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Abstract

In multi-objective text generation, we aim to
optimize over multiple weighted aspects (e.g.,
toxicity, semantic preservation, fluency) of
the generated text. However, multi-objective
weighting schemes may change dynamically
in practice according to deployment require-
ments, evolving business needs, personaliza-
tion requirements on edge devices, or the avail-
ability of new language models and/or objec-
tive requirements. Ideally, we need an efficient
method to adapt to the dynamic requirements
of the overall objective. To address these re-
quirements, we propose a linear combination
of objective-specific language models to effi-
ciently adapt the decoding process and opti-
mize for the desired objective without the sig-
nificant computational overhead of retraining
one or more language models. We show em-
pirically that we can leverage Gaussian Pro-
cess black box optimization to adapt the lan-
guage model decoder weights to outperform
other fixed weighting schemes and standard
baselines of the task in only a few iterations of
decoding. Overall this approach enables highly
efficient adaptation of controllable language
models via multi-objective weighting schemes
that may evolve dynamically in practical de-
ployment situations.

1 Introduction

Multi-objective text generation involves compro-
mises between different objectives. In practice,
the importance of each objective may dynamically
change due to business needs, personalization, or
addition of new objectives due to time-evolving de-
ployment requirements. Retraining or fine-tuning
the Language Model (LM) may be impractical for
each adaptation of the multi-objective target since
it imposes significant computational costs. To ad-
dress this inefficiency, we propose a multi-objective
framework that leverages language model decoders

*Equal Contributions

pretrained for each objective and a dynamic weight-
ing of each decoder to adapt to the objective with-
out retraining their corresponding models.

More specifically, we propose a method to dy-
namically adapt the weighting of objective-specific
LMs at the decoding stage to optimize the desired
overall text generation objective. We define the
overall problem as one of black box function opti-
mization, where the function inputs are n language
model decoders and weights (i.e., w1, . . . , wn) and
the output is the chosen objective value. We specif-
ically use Gaussian Process optimization since it is
a popular and efficient tool for black box optimiza-
tion (Brochu et al., 2010; Snoek et al., 2012).

Empirically, we evaluate on a range of text detox-
ificaton tasks that serve as a natural and impor-
tant testbed for multi-objective language model
optimization. We demonstrate that our Gaussian
Process Bayesian Optimization approach can effi-
ciently and quickly adapt the language model de-
coder weights to outperform other fixed weighting
schemes and standard baselines of the task in only
a few iterations of decoding.

2 Related Work

2.1 Text Detoxification as a Natural Testbed
for Multi-objective Text Generation

The text detoxification task aims to generate a non-
toxic sentence sout given a toxic input sin while
preserving the content of sin. This is inherently
a multi-objective text generation task as we need
to ensure non-toxicity, semantic preservation, and
fluency (Logacheva et al., 2022; Pour et al., 2023).

Text detoxification solutions primarily fall into
two main categories, unsupervised and supervised.
The unsupervised methods are typically built on a
non-parallel dataset, which is a set of toxic and a
set of non-toxic texts without one-to-one mappings
between them (Wu et al., 2019; Li et al., 2018; Dale
et al., 2021; Lee, 2020; He et al., 2020; Luo et al.,
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Figure 1: Combining objective-specific language models in the inference time for multi-objective text decoding.
The next-token scores are combined using w = [w1, ..., wn] which are learned through black box optimization to
optimize for the desired objective.

2019). In contrast, supervised methods are usu-
ally built on parallel datasets in which one-to-one
mappings between toxic and non-toxic texts exist
and train end-to-end models to generate non-toxic
text given the toxic input (Logacheva et al., 2022;
Atwell et al., 2022; Floto et al., 2023; Pour et al.,
2023). Supervised methods have typically shown
superiority to unsupervised methods (Logacheva
et al., 2022; Floto et al., 2023; Pour et al., 2023).

