quite variant.
There is a 47% chance that the posterior mean of
β—the average increase in the log-odds of a cor-
rect prediction by pretraining on unlabeled test set
text instead of on unlabeled independent text—is
outside the interval (−0.04, 0.04), which would
indicate a significant negative or positive bias.6

For the zero-shot experiment in §9, there is a 50%
chance that that the posterior mean of β is outside
(−0.08, 0.08). Without repeated subsampling, one
may as well flip a coin to decide whether pretrain-
ing on unlabeled test set text is fair.

6For 0.04, the odds ratio is e0.04 ≈ 1.04. For con-
text, the average odds ratio between adjacent submissions
in the RAFT leaderboard is 1.03. For posterior means outside
(−0.04, 0.04), all of their 89% credible intervals exclude 0,
which evidences a non-null effect.
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Figure 7: Distributions of conclusions had there been no technical replication (§10).

11 Conclusion

Task-adaptive pretraining on unlabeled test set
text—instead of on unlabeled independent text—
did not result in a consistent or significant evalu-
ation bias. This appears to be the case when pre-
training helps, when it hurts, and when pretraining
is done on texts with instructions.

For benchmarks which release unlabeled text
from the test set, this finding does not completely
absolve LLM evaluations from scrutiny. The rea-
son is that the boost from pretraining on unlabeled
text—which is often significant—could be viewed
as a type of evaluation bias, depending on how
LLMs generalize. More concretely, suppose there
is a benchmark and two LLMs, A and B. A was not
pretrained on the benchmark’s unlabeled test set
text, while B was. With the perspective that LLM
benchmarks supply scores which are correlates of
performance on real-world tasks—instead of indi-
cators of performance solely on the benchmark’s
tasks—then B scoring higher on the benchmark
than A may be a misleading signal. If pretrain-
ing on the benchmark’s unlabeled text causes B to
generalize better only within the distribution of the
benchmark, then B’s edge on this benchmark does
not signal an edge in real-world tasks. Knowing
whether an LLM was pretrained on unlabeled test
set text is still important.

One recommendation for designing few-shot
benchmarks, which expands on the principle about
robustness from Bragg et al. (2021), is based on
the meta-analysis in §10: empirical studies of few-
shot learning should consider including multiple,
independent subsamples of training data. While
a single training set combined with a large test

set is sufficient for precise, unbiased estimation of
out-of-sample performance, this estimator is condi-
tional on the training set. In few-shot learning, the
training set is, by definition, minimal. The estima-
tor hides two sources of variance—that from the
randomly drawn training set, and that from random-
ness inherent in the training procedure. Figure 7
shows that this variance is large-enough to turn a
methodology into a coin flip for two different train-
ing procedures. In-context learning with LLMs is
also sensitive to the selection of few-shot examples
(Lu et al., 2022, Alzahrani et al., 2024). Bench-
marks which require training on multiple, indepen-
dent subsamples would expose training variance.

Limitations

This paper does not study semi-supervised meth-
ods like Pattern-Exploiting Training, or hand-
inspecting the test set text and targeting interven-
tions accordingly. We also do not study the effect
of including unlabeled test set texts in the initial
pretraining stage of an LLM.

The results are empirical. There may be tasks
where an evaluation bias exists, and these were not
part of the 25 classification tasks we collected. The
results do not theoretically or universally establish
that pretraining on unlabeled test set text is fair.
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A Classification tasks

The experiment was ran on 25 publicly avail-
able text classification tasks found in https://
huggingface.co/datasets. Inclusion criteria:

1. All text is in English.

2. The number of classes is not greater than 25,
because only 50 or 100 observations are used
for training the classifier.

3. The task is to classify one text, not a pair as
in, e.g., textual entailment tasks.

4. Texts are not so long that too much useful
signal is dropped when text is truncated to fit
in BERT/GPT-2’s context window, which is
set to 256 tokens.

5. Based on our best judgment, it is likely that
BERT/GPT-2 can do better than guessing.

Table 2 lists the exact tasks.