2.2 Black Box Bayesian Optimization

The objective in black box function optimization is
to identify the optimal parameters for a “black box”
function characterized by an unknown or a very
complex mathematical form or structure (Jones
et al., 1998; Bergstra and Bengio, 2012). Bayesian
Optimization (BO) is a commonly used solution
in optimizing black box functions that employs a
probabilistic surrogate model to represent the un-
known function (Snoek et al., 2012; Brochu et al.,
2010). It iteratively selects the most promising
parameter sets via an acquisition function for eval-
uation by the objective function. Subsequently, the
surrogate model is updated based on these evalua-
tions, persisting until convergence or the fulfillment
of predetermined stopping conditions. Gaussian
Processes (GPs) are a popular choice in Bayesian
Optimization for optimizing black box functions
(Srinivas et al., 2010) due to their adaptability to un-
certainty modelling and efficient handling of small
data regimes. This makes them well-suited for ap-
plications such as Automated Machine Learning
(AutoML) (Snoek et al., 2012), Drug Discovery,
and Bioinformatics (Colliandre and Muller, 2023).

2.3 Minimum Bayes Risk Training and
Decoding

Bayesian approaches to both language model train-
ing and decoding have been considered previously,

but in a different setting than ours. Minimum
Bayes-Risk (MBR) training (Wang et al., 2018;
Shen et al., 2015) trains model parameters with
respect to target evaluation metrics. To this end, it
is akin to the type of heavyweight full fine-tuning
approach that we aim to avoid in this paper in fa-
vor of a lightweight adaptation of multiple decoder
weights via Gaussian Process Bayesian Optimiza-
tion. Similarly, MBR decoding (Kumar and Byrne,
2004; Blain et al., 2017) aims to find Bayes opti-
mal sequences at the decoding stage, but does not
consider the case of reweighting multiple decoders
that is the focus of our work.

In the next section, we define our methodology
for black box optimization for adapting to multi-
objective text generation settings.

3 Multi-Objective Text Decoding

Problem Definition. For multi-objective text gen-
eration, we assume that we have different pre-
trained and fixed language models representing dis-
tinct objectives. For example, we might fine-tune a
base language model for non-toxic text generation
and separately fine-tune the same model for fluent
text generation to provide one decoder for each
objective.

Our goal is to devise an efficient weighting strat-
egy that combines the next-token prediction scores
from all language models, without fine-tuning them,
to optimize the overall objective. It is challenging
to manually determine a set of weights that effec-
tively combines these language models. To tackle
this challenge, we frame the problem as a black
box function optimization as shown in Fig. 1. The
figure shows that our inputs consist of n language
models, each associated with a weight (denoted
as w1 to wn), and the output corresponds to the
selected objective value.
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To optimize the black box function, we leverage
Bayesian Optimization with Gaussian Processes.
We describe our solution in detail below.

Methodology. Suppose sin is the input text and
sout is the generated text that we want to evaluate.
For that, assume that we have n objective functions,
i.e., O = {o1(.), ..., on(.)}, that reflect different
properties of text such as non-toxicity or fluency,
and n language models that correspond to the fore-
going objectives, i.e., M = {m1(.), ...,mn(.)}.
That is, mi(.) is a language trained to maximize
the objective oi(.), for any i ≤ n. To represent our
preferences over the objectives O, we use a set of
thresholds, i.e., T = {t1, ..., tn}.

Overall Objective: We want to generate se-
quences that satisfy our preferences T over the
objectives O as follows:

opref (s
out) =

1

|O|
∑

(oi,ti)∈O,T
I[oi(sout) ≥ ti]

(1)
where I[·] is the indicator function. It is noteworthy
that Eq. 1 is a considered as a generalized version
of the J score from Krishna et al. (2020).

Decoding: To satisfy opref (.), we need to com-
bine the models in M using a set of weights, i.e.,
w = [w1, ..., wn], in the decoding process as pre-
sented in Fig. 1. The combined language model,
denoted by m̂(.|M,w), chooses the next token
soutj by a linear combination of next token proba-
bilities of models in M:

pm̂(soutj |sout<j , s
in,M,w) =

∑

(m(.),wi)∈M,w

wi ∗ pm(soutj |sout<j , s
in) (2)

where pm(soutj |sout<j , s
in) is probability of the jth

token soutj using the text generation model m(.).
Then, the tokens are ranked based on their pm̂ be-
fore being used by a decoding strategy such as
beam search.

Finally, we use black-box optimization to learn
the optimal weights, i.e., w∗:

sout = m̂(sin|M,w) (3)

w∗ = argmax
w

∑

sout

opref (s
out) (4)

To obtain w∗, we use Bayesian Optimization
with Gaussian Processes. We review Bayesian Op-
timization with Gaussian Processes in Appx. B.

4 Experiments

Recall that, we use the text detoxification task for
our proposed method for multi-objective text gen-
eration. The detoxification task is commonly evalu-
ated by three objectives of non-toxicity, seman-
tic preservation, and fluency (Logacheva et al.,
2022; Atwell et al., 2022; Pour et al., 2023; Floto
et al., 2023). We discuss our experimental setup
below and provide all code to reproduce results on
Github.1

4.1 Experimental Setup
Datasets. We use two parallel detoxification
datasets, namely, ParaDetox (Logacheva et al.,
2022) and APPDIA (Atwell et al., 2022) which
contain pairs of toxic text and non-toxic texts. The
datasets are split into training, validation, and test
sets. We use the training set to train objective-
specific language models (Appendix A). We also
assess the generalizability of the LMs trained on
ParaDetox or APPDIA for black box optimization
against the Jigsaw dataset (Do, 2019). For that,
we learn the optimal weights w∗ using the Jigsaw
validation set and evaluate the performance on its
test set.
Metrics. Accuracy (STA), Content Preservation
(SIM), and Fluency (FL) are commonly used in the
literature (Logacheva et al., 2022; Pour et al., 2023;
Floto et al., 2023) for text detoxification evalua-
tion. STA and FL are computed using pre-trained
classifiers (Logacheva et al., 2022). SIM is com-
puted using cosine similarity between the input and
the generated detoxified text with the model from
Wieting et al. (2019).
Baselines. We compare the performance of our
black box GP optimization method to the following
baselines:

1. Parallel Training is the standard approach
where an encoder-decoder language model
is trained, on a parallel dataset, to generate a
non-toxic text for an input toxic text which
has the best performance in Logacheva et al.
(2022).

2. Fine-tuning: By fine-tuning, the model is
trained for the assigned objective opref . This
approach incurs a high computational cost
and therefore is not well-suited for fast multi-
objective adaptation. However, it is an impor-
tant reference point for comparison.

1https://github.com/D3Mlab/gp-opt-lm
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Figure 2: (a) We compare GP against baselines (Settings I & II). (b) We compare GP Kernels. In the plot titles,
T: [t1, t2, t3] stands for the thresholds of Eq (1) for the respective objectives of non-toxicity, semantic, and fluency.

3. Random: To test whether random search per-
forms as well as GP-based search, we uni-
formly generated w ∈ [0, 1]3 at each step of
optimization and simply maintained the w∗ as
the best performing w up to the current step.

4. T-base: In this case, instead of finding w∗

through black box optimization, we set wi =
ti so that each wi corresponds to the impor-
tance of objective oi(.) in opref (Eq. 1).

We remark that both the GP and Random methods
in Fig. 2 (a) have been averaged over 5 uniformly
randomized initializations for w ∈ [0, 1]3.
Thresholds. We consider 3 cases for T in Fig. 2
(a) to focus on one objective in each setting. For
example, T: [0.1, 0.1, 0.9] de-emphasizes Accuracy
and Similarity (0.1) but emphasizes Fluency (0.9).

4.2 Experimental Results

Optimization & Generalization with GP. In all
experiments, we find the best combination weights
w∗ (in Eq. 4) using black box optimization against
the validation data. Meanwhile, we plot the perfor-
mance against the test data at each step of black
box optimization.