B Other experiment choices

This section expands on §4.
First, we clarify how classification training is

performed. For BERT, the linear layer transforms
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Hugging Face dataset Author(s) Number
of classes

Text length
(25, 75)
percentiles

ag_news Zhang et al. (2015) 4 (196, 266)
SetFit/amazon_counterfactual_en O’Neill et al. (2021) 2 (60, 125)
app_reviews Grano et al. (2017) 5 (10, 77)
blog_authorship_corpus Schler et al. (2006) 2 (92, 556)
christinacdl/clickbait_notclickbait_dataset 2 (46, 69)
climate_fever Diggelmann et al. (2020) 4 (80, 156)
aladar/craigslist_bargains He et al. (2018) 6 (346, 713)
disaster_response_messages 3 (74, 178)
emo Chatterjee et al. (2019) 4 (44, 83)
dair-ai/emotion Saravia et al. (2018) 6 (53, 129)
SetFit/enron_spam Metsis et al. (2006) 2 (342, 1553)
financial_phrasebank Malo et al. (2014) 3 (79, 157)
classla/FRENK-hate-en Ljubešić et al. (2019) 2 (34, 160)
hyperpartisan_news_detection Kiesel et al. (2019) 2 (39, 63)
limit Manotas et al. (2020) 2 (53, 123)
AmazonScience/massive FitzGerald et al. (2023) 18 (24, 44)
movie_rationales DeYoung et al. (2020) 2 (2721, 4659)
mteb/mtop_domain Muennighoff et al. (2023) 11 (26, 44)
ccdv/patent-classification Sharma et al. (2019) 9 (441, 775)
rotten_tomatoes Pang and Lee (2005) 2 (76, 149)
silicone Chapuis et al. (2020) 4 (29, 75)
trec Wang et al. (2007) 6 (36, 61)
tweets_hate_speech_detection Sharma (2019) 2 (62, 107)
yahoo_answers_topics Huangzhao (2018) 10 (58, 213)
yelp_review_full Zhang et al. (2015) 5 (287, 957)

Table 2: Brief descriptions of the 25 classification tasks used in this experiment. Click the link in the cell to be taken
to the dataset homepage in https://huggingface.co/datasets. The dataset subset (or config) and the chosen
prediction task are specified in code in src/pretrain_on_test/data.py.
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the [CLS] token embedding. For GPT-2, the linear
layer transforms the last token’s embedding. The
output dimension of the linear layer is the number
of classes in the classification task. This layer,
along with the rest of the weights in the LM, are
finetuned to minimize classification cross entropy
loss on train.

The BERT model used here is
bert-base-uncased. The GPT-2 model
used here is gpt2 (small), with 124M parameters.
train is stratify-sampled by the class to ensure

every class is represented, and to reduce the vari-
ance of accuracy estimators. test is not stratify-
sampled. We are only interested in the difference
between accuracies, which is a function of the dif-
ference between model likelihoods because the pri-
ors are uniform. So even if accuracies are worse
than the majority vote, differences are still mean-
ingful for the purposes of this experiment.
train text is not included during pretraining to

eliminate the overlap of pretraining data between
accextra and acctest. This choice was made in an
effort to widen any gap between them.
train contains m = 50 or m = 100 observa-

tions. m = 50 is inspired by the RAFT bench-
mark. m = 100 stretches the intention of "few" in
few-shot learning, but was tested in an attempt to
make lower-variance comparisons. BERT is quite
sensitive—see Appendix D.2.

C Hyperparameters and reproducibility

This paper’s experiment and analysis code, and
data, is available here: https://github.com/
kddubey/pretrain-on-test.
experiment.sh lists hyperparameters used for

each classification task and experiment configura-
tion. For the experiment in §4, BERT was pre-
trained for 2 epochs, and GPT-2 was pretrained
for 1 epoch. Classification hyperparameters were
pre-specified based on Zhang et al. (2021), with
batch sizes set to avoid out-of-memory errors. Run
the script on a GPU with at least 15 GB RAM
to reproduce results in §5. It takes about 5 days
on a T4 GPU. Training is performed using the
transformers package (Wolf et al., 2020).

D Results

D.1 Task-level analysis

The notebook analysis/dataset.ipynb can be
run to (1) produce visualizations of the distributions

of accextra, acctest, and accbase (for each classifica-
tion task and experiment configuration), and (2)
compute p-values for the hypothesis test specified
in (13). For all settings of m and n, no p-values
were statistically significant at the 0.05 level.

In Figure 4, amazon_counterfactual_en and
mtop_domain have a consistent evaluation bias
across m for n = 500 and n = 200, respectively.
But these tasks did not result in an evaluation bias
in any other experiment configuration, including
those with GPT-2 and Mistral 7B.

Care has to be taken when attempting to ana-
lyze or interpret accextra − accbase and acctest −
accextra together. That’s because these differences
are not independent: if accextra is high, then accextra
− accbase increases and acctest − accextra decreases.
This paper does not analyze the scores together,
per se. We care about acctest − accextra. accextra −
accbase only exists to sanity check that the pretrain-
ing code works; there may be an effect to detect.

D.2 Difference distributions

Figures 13 - 20 visualize the distributions of the
paired differences—accextra − accbase and acctest −
accextra–for each configuration of the experiment.

E Analysis

The analysis in §6 can be reproduced
by running all of the notebooks in
analysis/fit_posteriors/. Figure 3
can be reproduced by running the notebook
analysis/results/posterior_pred.ipynb.
Figure 4 can be reproduced by running the
notebook analysis/
results/posterior_pred_conditional.ipynb.
Changing the threshold for the bias to +2% accu-
racy instead of +3% did not change conclusions.

Posterior samples of β (which were used to draw
posterior predictive samples) were taken from four
chains with 1,000 draws each, after 500 steps of
tuning.

E.1 Hierarchical model checks

Hierarchical models require some basic checks to
have faith in their results (McElreath, 2018).

For each of the 24 hierarchical models (16 in §7,
4 in §8, and 4 in §9), no divergences were observed
during the fitting procedure. All trace plots were
healthy.

Figure 11 contains prior predictive distributions
for m = 100, n = 200, demonstrating that priors
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are not unreasonable. Using default priors from
the bambi package (Capretto et al., 2022), while
scientifically unreasonable (because they result in
wide, basin-like accuracy distributions), did not
change the conclusions of this paper.

Figure 12 contains posterior distributions of β
for m = 100, n = 200, demonstrating the hier-
archical model’s ability to recover both null and
non-null effects. This test can be reproduced by
running the notebook analysis/test.ipynb.

Figure 9 checks that posterior predictions for the
average task accuracies are calibrated. Figure 10
demonstrates the importance of including the Wjl

term. These figures can be reproduced by running
the notebook analysis/results/
posterior_pred_conditional.ipynb.

F Meta-analysis

The meta-analysis in §10 can be reproduced by
running the script, analysis/meta/meta.py, and
then the notebook analysis/meta/meta.ipynb.
No divergences were observed.

Another question is whether the subsample
causes a consistent evaluation bias. §10 establishes
that picking a single subsample causes the compar-
ison between acctest and accextra to be a coin flip.
But is the result of the coin flip explained by the
specific subsample that was drawn? If so, com-
paring models using a single subsample may not
be so noisy, because the effect of pretraining on
unlabeled test set text would be consistent across
models.

One way to answer this question is to mea-
sure the correlation between the evaluation bias
of BERT and GPT-2 for each setting of m and n,
and each of the 25 tasks. A positive correlation sug-
gests that the subsample causes the evaluation bias.
Spearman’s rank correlation coefficient is used be-
cause we are only interested in the consistency of
the relationship, not its linearity.

The observed distributions of correlations across
m, n, and the tasks are plotted in Figure 8 (a).
For context, 10 distributions of randomly permuted
pairs of subsample-level biases are plotted in Fig-
ure 8 (b) and (c). These correlations are theoret-
ically 0, and are positive or negative by chance
alone. The observed distributions are qualitatively
indistinguishable from the null ones. Notably, the
variance is consistent. A deeper dive into the cor-
relations did not find any consistently positive (or
negative) correlations at the task level. This re-

sult further evidences the importance of repeated
subsampling. Taking a single subsample does not
result in a consistent pretraining boost or evalua-
tion bias between BERT and GPT-2. This anal-
ysis can be reproduced by running the notebook
analysis/dataset_level.ipynb.

(a) Observed

(b) Randomly permuted

(c) Randomly permuted

Figure 8: Distribution of correlation between BERT and
GPT-2 across all m, n, and the 25 classification tasks.

G Zero-shot text classification

Here is an example of a prompt for the ag_news
task (Zhang et al., 2015):
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Your task is to classify a given text as
one of these categories:
World
Sports
Business
Sci/Tech

The text is a news article. Answer with its topic.