Experimental Setting I. Fig. 2 (a) compares the re-
sults of black box optimization with the baselines
against ParaDetox and APPDIA, in the first two
rows, respectively. In most cases, we see that GP
outperforms other methods. This can be explained
by the fact that the black box optimizer finds the
best performing w∗ to fuse the contributions of our
LMs to maximize the final objective. We also ob-
serve that GP’s performance improves significantly
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during early steps. This observation supports our
claim regarding the efficiency of our method.

Experimental Setting II. Fig. 2 (a) also presents the
generalization results against the Jigsaw dataset,
in the last two rows. We see that GP again shows
superiority to the other methods in most cases for
both (reference) datasets. However, when a greater
threshold is set to content preservation, Parallel
Training usually performs better, suggesting its suit-
ability for content presentation.

In both settings, GP may not perform as well
as other models when a greater threshold is set to
the content-preservation objective against the APP-
DIA dataset. This may be reflected by the fact that
content preservation is not a key objective for this
dataset. Moreover, Fig. 2 (a) shows the superior
performance of GP over random search emphasiz-
ing the importance of Bayesian optimization with
GPs in finding the best weighting combination.

We observe in most cases that the Fine-tuning
baseline does not generally perform well given the
challenge of optimizing the nonlinear target with
(non-differentiable) thresholded objective func-
tions in Eq (1). Furthermore, Fine-tuning requires
significant computation and does not permit fast
adaptation to new multiobjective functions in only
a few iterations of decoder weight optimization as
we propose in this paper with our Gaussian Process
Bayesian Optimization approach.

GP Kernel Choice. In Fig. 2 (b), we can see the
results for different ν parameters of the Matérn
kernel (Matern et al., 1960) and different length pa-
rameters l for the RBF and the Inner (dot) product
kernels. Observing consistent patterns across vari-
ous kernels suggests the resilience of our method-
ology to kernel selection, alleviating the necessity
for extensive hyperparameter tuning.

5 Conclusion

We introduced black box optimization for fast
multi-objective adaptation of language models
(LMs) by leveraging Gaussian Process Bayesian
Optimization to efficiently adapt the weights of
objective-specific decoders. Our experimental
results showed that our GP approach was able
to quickly adapt to changes in nonlinear, non-
differentiable multi-objective targets in only a few
decoding iterations as evidenced by its strong per-
formance compared to a variety of baselines.

Limitations

Our experiments focused on text detoxification,
which is an important case of multi-objective text
generation that has received much attention in re-
cent years (Logacheva et al., 2022; Atwell et al.,
2022; Floto et al., 2023; Pour et al., 2023). How-
ever, our methodology is general and could be ap-
plied to a diverse set of multi-objective text gen-
eration tasks. Exploring the performance of our
approach in other diverse settings is an important
avenue for future research.

Ethical Considerations

Potential Misuse: Our approach has the potential
to be inverted, allowing the generation of toxic sen-
tences from initially non-toxic ones. Nevertheless,
there are probably more straightforward methods
to introduce toxicity that could reduce the risk of
misuse in this scenario.

Environmental Cost: We acknowledge that our
study necessitated thorough computational experi-
ments for robust conclusions. Nonetheless, models
in production may not demand such extensive ex-
perimentation. Instead, they can potentially lever-
age our key conclusions in this paper, thereby re-
ducing future computational costs associated with
this methodology.
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A Implementation details

We finetune BART (Lewis et al., 2020) models us-
ing classifier feedback to get the objective-specific
language models for our experiments. Similarly,
we use BART for the Parallel Training baseline as
well. For training with classifier feedback, at each
epoch, we generate several sentences using the lan-
guage model by beam search and label them using
the classifier, for example, "toxic" and "nontoxic".
Then, we use the desired label ("nontoxic") as the
target string to fine-tune the model.

For the inference use a beam size of 5 in the
decoding for both multiobjective text decoding and
the baselines.