### Text: Bombardier CEO Quits, Shares
Dive Paul Tellier stepped down on Monday
as president and chief executive of
Bombardier Inc. (BBDsvb.TO: Quote,
Profile, Research) (BBDb.
### Answer:

For packing (§9.1), the prompts at inference are
in the same format as above. For training, 8 texts
were packed. Here is an example of an input se-
quence for ag_news, where 4 texts are packed:

Your task is to classify a given text as
one of these categories:
World
Sports
Business
Sci/Tech

The text is a news article. Answer with its topic.

### Text: US Electoral College withstands critics
... so far (AFP) AFP - Lambasted as antiquated
and anti-democratic, the Electoral College that
decides the US presidency has survived for
centuries as an unmovable albeit creaky pillar
of the American political system.

### Text: Voters in Hungary decide referenda
Voters in Hungary went to the polls Sunday to
decide a double referendum on citizenship
rights and their nation #39;s health care
system.

### Text: White House: Trying to Confirm Terror
Group #39;s Allegiance to bin
&lt;b&gt;...&lt;/b&gt; The Bush administration
says it #39;s trying to confirm the latest
declaration from the most feared militant group
in Iraq. In a statement posted on a Web site
Sunday, the group led by terror mastermind Abu
Musab

### Text: Fans rush to create mods for
long-awaited #39;Doom 3 #39; Activision #39;s
Doom 3, which launched earlier this month,
wasn #39;t on store shelves for three days
before players started creating their own
modifications - known as mods -o the game.

The zero-shot experiment files are in
cloud_scripts/gcp/experiments/zero_shot/
and cloud_scripts/gcp/experiments/
zero_shot_packing/. Batch sizes are set
to run on a GPU with at least 20 GB RAM.
The GPU must support the data types needed

for QLoRA, e.g., an L4 GPU. Figure 6 can
be reproduced by running the notebooks
in analysis/fit_posteriors/zero_shot and
analysis/fit_posteriors/zero_shot_packing
and then the notebook,
analysis/results/posterior_pred.ipynb.

The Mistral 7B model is Mistral-7B-v0.3, the
non-instruction-trained model.

We only study n = 100 in an initial effort to
provide evidence of an evaluation bias (due to the
relatively small test set), and take 20 repeated sub-
samples instead of 50. While n = 100 is quite
small, benchmarks such as LegalBench (Guha et al.,
2024) have test data in this range. And the analysis
transparently exposes variance.

QLoRA hyperparameters were pre-specified: ev-
ery adapter has rank 16 with α = 32 (LoRA scaling
factor), a 0.05 dropout rate, and no bias parame-
ters. The adapter layers introduce 41, 943, 040 new,
trainable parameters to Mistral 7B, whose parame-
ters are frozen. Pretraining was done for 1 epoch.

To increase the power of the contamination hy-
pothesis test run in §9.2, shards were formed to be
similar to the sequences passed in during pretrain-
ing. Here is an example of what the first 2 text-label
pairs in the dataset passed to the contamination test
looks like:

### Text: Customers bemoan changes in Quicken
2005 The new version of the personal finance
program drops support for a widely used file
format.
### Answer: Sci/Tech

### Text: Blair gives partial Iraq apology Tony
Blair has offered his Labour party a partial

apology for waging war in Iraq, striving to pull
angry supporters behind him ahead of an election
next year.
### Answer: World

The 2 p-values in §9.2 can be
obtained by running the notebook
analysis/contamination/test.ipynb on
an L4 GPU.
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Figure 9: Each of the points represents a task and an LM type (BERT or GPT-2).

Figure 10: Omitting the interaction effect causes underfitting. Note that the prior causes effects to shrink towards 0.
Each of the points represents a task and an LM type (BERT or GPT-2).
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(a) Null effect (b) Non-null, positive effect

Figure 11: Prior predictive distributions for m = 100, n = 200 from two different priors for β—the expected
increase in the log-odds of a correct prediction resulting from an intervention/treatment.

(a) Null effect is recovered.

(b) Non-null, positive effect is recovered.

Figure 12: Posterior distributions and trace plots for null and non-null effects from simulated data where
m = 100, n = 200, approximated by four chains with 1,000 draws each, after 500 steps of tuning. For each model,
no divergences were observed during the fitting procedure. Visualizations were produced by the arviz package
(Kumar et al., 2019).
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