We used BART-base models and ran the infer-
ences on a V100 GPU and each experiment took
approximately 5 hours to complete.

B Gaussian Process

Gaussian Process. A Gaussian Process (GP) is
defined by a mean function µ(w) and a covariance
function2 k(w,w′):

f(w) ∼ GP(µ(w), k(w,w′)) (5)

At each optimization step, we observe the ob-
jective value for w using the validation data
{(sin, sout)}. Given a set of observed data point
D = {(w, y)} where y = opref (s

out|sin,w) the
posterior predictive distribution at a new point w∗
is a Gaussian distribution:

f(w∗)|D ∼ GP(µ(w∗), σ2(w∗)) (6)

2Also referred to as a kernel.

The mean µ(w∗) and variance σ2(w∗) are given
by:

µ(w∗) = kT∗ (K + σ2
nI)

−1y

σ2(w∗) = k∗∗ − kT∗ (K + σ2
nI)

−1k∗

where σ2
n is the noise parameter, representing the

observation noise. Then, we can use an acquisi-
tion function to choose the next set of combining
weights wnext as follows:

wnext = argmax
w

acq(w) (7)

Acquisition Functions - The most common acquisi-
tion functions are Lower Confidence Bound (UCB),
Expected Improvement (EI), and Probability of Im-
provement (PI). We briefly describe them below.

The Lower Confidence Bound (LCB) acquisi-
tion function encourages exploration by selecting
points with both high uncertainty and potential for
improvement (Cox and John, 1992):

LCB(w) = µ(w)− κσ(w) (8)

where κ is a tunable parameter that controls the
trade-off between exploration and exploitation.

The Expected Improvement (EI) acquisition
function quantifies how much improvement is ex-
pected over the current best observation (Mockus,
1998):

EI(w) =
{
(µ(w)− ybest − ξ)Φ(Z) + σ(x)ϕ(Z) if σ(x) > 0

0 if σ(x) = 0
(9)

where ybest is the best-observed function value, ξ is
a small positive constant to control the exploration-
exploitation trade-off, Z is the standardized im-
provement calculated by Z = µ(w)−ybest−ξ

σ(w) , Φ(·)
is the cumulative distribution function of the stan-
dard normal distribution, and ϕ(·) is the probability
density function.

The Probability of Improvement (PI) acquisition
function measures the probability that the surrogate
function value at a given point is better than the
current best observation (Kushner, 1964):

PI(w) = Φ

(
µ(w)− ybest − ξ

σ(w)

)
(10)

We use the “gp_hedge” option from
scikit-optimize3 which probabilistically

3The Scikit-Optimize Library
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ParaDetox
Input holy shit whats the reasoning for 28 + upvotes people ?
Reference What is the reasoning for 28+ upvotes?
Model Output What’s the reasoning for 28+ upvotes people?
Input i agree , if he can get focused , he will make hernandez look shit
Reference If ever he would get focused he will make trouble for Hernandez.
Model Output I agree, if he can get focused, he will make Hernandez look bad.

APPDIA
Input What the fuck is this supposed to mean?
Reference What is this even supposed to mean?
Model Output What is this supposed to mean?
Input You are a special kind of idiot.
Reference You are not very smart.
Model Output You are special kind of person.
Input What good does all that bullshit bring though?
Reference What good does that bring?
Model Output What good does all that stuff bring though?

Table 1: Text Detoxification Examples for Qualitative Analysis. [Warning: offensive language.]

chooses one of the above three acquisition
functions at every iteration. This strategy proved
to have the best performance using the validation
data. Further details can be found from the
“gp_minimize” documentation4.

C Text Detoxification Examples

Table 1 lists a few text detoxification examples
for both ParaDetox and APPDIA datasets for qual-
itative comparison between inputs (i.e., original
toxic texts), references (i.e., detoxified versions by
a human), and outputs from our proposed approach.
[Warning: These inputs and references are from the
original datasets and contain offensive language.]

4GP Minimize
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